
Freescale Semiconductor
Application Note

AN2881
Rev. 0, 1/2005
Mapping Memory Resources on
HCS12 Microcontrollers
by: Luis Reynoso Covarrubias

RTAC Americas Mexico 2004

Introduction

This document is intended to serve as a quick reference for embedded microcontroller engineers to
correctly memory map registers, RAM, and EEPROM while running any HCS12 MCU. Basic knowledge
about the functional description and configuration options will provide a better understanding of how the
memory mapping works. This application note provides examples illustrating how to perform the memory
mapping within the HCS12 Family of microcontrollers. The examples mentioned are intended to be
modified to suit the specific needs of any application.

Description

The HCS12 Family of microcontrollers has the functionality to remap its internal registers, RAM memory,
and EEPROM memory within some boundaries defined for each microcontroller. This functionality allows
the capability to change the default address for each module. This allows a better optimization of the
available resources with possibilities such as:

• Direct memory addressing to any memory location:

The HCS12 CPU has a direct addressing mode using zero-page ($00XX) with only eight bits to
address the memory. Using direct addressing mode, the instructions are faster and consume less
code; however, the main problem is this addressing mode can only be used for the first 256 bytes
© Freescale Semiconductor, Inc., 2004. All rights reserved.

This product incorporates SuperFlash technology licensed from SST.

Description
of memory. By default, the HCS12 has its internal registers in the zero-page. This is very useful for
most applications; however, some applications require an extensive use of RAM memory or
continuous access to EEPROM locations. Using memory mapping to change the RAM or
EEPROM to zero-page allows faster access to these memory locations and uses less code.

• Complete use of memory locations:

Some HCS12 derivatives have overlapped memory locations by default for such reasons as:
– having more memory than addressable by 64 Kbytes
– or legacy, allowing compatibility with other devices

This is useful for many applications, but in some cases, may require a different use of memory
resources. In this case the user can select appropriate memory locations for RAM, EEPROM, and
internal registers in order to avoid overlapping, thus maximizing the use of the internal resources.

Information available in this quick reference can be found in greater detail in the Device User Guide and
the Module Mapping Control Manual (Freescale order number S12MMCV4).

Each HCS12 device has its own memory resources. For this reason, some parameters such as memory
size, allowable mapping boundaries, and register functionality depends on the device. It should be the
first consideration to remap the memory.

Memory information is included in the Device User Guide for each microcontroller as follows:

• The Device Memory Map section which contains information about the memory resources and
boundaries. Please note that some Device User Guides have different memory maps after reset
while others have a useful recommended configuration map instead of the map out at reset.

• HCS12 memory map examples like that shown in Figure 1 for the MC9S12DJ64 and
MC9S12DP256B.

For more detailed information, refer to the Device User Guide for each microcontroller.

Table 1. MC9S12DJ64 and MC9S12DP256B Memory Characteristics

Size Boundary
Start

Address
After Reset

Available
Range

After Reset

Special
Characteristics

MC9S12DJ64

Registers 1K 2K $0000 $0000 – $03FF Mappable only within the first 32K

RAM 4K 4K $0000 $0400 – $0FFF

EEPROM 1K 2K $0000 Not Available Mapped twice in the 2K space

MC9S12DP256B

Registers 1K 2K $0000 $0000 – $03FF Mappable only within the first 32K

RAM 12K 16K $1000 $1000 – $3FFF Can be aligned to top or bottom

EEPROM 4K 4 $0000 $0400 – $0FFF
Mapping Memory Resources on HCS12 Microcontrollers, Rev. 0

2 Freescale Semiconductor

Description
Figure 1. HCS12 Memory Map Examples (MC9S12DP256B vs. MC9S12DJ64)

Although some microcontrollers contain identical addresses for RAM, EEPROM, or registers, only one
will be available. Therefore, some memory sections are unavailable. This will be defined by the HCS12
Family memory priority outlined in Table 2.

