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Section 1  Introduction

1.1  Core Overview

The HCS12 V1.5 Core is a 16-bit processing core using the 68HC12 instruction set architecture (
This makes the Core instruction set compatible with currently available Motorola 68HC12 based de
and allows for Motorola 68HC11 source code to be directly accepted by assemblers used for the 
Central Processing Unit (CPU). In addition, the Core contains the Interrupt (INT), Module Mapping
Control (MMC), Multiplexed External Bus Interface (MEBI), Breakpoint (BKP) and Background Deb
Mode (BDM) sub-blocks providing a tightly coupled structure to maximize execution efficiency for
integrating into a System-on-a-Chip (SoC) design. These sub-blocks handle all system interfacing w
Core including interrupt and reset processing, register and memory mapping, memory and periph
interfacing, external bus control and source code debug for code development. A complete functio
description of each sub-block is included in later sections of this guide.

1.2  Features

The main features of the Core are:

• High-speed, 16-bit processing with the same programming model and instruction set as the
Motorola 68HC12 CPU

• Full 16-bit data paths for efficient arithmetic operation and high-speed mathematical execut

• Allows instructions with odd byte counts, including many single-byte instructions for more
efficient use of program memory space

• Three stage instruction queue to buffer program information for more efficient CPU executio

• Extensive set of indexed addressing capabilities including:

– Using the stack pointer as an indexing register in all indexed operations

– Using the program counter as an indexing register in all but auto increment/decrement m

– Accumulator offsets using A, B or D accumulators

– Automatic index pre-decrement, pre-increment, post-decrement and post-increment (by
+8)

– 5-bit, 9-bit or 16-bit signed constant offsets

– 16-bit offset indexed-indirect and accumulator D offset indexed-indirect addressing

• Provides 2 to 122 I bit maskable interrupt vectors, 1 X bit maskable interrupt vector, 2 nonmas
CPU interrupt vectors and 3 reset vectors

• Optional register configurable highest priority I bit maskable interrupt

• On-chip memory and peripheral block interfacing with internal memory expansion capability
external data chip select

• Configurable system memory and mapping options
23
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• External Bus Interface (8-bit or 16-bit, multiplexed or non-multiplexed)

• Multiple modes of operation

• Hardware breakpoint support for forced or tagged breakpoints with two modes of operation

– Dual Address Mode to match on either of two addresses

– Full Breakpoint Mode to match on address and data combination

• Single-wire background debug system implemented in on-chip hardware

• Secured mode of operation

• Fully synthesizable design

• Single Core clock operation

• Full Mux-D scan test implementation

The HCS12 V1.5 Core is designed to interface with the system peripherals through the use of the I.
and its interface defined by the Motorola Semiconductor Reuse Standards (MSRS). The Core
communicates with the on-chip memory blocks either directly through the Core interface signals or v
STAR bus. Interfacing with memories external to the system is provided for through the MEBI sub-b
of the Core and the corresponding port/pad logic it is connected to within the system.
24
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1.3  Block Diagram

A block diagram of the Core within a typical SoC system is given inFigure 1-1 below. This diagram is
a general representation of the Core, its sub-blocks and the interfaces to the rest of the blocks wit
SoC design. The signals related to BKGD, Port A, Port B, Port E and Port K are direct interfaces t
port/pad logic at the top level of the overall system.

Figure 1-1  Core Block Diagram

The main sub-blocks of the Core are:

• Central Processing Unit (CPU) - 68HC12 ISA compatible

• Interrupt (INT)

• Module Mapping Control (MMC)

• Multiplexed External Bus Interface (MEBI)

• Breakpoint (BKP)

• Background Debug Mode (BDM)
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1.4  Architectural Summary

As briefly discussed previously, the Core consists of the HCS12 Central Processing Unit (CPU) alon
the Interrupt (INT), Module Mapping Control (MMC), Multiplexed External Bus Interface (MEBI),
Breakpoint (BKP) and Background Debug Mode (BDM) sub-blocks. The CPU executes the 68HC12
ISA with a three-stage instruction queue to facilitate a high level of code execution efficiency. The
sub-block interacts with the CPU to provide 2 to 122 I bit maskable (configured at system integratio
X bit maskable and 2 nonmaskable CPU interrupt vectors, 3 reset vectors and handles waking-up
system from wait or stop mode due to a serviceable interrupt. The MMC sub-block controls address
mapping and generates memory selects and a single peripheral select (to be decoded by the I.P.
well as multiplexing the address and data signals for proper interaction with the CPU. The MEBI
sub-block functions as the external bus controller with four 8-bit ports (A, B, E and K) as well as han
mode decoding and initialization for the Core. The BKP sub-block serves to assist in debugging o
software by providing for hardware breakpoints. The BKP supports dual address and full breakpo
modes for matching on either of two address or on an address and data combination, respectively
initiate a Software Interrupt (SWI) or put the system into Background Debug Mode. The BKP also
supports tagged or forced breakpoints for breaking just before a specific instruction or on the first
instruction boundary after a match, respectively. The BDM sub-block provides for a single-wire
background debug communication system implemented within the Core with on-chip hardware. The
allows for single-wire serial interfacing with a development system host.

The Core is a fully synthesizable single-clock design with full Mux-D scan test implementation. It i
designed to be synthesized and timed together as a single block for optimizing speed of execution
minimizing area.

1.5  Programming Model

The HCS12 V1.5 Core CPU12 programming model, shown inFigure 1-2 , is the same as that of the
68HC12 and 68HC11. For a detailed description of the programming model and associated registers
refer toSection 3  of this guide.
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Figure 1-2  Programming Model

1.6  Data Format Summary

Following is a discussion of the data types used and their organization in memory for the Core.

1.6.1  Data Types

The CPU uses the following types of data:

• Bits

• 5-bit signed integers

• 8-bit signed and unsigned integers

• 8-bit, 2-digit binary coded decimal numbers

• 9-bit signed integers

• 16-bit signed and unsigned integers

• 16-bit effective addresses
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• 32-bit signed and unsigned integers

NOTE: Negative integers are represented in two’s complement form.

Five-bit and 9-bit signed integers are used only as offsets for indexed addressing modes. Sixteen
effective addresses are formed during addressing mode computations. Thirty-two-bit integer dividen
used by extended division instructions. Extended multiply and extended multiply-and-accumulate
instructions produce 32-bit products.

1.6.2  Memory Organization

The standard HCS12 Core address space is 64K bytes. However, the CPU has special instruction
support paged memory expansion which increases the standard area by means of predefined win
within the available address space. SeeSection 11 Module Mapping Control (MMC) for more
information.

Eight-bit values can be stored at any odd or even byte address in available memory. Sixteen-bit v
occupy two consecutive memory locations; the high byte is in the lowest address, but does not hav
aligned to an even boundary. Thirty-two-bit values occupy four consecutive memory locations; the
byte is in the lowest address, but does not have to be aligned to an even boundary.

All I/O and all on-chip peripherals are memory-mapped. No special instruction syntax is required to a
these addresses. On-chip register and memory mapping are determined at the SoC level and are co
during integration of the Core into the system.

1.7  Addressing modes

A summary of the addressing modes used by the Core is given inTable 1-1 below. The operation of each
of these modes is discussed in detail inSection 4  of this guide.

Table 1-1  Addressing Mode Summary

Addressing Mode Source Form Abbreviation Description

Inherent
INST
(no externally supplied
operands)

INH Operands (if any) are in CPU registers.

Immediate
INST #opr8i
or
INST #opr16i

IMM
Operand is included in instruction stream; 8-bit or
16-bit size implied by context.

Direct INST opr8a DIR
Operand is the lower 8-bits of an address in the range
$0000–$00FF.

Extended INST opr16a EXT Operand is a 16-bit address.

Relative
INST rel8
or
INST rel16

REL
Effective address is the value in PC plus an 8-bit or
16-bit relative offset value.

Indexed
(5-bit offset)

INST oprx5,xysp IDX
Effective address is the value in X, Y, SP, or PC plus a
5-bit signed constant offset.