Table 2. Memory Priority

Priority Address Space

Highest BDM (internal to Core) firmware or register space

— Internal register space

— RAM memory block

— EEPROM memory block

— On-chip FLASH or ROM

Lowest Remaining external space
Mapping Memory Resources on HCS12 Microcontrollers, Rev. 0

Freescale Semiconductor 3

Registers Descriptions
Registers Descriptions

RAM15:RAM11

These bits determine the upper five bits of the base address for the system’s internal RAM.

RAMHAL
0 = Aligns RAM to the lowest address
1 = Aligns RAM to the highest address

The initialization of internal RAM position register (INITRM) is the register to map the internal RAM
memory. This required register initializes the position of internal RAM within the on-chip system memory
map.

REG14:REG11

These four bits, in combination with the leading zero supplied by bit 7 of INITRG, determine the upper
five bits of the base address for the system’s internal registers. For example, the minimum base
address is $0000 and the maximum is $7FFF.

The initialization of internal registers position register (INITRG) is the register required to map the internal
registers. This register initializes the position of internal registers within the on-chip system memory map.
The registers occupy either a 1 Kbyte or 2 Kbyte space and can be mapped to any 2 Kbyte space within
the first 32 Kbytes of the system’s address space.

7 6 5 4 3 2 1 0

R
RAM15 RAM14 RAM13 RAM12 RAM11

0 0
RAMHAL

W

Reset 0 0 0 0 1 0 0 1

= Unimplemented or Reserved

Figure 2. Initialization of Internal RAM Position Register (INITRM)

7 6 5 4 3 2 1 0

R 0
REG14 REG13 REG12 REG11

0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 3. Initialization of Internal Registers Position Register (INITRG)

7 6 5 4 3 2 1 0

R
EE15 EE14 EE13 EE12 EE11

0 0
EEON

W

Reset — — — — — — — —

= Unimplemented or Reserved

Figure 4. Initialization of Internal EEPROM Position Register (INITEE)
Mapping Memory Resources on HCS12 Microcontrollers, Rev. 0

4 Freescale Semiconductor

Value Selection
EE15:EE11

These bits determine the upper five bits of the base address for the system’s internal EEPROM array.

EEON
0 = Disables the EEPROM from the memory map
1 = Enables the EEPROM

The initialization of internal EEPROM position register (INITEE) is the register required to map the internal
EEPROM. This register initializes the position of the internal EEPROM within the on-chip system memory
map.

Value Selection

In order to map the required section the following steps should be considered:

1. Consider size and boundary size of the section.

Example:

According to their device user guide, the MC9S12DJ64 and MC9S12DP256 have the RAM
memory shown in Table 3.

2. Select a desired start address for the memory section boundary.

Example:

According to the defined boundaries, the allowed RAM start memory locations for the
MC9S12DJ64 and MC9S12DP256B are shown in Table 4.

Table 3. MC9S12DJ64 and MC9S12DP256B
RAM Characteristics

MCU RAM Size RAM Boundary

MC9S12DJ64 4K 4K

MC9S12DP256B 12K 16K

Table 4. MC9S12DJ64 and MC9S12DP256B Available Addresses

MC9S12DJ64 MC9S12DP256B

Start Address End Address Start Address End Address

0×0000 0×0FFF 0×0000 0×3FFF

0×1000 0×1FFF 0×4000 0×7FFF

0×2000 0×2FFF 0×8000 0×BFFF

. 0×C000 0×FFFF

0×E000 0×EFFF

0×F000 0×FFFF
Mapping Memory Resources on HCS12 Microcontrollers, Rev. 0

Freescale Semiconductor 5

Value Selection
3. Select the proper value for position bits. Since some sections can be mapped only in defined
boundaries, some position bits will be unimplemented.

Example:

The available values for RAM15:RAM11 for the MC9S12DJ64 and MC9S12DP256B are shown in
Table 5.

4. Fill the additional bits for the register:

a. If the RAM is being mapped:

Align RAM memory. Some microcontrollers have a smaller memory size than the memory
boundary; the RAMHAL allows the user to align the memory to be available at the lowest
address or the higher address.

Example:

Since the MC9S12DJ64 has 4K of RAM in a 4K boundary, this bit is unimplemented. On the
other hand, the MC9S12DP256 has 12K of RAM in a 16K boundary. In this way, depending
on the RAMHAL value, the start location could be 0x0000 or 0x1000 as shown in Table 6.

b. If the EEPROM is being mapped:

If the EEPROM is required, set the EEON bit, otherwise clear it.

Table 5. MC9S12DJ64 and MC9S12DP256B RAM15:RAM11 Available Values

MC9S12DJ64 MC9S12DP256B

Boundary Start
Address

R
A

M
15

R
A

M
14

R
A

M
13

R
A

M
12

R
A

M
11 Boundary Start

Address

R
A

M
15

R
A

M
14

R
A

M
13

R
A

M
12

R
A

M
11

0×0000 0 0 0 0 x 0×0000 0 0 x x x

0×1000 0 0 0 1 x 0×4000 0 1 x x x

0×2000 0 0 1 0 x 0×8000 1 0 x x x

. x 0×C000 1 1 x x x

0×E000 1 1 1 0 x

0×F000 1 1 1 1 x

Table 6. MC9S12DJ64 and MC9S12DP256B Using RAMHAL

MC9S12DJ64 MC9S12DP256B
0×0000 RAMHAL=0 RAMHAL=1 0×0000 RAMHAL=0 RAMHAL=1

0×1000

0×2000

0×3000

0×0FFF 0×3FFF
Mapping Memory Resources on HCS12 Microcontrollers, Rev. 0

6 Freescale Semiconductor

Value Selection
5. Write register value:

Example:

The available values for INITRM, INITEE, and INITRG for the MC9S12DJ64 and MC9S12DP256B
are shown in Table 7, Table 8, and Table 9.

Table 7. INITRG Values for MC9S12DJ64 and MC9S12DP256B

REG14 REG13 REG12 REG11 INITRG Start Address End Address

0 0 0 0 0×00 0×0000 0×07FF

0 0 0 1 0×08 0×0800 0×0FFF

0 0 1 0 0×10 0×1000 0×17FF

0 0 1 1 0×18 0×1800 0×1FFF

. .