Indexed
(predecrement)

INST oprx3,–xys IDX
Effective address is the value in X, Y, or SP
autodecremented by 1 to 8.
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1.8  Instruction Set Overview

All memory and I/O are mapped in a common 64K byte address space, allowing the same set of
instructions to access memory, I/O, and control registers. Load, store, transfer, exchange, and mo
instructions facilitate movement of data to and from memory and peripherals.

There are instructions for signed and unsigned addition, division and multiplication with 8-bit, 16-bit,
some larger operands.

Special arithmetic and logic instructions aid stacking operations, indexing, BCD calculation, and con
code register manipulation. There are also dedicated instructions for multiply and accumulate oper
table interpolation, and specialized mathematical calculations for fuzzy logic operations.

A summary of the CPU instruction set is given inTable 1-2  below. A detailed overview of the entire
instruction set is covered inSection 4  of this guide along with an instruction-by-instruction detailed
description inAppendix A .

Table 1-2  Instruction Set Summary

Indexed
(preincrement)

INST oprx3,+xys IDX
Effective address is the value in X, Y, or SP
autoincremented by 1 to 8.

Indexed
(postdecrement)

INST oprx3,xys– IDX
Effective address is the value in X, Y, or SP. The value
is postdecremented by 1 to 8.

Indexed
(postincrement)

INST oprx3,xys+ IDX
Effective address is the value in X, Y, or SP. The value
is postincremented by 1 to 8.

Indexed
(accumulator offset)

INST abd,xysp IDX
Effective address is the value in X, Y, SP, or PC plus
the value in A, B, or D.

Indexed
(9-bit offset)

INST oprx9,xysp IDX1
Effective address is the value in X, Y, SP, or PC plus a
9-bit signed constant offset.

Indexed
(16-bit offset)

INST oprx16,xysp IDX2
Effective address is the value in X, Y, SP, or PC plus a
16-bit constant offset.

Indexed-indirect
(16-bit offset)

INST [oprx16,xysp] [IDX2]
The value in X, Y, SP, or PC plus a 16-bit constant
offset points to the effective address.

Indexed-indirect
(D accumulator offset)

INST [D,xysp] [D,IDX]
The value in X, Y, SP, or PC plus the value in D points
to the effective address.

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

ABA Add B to A; (A)+(B)⇒A INH 18 06 OO

ABXSame as LEAX B,X Add B to X; (X)+(B)⇒X IDX 1A E5 Pf

ABYSame as LEAY B,Y Add B to Y; (Y)+(B)⇒Y IDX 19 ED Pf

ADCA #opr8i
ADCA opr8a
ADCA opr16a
ADCA oprx0_xysppc
ADCA oprx9,xysppc
ADCA oprx16,xysppc
ADCA [D,xysppc]
ADCA [oprx16,xysppc]

Add with carry to A; (A)+(M)+C⇒A
or (A)+imm+C⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

89 ii
99 dd
B9 hh ll
A9 xb
A9 xb ff
A9 xb ee ff
A9 xb
A9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

Table 1-1  Addressing Mode Summary

Addressing Mode Source Form Abbreviation Description

– – ∆ – ∆ ∆ ∆ ∆

– – – – – – – –

– – – – – – – –

– – ∆ – ∆ ∆ ∆ ∆
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ADCB #opr8i
ADCB opr8a
ADCB opr16a
ADCB oprx0_xysppc
ADCB oprx9,xysppc
ADCB oprx16,xysppc
ADCB [D,xysppc]
ADCB [oprx16,xysppc]

Add with carry to B; (B)+(M)+C⇒B
or (B)+imm+C⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C9 ii
D9 dd
F9 hh ll
E9 xb
E9 xb ff
E9 xb ee ff
E9 xb
E9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ADDA #opr8i
ADDA opr8a
ADDA opr16a
ADDA oprx0_xysppc
ADDA oprx9,xysppc
ADDA oprx16,xysppc
ADDA [D,xysppc]
ADDA [oprx16,xysppc]

Add to A; (A)+(M)⇒A
or (A)+imm⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8B ii
9B dd
BB hh ll
AB xb
AB xb ff
AB xb ee ff
AB xb
AB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ADDB #opr8i
ADDB opr8a
ADDB opr16a
ADDB oprx0_xysppc
ADDB oprx9,xysppc
ADDB oprx16,xysppc
ADDB [D,xysppc]
ADDB [oprx16,xysppc]

Add to B; (B)+(M)⇒B
or (B)+imm⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CB ii
DB dd
FB hh ll
EB xb
EB xb ff
EB xb ee ff
EB xb
EB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ADDD #opr16i
ADDD opr8a
ADDD opr16a
ADDD oprx0_xysppc
ADDD oprx9,xysppc
ADDD oprx16,xysppc
ADDD [D,xysppc]
ADDD [oprx16,xysppc]

Add to D; (A:B)+(M:M+1)⇒A:B
or (A:B)+imm⇒A:B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C3 jj kk
D3 dd
F3 hh ll
E3 xb
E3 xb ff
E3 xb ee ff
E3 xb
E3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

ANDA #opr8i
ANDA opr8a
ANDA opr16a
ANDA oprx0_xysppc
ANDA oprx9,xysppc
ANDA oprx16,xysppc
ANDA [D,xysppc]
ANDA [oprx16,xysppc]

AND with A; (A)•(M)⇒A
or (A)•imm⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

84 ii
94 dd
B4 hh ll
A4 xb
A4 xb ff
A4 xb ee ff
A4 xb
A4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ANDB #opr8i
ANDB opr8a
ANDB opr16a
ANDB oprx0_xysppc
ANDB oprx9,xysppc
ANDB oprx16,xysppc
ANDB [D,xysppc]
ANDB [oprx16,xysppc]

AND with B; (B)•(M)⇒B
or (B)•imm⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C4 ii
D4 dd
F4 hh ll
E4 xb
E4 xb ff
E4 xb ee ff
E4 xb
E4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ANDCC #opr8i AND with CCR; (CCR)•imm⇒CCR IMM 10 ii P

ASL opr16aSame as LSL
ASL oprx0_xysp
ASL oprx9,xysppc
ASL oprx16,xysppc
ASL [D,xysppc]
ASL [oprx16,xysppc]
ASLASame as LSLA
ASLBSame as LSLB

Arithmetic shift left M

Arithmetic shift left A
Arithmetic shift left B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff
48
58

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

ASLDSame as LSLD Arithmetic shift left D INH 59 O

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

– – ∆ – ∆ ∆ ∆ ∆

– – ∆ – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

C
0

b7 b0

– – – – ∆ ∆ ∆ ∆

• • • • • •

C
0

b7 b0A Bb7b0

– – – – ∆ ∆ ∆ ∆
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ASR opr16a
ASR oprx0_xysppc
ASR oprx9,xysppc
ASR oprx16,xysppc
ASR [D,xysppc]
ASR [oprx16,xysppc]
ASRA
ASRB

Arithmetic shift right M

Arithmetic shift right A
Arithmetic shift right B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

77 hh ll
67 xb
67 xb ff
67 xb ee ff
67 xb
67 xb ee ff
47
57

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

BCC rel8Same as BHS Branch if C clear; if C=0, then
(PC)+2+rel⇒PC

REL 24 rr PPP (branch)
P (no branch)

BCLR opr8a, msk8
BCLR opr16a, msk8
BCLR oprx0_xysppc, msk8
BCLR oprx9,xysppc, msk8
BCLR oprx16,xysppc, msk8

Clear bit(s) in M; (M)•mask byte⇒M

DIR
EXT
IDX
IDX1
IDX2

4D dd mm
1D hh ll mm
0D xb mm
0D xb ff mm
0D xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO

BCS rel8Same as BLO Branch if C set; if C=1, then
(PC)+2+rel⇒PC

REL 25 rr PPP (branch)
P (no branch)

BEQ rel8 Branch if equal; if Z=1, then
(PC)+2+rel⇒PC

REL 27 rr PPP (branch)
P (no branch)

BGE rel8 Branch if ≥ 0, signed; if N⊕V=0, then
(PC)+2+rel⇒PC

REL 2C rr PPP (branch)
P (no branch)

BGND Enter background debug mode INH 00 VfPPP

BGT rel8 Branch if > 0, signed; if Z | (N⊕V)=0,
then (PC)+2+rel⇒PC

REL 2E rr PPP (branch)
P (no branch)

BHI rel8 Branch if higher, unsigned; if
C | Z=0, then (PC)+2+rel⇒PC

REL 22 rr PPP (branch)
P (no branch)

BHS rel8Same as BCC Branchifhigherorsame,unsigned;if
C=0,then(PC)+2+rel⇒PC

REL 24 rr PPP (branch)
P (no branch)

BITA #opr8i
BITA opr8a
BITA opr16a
BITA oprx0_xysppc
BITA oprx9,xysppc
BITA oprx16,xysppc
BITA [D,xysppc]
BITA [oprx16,xysppc]

Bit test A; (A)•(M)
or (A)•imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

85 ii
95 dd
B5 hh ll
A5 xb
A5 xb ff
A5 xb ee ff
A5 xb
A5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

BITB #opr8i
BITB opr8a
BITB opr16a
BITB oprx0_xysppc
BITB oprx9,xysppc
BITB oprx16,xysppc
BITB [D,xysppc]
BITB [oprx16,xysppc]

Bit test B; (B)•(M)
or (B)•imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C5 ii
D5 dd
F5 hh ll
E5 xb
E5 xb ff
E5 xb ee ff
E5 xb
E5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

BLE rel8 Branch if≤ 0,signed; ifZ | (N⊕V)=1,
then(PC)+2+rel⇒PC

REL 2F rr PPP (branch)
P (no branch)

BLO rel8Same as BCS Branch if lower, unsigned; if C=1,
then (PC)+2+rel⇒PC

REL 25 rr PPP (branch)
P (no branch)

BLS rel8 Branch if lower or same, unsigned; if
C | Z=1, then (PC)+2+rel⇒PC

REL 23 rr PPP (branch)
P (no branch)

BLT rel8 Branch if < 0, signed; if N⊕V=1, then
(PC)+2+rel⇒PC

REL 2D rr PPP (branch)
P (no branch)

BMI rel8 Branch if minus; if N=1, then
(PC)+2+rel⇒PC

REL 2B rr PPP (branch)
P (no branch)

BNE rel8 Branch if not equal to 0; if Z=0, then
(PC)+2+rel⇒PC

REL 26 rr PPP (branch)
P (no branch)

BPL rel8 Branch if plus; if N=0, then
(PC)+2+rel⇒PC

REL 2A rr PPP (branch)
P (no branch)

BRA rel8 Branch always REL 20 rr PPP

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

Cb7 b0

– – – – ∆ ∆ ∆ ∆

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –
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BRCLR opr8a, msk8, rel8
BRCLR opr16a, msk8, rel8
BRCLR oprx0_xysppc, msk8, rel8
BRCLR oprx9,xysppc, msk8, rel8
BRCLR oprx16,xysppc, msk8, rel8

Branch if bit(s) clear; if
(M)•(mask byte)=0, then
(PC)+2+rel⇒PC

DIR
EXT
IDX
IDX1
IDX2

4F dd mm rr
1F hh ll mm rr
0F xb mm rr
0F xb ff mm rr
0F xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP

BRN rel8 Branch never REL 21 rr P

BRSET opr8, msk8, rel8
BRSET opr16a, msk8, rel8
BRSET oprx0_xysppc, msk8, rel8
BRSET oprx9,xysppc, msk8, rel8
BRSET oprx16,xysppc, msk8, rel8

Branch if bit(s) set; if
(M)•(mask byte)=0, then
(PC)+2+rel⇒PC

DIR
EXT
IDX
IDX1
IDX2

4E dd mm rr
1E hh ll mm rr
0E xb mm rr
0E xb ff mm rr
0E xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP

BSET opr8, msk8
BSET opr16a, msk8
BSET oprx0_xysppc, msk8
BSET oprx9,xysppc, msk8
BSET oprx16,xysppc, msk8

Set bit(s) in M
(M) | mask byte⇒M

DIR
EXT
IDX
IDX1
IDX2

4Cdd mm
1C hh ll mm
0C xb mm
0C xb ff mm
0C xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO

BSR rel8 Branch to subroutine; (SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
(PC)+2+rel⇒PC

REL 07 rr SPPP

BVC rel8 Branch if V clear; if V=0, then
(PC)+2+rel⇒PC

REL 28 rr PPP (branch)
P (no branch)

BVS rel8 Branch if V set; if V=1, then
(PC)+2+rel⇒PC

REL 29 rr PPP (branch)
P (no branch)

CALL opr16a, page
CALL oprx0_xysppc, page
CALL oprx9,xysppc, page
CALL oprx16,xysppc, page
CALL [D,xysppc]
CALL [oprx16, xysppc]

Call subroutine inexpandedmemory
(SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
(SP)–1⇒SP; (PPG)⇒MSP
pg⇒PPAGE register
subroutine address⇒PC

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

4A hh ll pg
4B xb pg
4B xb ff pg
4B xb ee ff pg
4B xb
4B xb ee ff

gnSsPPP
gnSsPPP
gnSsPPP
fgnSsPPP
fIignSsPPP
fIignSsPPP

CBA Compare A to B; (A)–(B) INH 18 17 OO

CLCSame as ANDCC #$FE Clear C bit IMM 10 FE P

CLISame as ANDCC #$EF Clear I bit IMM 10 EF P

CLR opr16a
CLR oprx0_xysppc
CLR oprx9,xysppc
CLR oprx16,xysppc
CLR [D,xysppc]
CLR [oprx16,xysppc]
CLRA
CLRB

Clear M; $00⇒M

Clear A; $00⇒A
Clear B; $00⇒B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

79 hh ll
69 xb
69 xb ff
69 xb ee ff
69 xb
69 xb ee ff
87
C7

PwO
Pw
PwO
PwP
PIfw
PIPw
O
O

CLVSame as ANDCC #$FD Clear V IMM 10 FD P

CMPA #opr8i
CMPA opr8a
CMPA opr16a
CMPA oprx0_xysppc
CMPA oprx9,xysppc
CMPA oprx16,xysppc
CMPA [D,xysppc]
CMPA [oprx16,xysppc]

Compare A
(A)–(M) or (A)–imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

81 ii
91 dd
B1 hh ll
A1 xb
A1 xb ff
A1 xb ee ff
A1 xb
A1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

CMPB #opr8i
CMPB opr8a
CMPB opr16a
CMPB oprx0_xysppc
CMPB oprx9,xysppc
CMPB oprx16,xysppc
CMPB [D,xysppc]
CMPB [oprx16,xysppc]

Compare B
(B)–(M) or (B)–imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C1 ii
D1 dd
F1 hh ll
E1 xb
E1 xb ff
E1 xb ee ff
E1 xb
E1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – ∆ ∆ ∆ ∆

– – – – – – – 0

– – – 0 – – – –

– – – – 0 1 0 0

– – – – – – 0 –

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆
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COM opr16a
COM oprx0_xysppc
COM oprx9,xysppc
COM oprx16,xysppc
COM [D,xysppc]
COM [oprx16,xysppc]
COMA
COMB

Complement M; (M)=$FF–(M)⇒M

Complement A; (A)=$FF–(A)⇒A
Complement B; (B)=$FF–(B)⇒B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

71 hh ll
61 xb
61 xb ff
61 xb ee ff
61 xb
61 xb ee ff
41
51

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

CPD #opr16i
CPD opr8a
CPD opr16a
CPD oprx0_xysppc
CPD oprx9,xysppc
CPD oprx16,xysppc
CPD [D,xysppc]
CPD [oprx16,xysppc]

Compare D
(A:B)–(M:M+1)
or (A:B)–imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8C jj kk
9C dd
BC hh ll
AC xb
AC xb ff
AC xb ee ff
AC xb
AC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

CPS #opr16i
CPS opr8a
CPS opr16a
CPS oprx0_xysppc
CPS oprx9,xysppc
CPS oprx16,xysppc
CPS [D,xysppc]
CPS [oprx16,xysppc]