1 1 1 0 0×70 0×7000 0×77FF

1 1 1 1 0×78 0×7800 0×7FFF

Table 8. INITRM Values for MC9S12DJ64 and MC9S12DP256B

MC9S12DJ64 MC9S12DP256B

R
A

M
15

R
A

M
14

R
A

M
13

R
A

M
12

R
A

M
11

R
A

M
H

A
L

INITRM Start
Address

End
Address

R
A

M
15

R
A

M
14

R
A

M
13

R
A

M
12

R
A

M
11

R
A

M
H

A
L

INITRM Start
Address

End
Address

0 0 0 0 x x 0×00 0×0000 0×0FFF 0 0 x x x 0 0×00 0×0000 0×2FFF

0 0 0 1 x x 0×10 0×1000 0×1FFF 0 0 x x x 1 0×01 0×1000 0×3FFF

0 0 1 0 x x 0×20 0×2000 0×2FFF 0 1 x x x 0 0×04 0×4000 0×6FFF

0 0 1 1 x x 0×30 0×3000 0×3FFF 0 1 x x x 1 0×41 0×5000 0×7FFF

. . . . x x 1 0 x x x 0 0×80 0×8000 0×AFFF

1 1 0 1 x x 0×D0 0×D000 0×DFFF 1 0 x x x 1 0×41 0×9000 0×BFFF

1 1 1 0 x x 0×E0 0×E000 0×EFFF 1 1 x x x 0 0×C0 0×C000 0×EFFF

1 1 1 1 x x 0×F0 0×F000 0×FFFF 1 1 x x x 1 0×C1 0×D000 0×FFFF

Table 9. INITEE Values for MC9S12DJ64 and MC9S12DP256B

MC9S12DJ64 MC9S12DP256B

E
E

15

E
E

14

E
E

13

E
E

12

E
E

11

E
E

O
N

INITEE Start
Address

End
Address E

E
15

E
E

14

E
E

13

E
E

12

E
E

11

E
E

O
N

INITEE Start
Address

End
Address

0 0 0 0 0 1 0×01 0×0000 0×07FF 0 0 0 0 x 1 0×01 0×0000 0×0FFF

0 0 0 0 1 1 0×09 0×0800 0×0FFF 0 0 0 1 x 1 0×11 0×1000 0×1FFF

0 0 0 1 0 1 0×11 0×1000 0×17FF 0 0 1 0 x 1 0×21 0×2000 0×2FFF

0 0 0 1 1 1 0×19 0×1800 0×1FFF 0 0 1 1 x 1 0×31 0×3000 0×3FFF

. 1 x 1

1 1 1 1 1 1 0×F1 0×F000 0×F7FF 1 1 1 0 x 1 0×E1 0×E000 0×EFFF

1 1 1 1 1 1 0×F9 0×F800 0×FFFF 1 1 1 1 x 1 0×F1 0×F000 0×FFFF
Mapping Memory Resources on HCS12 Microcontrollers, Rev. 0

Freescale Semiconductor 7

Required Code and Explanation
Required Code and Explanation

The code required to initialize these registers is very simple. But, it is very important to write these
registers at the beginning of the program so that further accesses to RAM, registers, and EEPROM have
the right meaning.

1. Define the required registers.

Example for MC9S12DJ64
#define ___INITRM (*(volatile unsigned char *) 0x0010)
#define ___INITRG (*(volatile unsigned char *) 0x0011)
#define ___INITEE (*(volatile unsigned char *) 0x0012)

NOTE
These registers might be already defined by the stationary.

2. After reset (for example, in _Startup() function, using CodeWarrior), write the proper values for
these registers.

Example for MC9S12DJ64:
___INITEE = 0x11; /* lock EEPROM block from 0x1000 to 0x17FF(mapped twice) */
___INITRM = 0x00; /* lock Ram from 0x0000 to 0x0FFF */
___INITRG = 0x18; /* lock registers block from 0x1800 to 0x1FFF */

3. At this moment, the blocks are mapped correctly in the MCU; however, we must tell the linker
where to accommodate the memory blocks. In the PRM, modify the proper SEGMENTS and
PLACEMENTS.

Example for MC9S12DJ64:

SEGMENTS
 RAM = READ_WRITE 0x0000 TO 0x0FFF;
 /* unbanked FLASH ROM */
 ROM_C000 = READ_ONLY 0xC000 TO 0xFEFF;
 /* banked FLASH ROM */
 PAGE_3C = READ_ONLY 0x3C8000 TO 0x3CBFFF;
 PAGE_3D = READ_ONLY 0x3D8000 TO 0x3DBFFF;
 PAGE_3E = READ_ONLY 0x3E8000 TO 0x3EBFFF;
 EEPROM = READ_ONLY 0x1000 TO 0x13FF;
END
PLACEMENT
PRESTART, STARTUP, ROM_VAR, STRINGS,
VIRTUAL_TABLE_SEGMENT, NON_BANKED, COPY
 INTO ROM_C000/*, ROM_4000*/;
DEFAULT_ROM INTO PAGE_3C,PAGE_3D,PAGE_3E;
DEFAULT_RAM INTO RAM;
MY_EEPROM INTO EEPROM;
END

You can find more information about the PRM file in the SmartLinker manual for CodeWarrior at:
http://www.metrowerks.com/MW/Support/dev_resources/Documentation_for_HC12_3.1.htm
Mapping Memory Resources on HCS12 Microcontrollers, Rev. 0

8 Freescale Semiconductor

http://www.metrowerks.com/MW/Support/dev_resources/Documentation_for_HC12_3.1.htm

Example Description
4. Select a proper base for all the registers, so they can be accessed properly by the software. Using
CodeWarrior, this can be easily done by changing the REG_BASE # define in the microcontroller
header file.