Compare SP
(SP)–(M:M+1)
or (SP)–imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8F jj kk
9F dd
BF hh ll
AF xb
AF xb ff
AF xb ee ff
AF xb
AF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

CPX #opr16i
CPX opr8a
CPX opr16a
CPX oprx0_xysppc
CPX oprx9,xysppc
CPX oprx16,xysppc
CPX [D,xysppc]
CPX [oprx16,xysppc]

Compare X
(X)–(M:M+1)
or (X)–imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8E jj kk
9E dd
BE hh ll
AE xb
AE xb ff
AE xb ee ff
AE xb
AE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

CPY #opr16i
CPY opr8a
CPY opr16a
CPY oprx0_xysppc
CPY oprx9,xysppc
CPY oprx16,xysppc
CPY [D,xysppc]
CPY [oprx16,xysppc]

Compare Y
(Y)–(M:M+1)
or (Y)–imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8D jj kk
9D dd
BD hh ll
AD xb
AD xb ff
AD xb ee ff
AD xb
AD xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

DAA Decimal adjust A for BCD INH 18 07 OfO

DBEQ abdxysp, rel9 Decrement and branch if equal to 0
(counter)–1⇒counter
if (counter)=0, then branch

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

DBNE abdxysp, rel9 Decrementandbranch ifnotequal to0;
(counter)–1⇒counter;
if (counter)≠0, then branch

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

DEC opr16a
DEC oprx0_xysppc
DEC oprx9,xysppc
DEC oprx16,xysppc
DEC [D,xysppc]
DEC [oprx16,xysppc]
DECA
DECB

Decrement M; (M)–1⇒M

Decrement A; (A)–1⇒A
Decrement B; (B)–1⇒B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

73 hh ll
63 xb
63 xb ff
63 xb ee ff
63 xb
63 xb ee ff
43
53

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

DESSame as LEAS –1,SP Decrement SP; (SP)–1⇒SP IDX 1B 9F Pf

DEX Decrement X; (X)–1⇒X INH 09 O

DEY Decrement Y; (Y)–1⇒Y INH 03 O

EDIV Extendeddivide,unsigned;32by16
to16-bit; (Y:D)÷(X)⇒Y; remainder⇒D

INH 11 ffffffffffO

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – ∆ ∆ 0 1

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ? ∆

– – – – – – – –

– – – – – – – –

– – – – ∆ ∆ ∆ –

– – – – – – – –

– – – – – ∆ – –

– – – – – ∆ – –

– – – – ∆ ∆ ∆ ∆
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EDIVS Extendeddivide,signed;32by16 to
16-bit; (Y:D)÷(X)⇒Yremainder⇒D

INH 18 14 OffffffffffO

EMACS opr16a Extended multiply and accumulate,
signed; (MX:MX+1)×(MY:MY+1)+
(M~M+3)⇒M~M+3; 16 by 16 to 32-bit

Special 18 12 hh ll ORROfffRRfWWP

EMAXD oprx0_xysppc
EMAXD oprx9,xysppc
EMAXD oprx16,xysppc
EMAXD [D,xysppc]
EMAXD [oprx16,xysppc]

Extended maximum in D; put larger of
2
unsigned 16-bit values in D
MAX[(D), (M:M+1)]⇒D
N, Z, V, C bits reflect result of internal
compare [(D)–(M:M+1)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1A xb
18 1A xb ff
18 1A xb ee ff
18 1A xb
18 1A xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf

EMAXM oprx0_xysppc
EMAXM oprx9,xysppc
EMAXM oprx16,xysppc
EMAXM [D,xysppc]
EMAXM [oprx16,xysppc]

Extended maximum in M; put larger of
2
unsigned 16-bit values in M
MAX[(D), (M:M+1)]⇒M:M+1
N, Z, V, C bits reflect result of internal
compare [(D)–(M:M+1)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1E xb
18 1E xb ff
18 1E xb ee ff
18 1E xb
18 1E xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

EMIND oprx0_xysppc
EMIND oprx9,xysppc
EMIND oprx16,xysppc
EMIND [D,xysppc]
EMIND [oprx16,xysppc]

Extended minimum in D; put smaller
of
2 unsigned 16-bit values in D
MIN[(D), (M:M+1)]⇒D
N, Z, V, C bits reflect result of internal
compare [(D)–(M:M+1)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1B xb
18 1B xb ff
18 1B xb ee ff
18 1B xb
18 1B xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf

EMINM oprx0_xysppc
EMINM oprx9,xysppc
EMINM oprx16,xysppc
EMINM [D,xysppc]
EMINM [oprx16,xysppc]

Extended minimum in M; put smaller
of
2 unsigned 16-bit values in M
MIN[(D), (M:M+1)]⇒M:M+1
N, Z, V, C bits reflect result of internal
compare [(D)–(M:M+1)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1F xb
18 1F xb ff
18 1F xb ee ff
18 1F xb
18 1F xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

EMUL Extended multiply, unsigned
(D)×(Y)⇒Y:D; 16 by 16 to 32-bit

INH 13 ffO

EMULS Extended multiply, signed
(D)×(Y)⇒Y:D; 16 by 16 to 32-bit

INH 18 13 OfO
OffO  (if followed by
page 2 instruction)

EORA #opr8i
EORA opr8a
EORA opr16a
EORA oprx0_xysppc
EORA oprx9,xysppc
EORA oprx16,xysppc
EORA [D,xysppc]
EORA [oprx16,xysppc]

Exclusive OR A
(A)⊕(M)⇒A
or (A)⊕imm⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

88 ii
98 dd
B8 hh ll
A8 xb
A8 xb ff
A8 xb ee ff
A8 xb
A8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

EORB #opr8i
EORB opr8a
EORB opr16a
EORB oprx0_xysppc
EORB oprx9,xysppc
EORB oprx16,xysppc
EORB [D,xysppc]
EORB [oprx16,xysppc]

Exclusive OR B
(B)⊕(M)⇒B
or (B)⊕imm⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C8 ii
D8 dd
F8 hh ll
E8 xb
E8 xb ff
E8 xb ee ff
E8 xb
E8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ETBL oprx0_xysppc Extended table lookupand interpolate,
16-bit; (M:M+1)+
[(B)×((M+2:M+3)–(M:M+1))]⇒D

IDX 18 3F xb ORRffffffP

Before executing ETBL, initialize B with fractional part of lookup value; initialize index register to point to first table entry (M:M+1). No extensions or
indirect addressing allowed.

EXG abcdxysp,abcdxysp Exchangeregistercontents
(r1)⇔(r2) r1 and r2 same size
$00:(r1)⇒r2r1=8-bit; r2=16-bit
(r1L)⇔(r2)r1=16-bit; r2=8-bit

INH B7 eb P

FDIV Fractional divide; (D)÷(X)⇒X
remainder⇒D; 16 by 16-bit

INH 18 11 OffffffffffO

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ – ∆

– – – – ∆ ∆ – ∆

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ – ∆

– – – – – – – –

– – – – – ∆ ∆ ∆
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IBEQ abdxysp, rel9 Increment and branch if equal to 0
(counter)+1⇒counter
If (counter)=0, then branch

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

IBNE abdxysp, rel9 Increment and branch if not equal to 0
(counter)+1⇒counter
If (counter)≠0, then branch

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

IDIV Integer divide, unsigned; (D)÷(X)⇒X
Remainder⇒D; 16 by 16-bit

INH 18 10 OffffffffffO

IDIVS Integer divide, signed; (D)÷(X)⇒X
Remainder⇒D; 16 by 16-bit

INH 18 15 OffffffffffO

INC opr16a
INC oprx0_xysppc
INC oprx9,xysppc
INC oprx16,xysppc
INC [D,xysppc]
INC [oprx16,xysppc]
INCA
INCB

Increment M; (M)+1⇒M

Increment A; (A)+1⇒A
Increment B; (B)+1⇒B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

72 hh ll
62 xb
62 xb ff
62 xb ee ff
62 xb
62 xb ee ff
42
52

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

INSSame as LEAS 1,SP Increment SP; (SP)+1⇒SP IDX 1B 81 Pf

INX Increment X; (X)+1⇒X INH 08 O

INY Increment Y; (Y)+1⇒Y INH 02 O

JMP opr16a
JMP oprx0_xysppc
JMP oprx9,xysppc
JMP oprx16,xysppc
JMP [D,xysppc]
JMP [oprx16,xysppc]

Jump
Subroutine address⇒PC

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

06 hh ll
05 xb
05 xb ff
05 xb ee ff
05 xb
05 xb ee ff

PPP
PPP
PPP
fPPP
fIfPPP
fIfPPP

JSR opr8a
JSR opr16a
JSR oprx0_xysppc
JSR oprx9,xysppc
JSR oprx16,xysppc
JSR [D,xysppc]
JSR [oprx16,xysppc]

Jump to subroutine
(SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
Subroutine address⇒PC

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

17 dd
16 hh ll
15 xb
15 xb ff
15 xb ee ff
15 xb
15 xb ee ff

SPPP
SPPP
PPPS
PPPS
fPPPS
fIfPPPS
fIfPPPS

LBCC rel16Same as LBHS Long branch if C clear; if C=0, then
(PC)+4+rel⇒PC

REL 18 24 qq rr OPPP (branch)
OPO (no branch)

LBCS rel16Same as LBLO Long branch if C set; if C=1, then
(PC)+4+rel⇒PC

REL 18 25 qq rr OPPP (branch)
OPO (no branch)

LBEQ rel16 Long branch if equal; if Z=1, then
(PC)+4+rel⇒PC

REL 18 27 qq rr OPPP (branch)
OPO (no branch)

LBGE rel16 Long branch if ≥ 0, signed
If N⊕V=0, then (PC)+4+rel⇒PC

REL 18 2C qq rr OPPP (branch)
OPO (no branch)

LBGT rel16 Long branch if > 0, signed
If Z | (N⊕V)=0, then (PC)+4+rel⇒PC

REL 18 2E qq rr OPPP (branch)
OPO (no branch)

LBHI rel16 Long branch if higher, unsigned
If C | Z=0, then (PC)+4+rel⇒PC

REL 18 22 qq rr OPPP (branch)
OPO (no branch)

LBHS rel16Same as LBCC Long branch if higher or same,
unsigned; If C=0, (PC)+4+rel⇒PC

REL 18 24 qq rr OPPP (branch)
OPO (no branch)

LBLE rel16 Long branch if ≤ 0, signed; if
Z | (N⊕V)=1, then (PC)+4+rel⇒PC

REL 18 2F qq rr OPPP (branch)
OPO (no branch)

LBLO rel16Same as LBCS Long branch if lower, unsigned; if
C=1, then (PC)+4+rel⇒PC

REL 18 25 qq rr OPPP (branch)
OPO (no branch)

LBLS rel16 Long branch if lower or same,
unsigned; If C | Z=1, then
(PC)+4+rel⇒PC

REL 18 23 qq rr OPPP (branch)
OPO (no branch)

LBLT rel16 Long branch if < 0, signed
If N⊕V=1, then (PC)+4+rel⇒PC

REL 18 2D qq rr OPPP (branch)
OPO (no branch)

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – – – – –

– – – – – – – –

– – – – – ∆ 0 ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ –

– – – – – – – –

– – – – – ∆ – –

– – – – – ∆ – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –
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LBMI rel16 Long branch if minus
If N=1, then (PC)+4+rel⇒PC

REL 18 2B qq rr OPPP (branch)
OPO (no branch)

LBNE rel16 Long branch if not equal to 0
If Z=0, then (PC)+4+rel⇒PC

REL 18 26 qq rr OPPP (branch)
OPO (no branch)

LBPL rel16 Long branch if plus
If N=0, then (PC)+4+rel⇒PC

REL 18 2A qq rr OPPP (branch)
OPO (no branch)

LBRA rel16 Long branch always REL 18 20 qq rr OPPP

LBRN rel16 Long branch never REL 18 21 qq rr OPO

LBVC rel16 Long branch if V clear
If V=0,then (PC)+4+rel⇒PC

REL 18 28 qq rr OPPP (branch)
OPO (no branch)

LBVS rel16 Long branch if V set
If V=1,then (PC)+4+rel⇒PC

REL 18 29 qq rr OPPP (branch)
OPO (no branch)

LDAA #opr8i
LDAA opr8a
LDAA opr16a
LDAA oprx0_xysppc
LDAA oprx9,xysppc
LDAA oprx16,xysppc
LDAA [D,xysppc]
LDAA [oprx16,xysppc]

Load A
(M)⇒A
or imm⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

86 ii
96 dd
B6 hh ll
A6 xb
A6 xb ff
A6 xb ee ff
A6 xb
A6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

LDAB #opr8i
LDAB opr8a
LDAB opr16a
LDAB oprx0_xysppc
LDAB oprx9,xysppc
LDAB oprx16,xysppc
LDAB [D,xysppc]
LDAB [oprx16,xysppc]

Load B
(M)⇒B
or imm⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C6 ii
D6 dd
F6 hh ll
E6 xb
E6 xb ff
E6 xb ee ff
E6 xb
E6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

LDD #opr16i
LDD opr8a
LDD opr16a
LDD oprx0_xysppc
LDD oprx9,xysppc
LDD oprx16,xysppc
LDD [D,xysppc]
LDD [oprx16,xysppc]

Load D
(M:M+1)⇒A:B
or imm⇒A:B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CC jj kk
DC dd
FC hh ll
EC xb
EC xb ff
EC xb ee ff
EC xb
EC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

LDS #opr16i
LDS opr8a
LDS opr16a
LDS oprx0_xysppc
LDS oprx9,xysppc
LDS oprx16,xysppc
LDS [D,xysppc]
LDS [oprx16,xysppc]

Load SP
(M:M+1)⇒SP
or imm⇒SP

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CF jj kk
DF dd
FF hh ll
EF xb
EF xb ff
EF xb ee ff
EF xb
EF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

LDX #opr16i
LDX opr8a
LDX opr16a
LDX oprx0_xysppc
LDX oprx9,xysppc
LDX oprx16,xysppc
LDX [D,xysppc]
LDX [oprx16,xysppc]

Load X
(M:M+1)⇒X
or imm⇒X

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CE jj kk
DE dd
FE hh ll
EE xb
EE xb ff
EE xb ee ff
EE xb
EE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

LDY #opr16i
LDY opr8a
LDY opr16a
LDY oprx0_xysppc
LDY oprx9,xysppc
LDY oprx16,xysppc
LDY [D,xysppc]
LDY [oprx16,xysppc]

Load Y
(M:M+1)⇒Y
or imm⇒Y

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CD jj kk
DD dd
FD hh ll
ED xb
ED xb ff
ED xb ee ff
ED xb
ED xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –
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LEAS oprx0_xysppc
LEAS oprx9,xysppc
LEAS oprx16,xysppc

Load effective address into SP
EA⇒SP

IDX
IDX1
IDX2

1B xb
1B xb ff
1B xb ee ff

Pf
PO
PP

LEAX oprx0_xysppc
LEAX oprx9,xysppc
LEAX oprx16,xysppc

Load effective address into X
EA⇒X

IDX
IDX1
IDX2

1A xb
1A xb ff
1A xb ee ff

Pf
PO
PP

LEAY oprx0_xysppc
LEAY oprx9,xysppc
LEAY oprx16,xysppc

Load effective address into Y
EA⇒Y

IDX
IDX1
IDX2

19 xb
19 xb ff
19 xb ee ff

Pf
PO
PP

LSL opr16aSame as ASL
LSL oprx0_xysppc
LSL oprx9,xysppc
LSL oprx16,xysppc
LSL [D,xysppc]
LSL [oprx16,xysppc]
LSLASame as ASLA
LSLBSame as ASLB

Logical shift left M

Logical shift left A
Logical shift left B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff
48
58

rOPw
rPw
rPOw
frPPw
fIfrPw
fIPrPw
O
O

LSLDSame as ASLD Logical shift left D INH 59 O

LSR opr16a
LSR oprx0_xysppc
LSR oprx9,xysppc
LSR oprx16,xysppc
LSR [D,xysppc]
LSR [oprx16,xysppc]
LSRA
LSRB