Example for MC9S12DJ64:
In mc9s12dj64.h, modify the following line:
 #define REG_BASE 0x0000 /* Base address for the I/O register block */

to the following:
 #define REG_BASE 0x1800 /* Base address for the I/O register block(
 0x1800 – 0x1FFF) */

5. When the EEPROM is being mapped, the following restriction should be considered.

The programmer software used to burn the code in the HCS12 can have a fixed area for EEPROM
memory. If the user’s code initializes some EEPROM locations in a different location than that used
by the programmer, the data won’t be written in EEPROM because the programmer can’t
recognize these locations as EEPROM.

For example:

CodeWarrior programmer uses the following location for EEPROM memory for the MC9S12DJ641:

It must be noted that this restriction applies only to data initialized by the programmer. This is
because the EEPROM will be mapped correctly, data can be accessed correctly in the new
mapped locations, and the user can write their own code to write and erase EEPROM locations for
these new locations.

Example Description

The example included for this quick reference performs the following steps using the steps previous
described:

• Initializes the memory blocks of the MC9S12DJ64 to the following locations:

• Initializes an array in the new EEPROM location as “Freescale”:
#pragma CONST_SEG MY_EEPROM
const unsigned char array [] = “Freescale’”
#pragma CONST_SEG DEFAULT

1. According to MCU-id 0x03C9 from True-Time Simulator & Real-Time Debugger, and can be seen in
“Menu->ICD-12->Flash” for this and other derivatives.

Start End

$1000 $17FF

Start Address End Address

RAM 0×0000 0×0FFF

EEPROM 0×1000 0×13FF

Registers 0×1800 0×1FFF
Mapping Memory Resources on HCS12 Microcontrollers, Rev. 0

Freescale Semiconductor 9

Example Description
• Declares a near variable in new RAM location:

• Sets the PA0 pin as an output and turns it on, using the registers in new locations:

• Assigns the value of ‘r’ in “Freescale” to the variable in the new RAM location:

NOTE
Variable ‘temp’ is accessed using only eight bits because it’s declared on
zero-page. All EEPROM register and RAM locations are accessed using
the new mapped address.

The memory map will be remapped as show in Figure 5.

Figure 5. Memory Map Before and After Mapping

volatile near unsigned char temp;

C Code Generated Assembly

DDRA = 0x01;
PORTA = 0z01;

LDBA #1
STAB 0X1802
STAB 0X1800

C Code Generated Assembly

temp = array [1]; LDAA 0X1001
STAA 0X00
Mapping Memory Resources on HCS12 Microcontrollers, Rev. 0

10 Freescale Semiconductor

Considerations
Considerations

The main considerations to take into account are that this example was developed using Metrowerks
CodeWarrior IDE version 3.1 for HC(S)12, and the available example was expressly made for the
MC9S12DJ64. It is important to consider that every microcontroller needs an initialization code which
depends on the application and the microcontroller itself.

References

• HCS12 Family
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?nodeId=0162468636K100

• Module Mapping Control (MMC) V4 Block User Guide
http://www.freescale.com/files/microcontrollers/doc/ref_manual/S12MMCV4.pdf

• MC9S12DJ64 Device User Guide
http://www.freescale.com/files/microcontrollers/doc/data_sheet/9S12DJ64DGV1.pdf

• Metrowerks CodeWarrior documentation
http://www.metrowerks.com/MW/Support/dev_resources/Documentation_for_HC12_3.1.htm
Mapping Memory Resources on HCS12 Microcontrollers, Rev. 0

Freescale Semiconductor 11

http://www.freescale.com/webapp/sps/site/taxonomy.jsp?nodeId=0162468636K100
http://www.freescale.com/files/microcontrollers/doc/ref_manual/S12MMCV4.pdf
http://www.freescale.com/files/microcontrollers/doc/data_sheet/9S12DJ64DGV1.pdf
http://www.metrowerks.com/MW/Support/dev_resources/Documentation_for_HC12_3.1.htm

AN2881
Rev. 0, 1/2005

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004. All rights reserved.

	Introduction
	Description
	Registers Descriptions
	Value Selection
	Required Code and Explanation
	Example Description
	Considerations
	References