Logical shift right M

Logical shift right A
Logical shift right B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

74 hh ll
64 xb
64 xb ff
64 xb ee ff
64 xb
64 xb ee ff
44
54

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

LSRD Logical shift right D INH 49 O

MAXA oprx0_xysppc
MAXA oprx9,xysppc
MAXA oprx16,xysppc
MAXA [D,xysppc]
MAXA [oprx16,xysppc]

Maximum in A; put larger of 2
unsigned 8-bit values in A
MAX[(A), (M)]⇒A
N, Z, V, C bits reflect result of internal
compare [(A)–(M)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 18 xb
18 18 xb ff
18 18 xb ee ff
18 18 xb
18 18 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf

MAXM oprx0_xysppc
MAXM oprx9,xysppc
MAXM oprx16,xysppc
MAXM [D,xysppc]
MAXM [oprx16,xysppc]

Maximum in M; put larger of 2
unsigned 8-bit values in M
MAX[(A), (M)]⇒M
N, Z, V, C bits reflect result of internal
compare [(A)–(M)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1C xb
18 1C xb ff
18 1C xb ee ff
18 1C xb
18 1C xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw

MEM Determine grade of membership;
µ (grade)⇒MY; (X)+4⇒X; (Y)+1⇒Y
If (A)<P1 or (A)>P2, then µ=0; else µ=
MIN[((A)–P1)×S1, (P2–(A))×S2, $FF]
(A)=current crisp input value; X points
at 4 data bytes (P1, P2, S1, S2) of a
trapezoidal membership function; Y
points at fuzzy input (RAM location)

Special 01 RRfOw

MINA oprx0_xysppc
MINA oprx9,xysppc
MINA oprx16,xysppc
MINA [D,xysppc]
MINA [oprx16,xysppc]

Minimum in A; put smaller of 2
unsigned 8-bit values in A
MIN[(A), (M)]⇒A
N, Z, V, C bits reflect result of internal
compare [(A)–(M)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 19 xb
18 19 xb ff
18 19 xb ee ff
18 19 xb
18 19 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf

MINM oprx0_xysppc
MINM oprx9,xysppc
MINM oprx16,xysppc
MINM [D,xysppc]
MINM [oprx16,xysppc]

Minimum in N; put smaller of two
unsigned 8-bit values in M
MIN[(A), (M)]⇒M
N, Z, V, C bits reflect result of internal
compare [(A)–(M)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1D xb
18 1D xb ff
18 1D xb ee ff
18 1D xb
18 1D xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – – – – –

– – – – – – – –

– – – – – – – –

C
0

b7 b0

– – – – ∆ ∆ ∆ ∆

C
0

b7 b0A Bb7b0
• • • • • •

– – – – ∆ ∆ ∆ ∆

C
0

b7 b0

– – – – 0 ∆ ∆ ∆

Cb7 b0A Bb7b0
0

– – – – 0 ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – ? – ? ? ? ?

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆
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MOVB #opr8, opr16a
MOVB #opr8i, oprx0_xysppc
MOVB opr16a, opr16a
MOVB opr16a, oprx0_xysppc
MOVB oprx0_xysppc, opr16a
MOVB oprx0_xysppc, oprx0_xysppc

Move byte
Memory-to-memory 8-bit byte-move
(M1)⇒M2
First operand specifies byte to move

IMM-EXT
IMM-IDX
EXT-EXT
EXT-IDX
IDX-EXT
IDX-IDX

18 0B ii hh ll
18 08 xb ii
18 0C hh ll hh ll
18 09 xb hh ll
18 0D xb hh ll
18 0A xb xb

OPwP
OPwO
OrPwPO
OPrPw
OrPwP
OrPwO

MOVW #oprx16, opr16a
MOVW #opr16i, oprx0_xysppc
MOVW opr16a, opr16a
MOVW opr16a, oprx0_xysppc
MOVW oprx0_xysppc, opr16a
MOVW oprx0_xysppc, oprx0_xysppc

Move word
Memory-to-memory16-bitword-move
(M1:M1+1)⇒M2:M2+1
First operand specifies word to move

IMM-EXT
IMM-IDX
EXT-EXT
EXT-IDX
IDX-EXT
IDX-IDX

18 03 jj kk hh ll
18 00 xb jj kk
18 04 hh ll hh ll
18 01 xb hh ll
18 05 xb hh ll
18 02 xb xb

OPWPO
OPPW
ORPWPO
OPRPW
ORPWP
ORPWO

MUL Multiply, unsigned
(A)×(B)⇒A:B; 8 by 8-bit

INH 12 O

NEG opr16a
NEG oprx0_xysppc
NEG oprx9,xysppc
NEG oprx16,xysppc
NEG [D,xysppc]
NEG [oprx16,xysppc]
NEGA
NEGB

Negate M; 0–(M)⇒M or (M)+1⇒M

Negate A; 0–(A)⇒A or (A)+1⇒A
Negate B; 0–(B)⇒B or (B)+1⇒B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

70 hh ll
60 xb
60 xb ff
60 xb ee ff
60 xb
60 xb ee ff
40
50

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

NOP No operation INH A7 O

ORAA #opr8i
ORAA opr8a
ORAA opr16a
ORAA oprx0_xysppc
ORAA oprx9,xysppc
ORAA oprx16,xysppc
ORAA [D,xysppc]
ORAA [oprx16,xysppc]

OR accumulator A
(A) | (M)⇒A
or (A) | imm⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8A ii
9A dd
BA hh ll
AA xb
AA xb ff
AA xb ee ff
AA xb
AA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ORAB #opr8i
ORAB opr8a
ORAB opr16a
ORAB oprx0_xysppc
ORAB oprx9,xysppc
ORAB oprx16,xysppc
ORAB [D,xysppc]
ORAB [oprx16,xysppc]

OR accumulator B
(B) | (M)⇒B
or (B) | imm⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CA ii
DA dd
FA hh ll
EA xb
EA xb ff
EA xb ee ff
EA xb
EA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ORCC #opr8i OR CCR; (CCR) | imm⇒CCR IMM 14 ii P

PSHA Push A; (SP)–1⇒SP; (A)⇒MSP INH 36 Os

PSHB Push B; (SP)–1⇒SP; (B)⇒MSP INH 37 Os

PSHC Push CCR; (SP)–1⇒SP;
(CCR)⇒MSP

INH 39 Os

PSHD Push D
(SP)–2⇒SP; (A:B)⇒MSP:MSP+1

INH 3B OS

PSHX Push X
(SP)–2⇒SP; (XH:XL)⇒MSP:MSP+1

INH 34 OS

PSHY Push Y
(SP)–2⇒SP; (YH:YL)⇒MSP:MSP+1

INH 35 OS

PULA Pull A
(MSP)⇒A; (SP)+1⇒SP

INH 32 ufO

PULB Pull B
(MSP)⇒B; (SP)+1⇒SP

INH 33 ufO

PULC Pull CCR
(MSP)⇒CCR; (SP)+1⇒SP

INH 38 ufO

PULD Pull D
(MSP:MSP+1)⇒A:B; (SP)+2⇒SP

INH 3A UfO

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – – – – –

– – – – – – – –

– – – – – – – ∆

– – – – ∆ ∆ ∆ ∆

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

⇑ – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

– – – – – – – –
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PULX Pull X
(MSP:MSP+1)⇒XH:XL; (SP)+2⇒SP

INH 30 UfO

PULY Pull Y
(MSP:MSP+1)⇒YH:YL; (SP)+2⇒SP

INH 31 UfO

REV Rule evaluation, unweighted; find
smallest rule input; store to rule
outputs unless fuzzy output is larger

Special 18 3A Orf(t^tx)O*
ff+Orft^**

*The t^tx loop is executed once for each element in the rule list. The ^  denotes a check for pending interrupt requests.
**These are additional cycles caused by an interrupt: ff is the exit sequence and Orft^  is the re-entry sequence.

REVW Rule evaluation, weighted; rule
weights optional; find smallest rule
input; store to rule outputs unless
fuzzy output is larger

Special 18 3B ORf(t^Tx)O*
or
ORf(r^ffRf)O**
ffff+ORft^***
ffff+ORfr^****

*With weighting not enabled, the t^Tx loop is executed once for each element in the rule list. The ^  denotes a check for pending interrupt requests.
**With weighting enabled, the t^Tx  loop is replaced by r^ffRf .
***Additional cycles caused by an interrupt when weighting is not enabled: ffff  is the exit sequence and ORft^  is the re-entry sequence.
**** Additional cycles caused by an interrupt when weighting is enabled: ffff  is the exit sequence and ORfr^  is the re-entry sequence.

ROL opr16a
ROL oprx0_xysppc
ROL oprx9,xysppc
ROL oprx16,xysppc
ROL [D,xysppc]
ROL [oprx16,xysppc]
ROLA
ROLB

Rotate left M

Rotate left A
Rotate left B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

75 hh ll
65 xb
65 xb ff
65 xb ee ff
65 xb
65 xb ee ff
45
55

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

ROR opr16a
ROR oprx0_xysppc
ROR oprx9,xysppc
ROR oprx16,xysppc
ROR [D,xysppc]
ROR [oprx16,xysppc]
RORA
RORB

Rotate right M

Rotate right A
Rotate right B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

76 hh ll
66 xb
66 xb ff
66 xb ee ff
66 xb
66 xb ee ff
46
56

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

RTC Return from call; (MSP)⇒PPAGE
(SP)+1⇒SP;
(MSP:MSP+1)⇒PCH:PCL
(SP)+2⇒SP

INH 0A uUnfPPP

RTI Return from interrupt
(MSP)⇒CCR; (SP)+1⇒SP
(MSP:MSP+1)⇒B:A;(SP)+2⇒SP
(MSP:MSP+1)⇒XH:XL;(SP)+4⇒SP
(MSP:MSP+1)⇒PCH:PCL;(SP)+2⇒SP
(MSP:MSP+1)⇒YH:YL;(SP)+4⇒SP

INH 0B uUUUUPPP
or
uUUUUfVfPPP*

*RTI takes 11 cycles if an interrupt is pending.

RTS Return from subroutine
(MSP:MSP+1)⇒PCH:PCL;
(SP)+2⇒SP

INH 3D UfPPP

SBA Subtract B from A; (A)–(B)⇒A INH 18 16 OO

SBCA #opr8i
SBCA opr8a
SBCA opr16a
SBCA oprx0_xysppc
SBCA oprx9,xysppc
SBCA oprx16,xysppc
SBCA [D,xysppc]
SBCA [oprx16,xysppc]

Subtract with carry from A
(A)–(M)–C⇒A
or (A)–imm–C⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

82 ii
92 dd
B2 hh ll
A2 xb
A2 xb ff
A2 xb ee ff
A2 xb
A2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – – – – –

– – – – – – – –

– – ? – ? ? ∆ ?

– – ? – ? ? ∆ !

C b7 b0

– – – – ∆ ∆ ∆ ∆

Cb7b0

– – – – ∆ ∆ ∆ ∆

– – – – – – – –

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

– – – – – – – –

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆
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SBCB #opr8i
SBCB opr8a
SBCB opr16a
SBCB oprx0_xysppc
SBCB oprx9,xysppc
SBCB oprx16,xysppc
SBCB [D,xysppc]
SBCB [oprx16,xysppc]

Subtract with carry from B
(B)–(M)–C⇒B
or (B)–imm–C⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C2 ii
D2 dd
F2 hh ll
E2 xb
E2 xb ff
E2 xb ee ff
E2 xb
E2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

SECSame as ORCC #$01 Set C bit IMM 14 01 P

SEISame as ORCC #$10 Set I bit IMM 14 10 P

SEVSame as ORCC #$02 Set V bit IMM 14 02 P

SEX abc,dxyspSame as TFR r1, r2 Sign extend; 8-bit r1 to 16-bit r2
$00:(r1)⇒r2 if bit 7 of r1 is 0
$FF:(r1)⇒r2 if bit 7 of r1 is 1

INH B7 eb P

STAA opr8a
STAA opr16a
STAA oprx0_xysppc
STAA oprx9,xysppc
STAA oprx16,xysppc
STAA [D,xysppc]
STAA [oprx16,xysppc]

Store accumulator A
(A)⇒M

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5A dd
7A hh ll
6A xb
6A xb ff
6A xb ee ff
6A xb
6A xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw

STAB opr8a
STAB opr16a
STAB oprx0_xysppc
STAB oprx9,xysppc
STAB oprx16,xysppc
STAB [D,xysppc]
STAB [oprx16,xysppc]

Store accumulator B
(B)⇒M

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5B dd
7B hh ll
6B xb
6B xb ff
6B xb ee ff
6B xb
6B xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw

STD opr8a
STD opr16a
STD oprx0_xysppc
STD oprx9,xysppc
STD oprx16,xysppc
STD [D,xysppc]
STD [oprx16,xysppc]

Store D
(A:B)⇒M:M+1

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5C dd
7C hh ll
6C xb
6C xb ff
6C xb ee ff
6C xb
6C xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

STOP Stop processing; (SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
(SP)–2⇒SP; (YH:YL)⇒MSP:MSP+1
(SP)–2⇒SP; (XH:XL)⇒MSP:MSP+1
(SP)–2⇒SP; (B:A)⇒MSP:MSP+1
(SP)–1⇒SP; (CCR)⇒MSP
Stop all clocks

INH 18 3E OOSSSSsf (enter
stop mode)

fVfPPP  (exit stop
mode)

ff  (continue stop
mode)

OO (if stop mode
disabled by S=1)

STS opr8a
STS opr16a
STS oprx0_xysppc
STS oprx9,xysppc
STS oprx16,xysppc
STS [D,xysppc]
STS [oprx16,xysppc]

Store SP
(SPH:SPL)⇒M:M+1

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5F dd
7F hh ll
6F xb
6F xb ff
6F xb ee ff
6F xb
6F xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

STX opr8a
STX opr16a
STX oprx0_xysppc
STX oprx9,xysppc
STX oprx16,xysppc
STX [D,xysppc]
STX [oprx16,xysppc]

Store X
(XH:XL)⇒M:M+1

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5E dd
7E hh ll
6E xb
6E xb ff
6E xb ee ff
6E xb
6E xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

– – – – – – – 1

– – – 1 – – – –

– – – – – – 1 –

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –
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STY opr8a
STY opr16a
STY oprx0_xysppc
STY oprx9,xysppc
STY oprx16,xysppc
STY [D,xysppc]
STY [oprx16,xysppc]

Store Y
(YH:YL)⇒M:M+1

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5D dd
7D hh ll
6D xb
6D xb ff
6D xb ee ff
6D xb
6D xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

SUBA #opr8i
SUBA opr8a
SUBA opr16a
SUBA oprx0_xysppc
SUBA oprx9,xysppc
SUBA oprx16,xysppc
SUBA [D,xysppc]
SUBA [oprx16,xysppc]

Subtract from A
(A)–(M)⇒A
or (A)–imm⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

80 ii
90 dd
B0 hh ll
A0 xb
A0 xb ff
A0 xb ee ff
A0 xb
A0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

SUBB #opr8i
SUBB opr8a
SUBB opr16a
SUBB oprx0_xysppc
SUBB oprx9,xysppc
SUBB oprx16,xysppc
SUBB [D,xysppc]
SUBB [oprx16,xysppc]

Subtract from B
(B)–(M)⇒B
or (B)–imm⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C0 ii
D0 dd
F0 hh ll
E0 xb
E0 xb ff
E0 xb ee ff
E0 xb
E0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

SUBD #opr16i
SUBD opr8a
SUBD opr16a
SUBD oprx0_xysppc
SUBD oprx9,xysppc
SUBD oprx16,xysppc
SUBD [D,xysppc]
SUBD [oprx16,xysppc]

Subtract from D
(A:B)–(M:M+1)⇒A:B
or (A:B)–imm⇒A:B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

83 jj kk
93 dd
B3 hh ll
A3 xb
A3 xb ff
A3 xb ee ff
A3 xb
A3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

SWI Software interrupt; (SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
(SP)–2⇒SP; (YH:YL)⇒MSP:MSP+1
(SP)–2⇒SP; (XH:XL)⇒MSP:MSP+1
(SP)–2⇒SP; (B:A)⇒MSP:MSP+1
(SP)–1⇒SP; (CCR)⇒MSP;1⇒I
(SWI vector)⇒PC

INH 3F VSPSSPSsP*

*The CPU also uses VSPSSPSsP for hardware interrupts and unimplemented opcode traps.

TAB Transfer A to B; (A)⇒B INH 18 0E OO

TAP Transfer A to CCR; (A)⇒CCR
Assembled as TFR A, CCR

INH B7 02 P

TBA Transfer B to A; (B)⇒A INH 18 0F OO

TBEQ abdxysp,rel9 Test and branch if equal to 0
If (counter)=0, then (PC)+2+rel⇒PC

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

TBL oprx0_xysppc Table lookup and interpolate, 8-bit
(M)+[(B)×((M+1)–(M))]⇒A

IDX 18 3D xb ORfffP

TBNE abdxysp,rel9 Test and branch if not equal to 0
If (counter)≠0, then (PC)+2+rel⇒PC

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

TFR abcdxysp,abcdxysp Transfer from register to register
(r1)⇒r2r1 and r2 same size
$00:(r1)⇒r2r1=8-bit; r2=16-bit
(r1L)⇒r2r1=16-bit; r2=8-bit

INH B7 eb P

or

TPASame as TFR CCR ,A Transfer CCR to A; (CCR)⇒A INH B7 20 P

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – 1 – – – –

– – – – ∆ ∆ 0 –

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

– – – – ∆ ∆ 0 –

– – – – – – – –

– – – – ∆ ∆ – ∆

– – – – – – – –

– – – – – – – –

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

– – – – – – – –
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TRAP trapnum Trapunimplementedopcode;
(SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
(SP)–2⇒SP; (YH:YL)⇒MSP:MSP+1
(SP)–2⇒SP; (XH:XL)⇒MSP:MSP+1
(SP)–2⇒SP; (B:A)⇒MSP:MSP+1
(SP)–1⇒SP; (CCR)⇒MSP
1⇒I; (trap vector)⇒PC

INH 18 tn
tn = $30–$39
or
tn = $40–$FF

OVSPSSPSsP

TST opr16a
TST oprx0_xysppc
TST oprx9,xysppc
TST oprx16,xysppc
TST [D,xysppc]
TST [oprx16,xysppc]
TSTA
TSTB

Test M; (M)–0

Test A; (A)–0
Test B; (B)–0

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

F7 hh ll
E7 xb
E7 xb ff
E7 xb ee ff
E7 xb
E7 xb ee ff
97
D7

rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
O
O

TSXSame as TFR SP,X Transfer SP to X; (SP)⇒X INH B7 75 P

TSYSame as TFR SP,Y Transfer SP to Y; (SP)⇒Y INH B7 76 P

TXSSame as TFR X,SP Transfer X to SP; (X)⇒SP INH B7 57 P

TYSSame as TFR Y,SP Transfer Y to SP; (Y)⇒SP INH B7 67 P

WAI Wait for interrupt; (SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
(SP)–2⇒SP; (YH:YL)⇒MSP:MSP+1
(SP)–2⇒SP; (XH:XL)⇒MSP:MSP+1
(SP)–2⇒SP; (B:A)⇒MSP:MSP+1
(SP)–1⇒SP; (CCR)⇒MSP

INH 3E OSSSSsf
(before interrupt)

fVfPPP
(after interrupt)

or

or

WAV Calculate weighted average; sum of
products (SOP) and sum of weights
(SOW)*

Special 18 3C Of(frr^ffff)O**
SSS+UUUrr^***

*Initialize B, X, and Y: B=number of elements; X points at first element in Si list; Y points at first element in Fi list. All Si and Fi elements are 8-bit values.
**The frr^ffff  sequence is the loop for one iteration of SOP and SOW accumulation. The ^  denotes a check for pending interrupt requests.
***Additional cycles caused by an interrupt: SSSis the exit sequence and UUUrr^ is the re-entry sequence. Intermediate values use six stack bytes.

wavr* Resume executing interrupted WAV Special 3C UUUrr^ffff(frr^
ffff)O**
SSS+UUUrr^***

*wavr is a pseudoinstruction that recovers intermediate results from the stack rather than initializing them to 0.
**The frr^ffff  sequence is the loop for one iteration of SOP and SOW recovery. The ^  denotes a check for pending interrupt requests.
***These are additional cycles caused by an interrupt: SSS is the exit sequence and UUUrr^  is the re-entry sequence.

XGDXSame as EXG D, X Exchange D with X; (D)⇔(X) INH B7 C5 P

XGDYSame as EXG D, Y Exchange D with Y; (D)⇔(Y) INH B7 C6 P

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – 1 – – – –

– – – – ∆ ∆ 0 0

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – 1 – – – –

– 1 – 1 – – – –

Fi
i 1=

B

∑ X⇒

SiFi
i 1=

B

∑ Y:D⇒

– – ? – ? ∆ ? ?

– – ? – ? ∆ ? ?

– – – – – – – –

– – – – – – – –
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1.8.1  Register and Memory Notation

1.8.2  Source Form Notation

TheSource Form column of the summary inTable 1-2  gives essential information about assembler
source forms. For complete information about writing source files for a particular assembler, refer
documentation provided by the assembler vendor.

Everything in theSource Form column,except expressions in italic characters, is literal information
which must appear in the assembly source file exactly as shown. The initial 3- to 5-letter mnemon
always a literal expression. All commas, pound signs (#), parentheses, square brackets ( [ or ] ), plus signs
(+), minus signs (–), and the register designation (A, B, D), are literal characters.

The groups of italic characters shown inTable 1-4  represent variable information to be supplied by th
programmer. These groups can include any alphanumeric character or the underscore character, bu

Table 1-3  Register and Memory Notation

A or a Accumulator A

An Bit n of accumulator A

B or b Accumulator B

Bn Bit n of accumulator B

D or d Accumulator D

Dn Bit n of accumulator D

X or x Index register X

XH High byte of index register X

XL Low byte of index register X

Xn Bit n of index register X

Y or y Index register Y

YH High byte of index register Y

YL Low byte of index register Y

Yn Bit n of index register Y

SP or sp Stack pointer

SPn Bit n of stack pointer

PC or pc Program counter

PCH High byte of program counter

PCL Low byte of program counter

CCR or c Condition code register

M Address of 8-bit memory location

Mn Bit n of byte at memory location M

Rn Bit n of the result of an arithmetic or logical operation

In Bit n of the intermediate result of an arithmetic or logical operation

RTNH High byte of return address

RTNL Low byte of return address

( ) Contents of
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include a space or comma. For example, the groupsxysppcandoprx0_xysppcare both valid, but the two
groupsoprx0 xysppc are not valid because there is a space between them.

Table 1-4  Source Form Notation

abc Register designator for A, B, or CCR

abcdxysp Register designator for A, B, CCR, D, X, Y, or SP

abd Register designator for A, B, or D

abdxysp Register designator for A, B, D, X, Y, or SP

dxysp Register designator for D, X, Y, or SP

msk8
8-bit mask value
Some assemblers require the # symbol before the mask value.

opr8i 8-bit immediate value

opr16i 16-bit immediate value

opr8a 8-bit address value used with direct address mode

opr16a 16-bit address value

oprx0_xysp Indexed addressing postbyte code:
oprx3,–xysp — Predecrement X , Y, or SP by 1–8
oprx3,+xysp — Preincrement X , Y, or SP by 1–8
oprx3,xysp– — Postdecrement X, Y, or SP by 1–8
oprx3,xysp+ — Postincrement X, Y, or SP by 1–8
oprx5,xysppc — 5-bit constant offset from X, Y, SP, or PC
abd,xysppc — Accumulator A, B, or D offset from X, Y, SP, or PC

oprx3 Any positive integer from 1 to 8 for pre/post increment/decrement

oprx5 Any integer from –16 to +15

oprx9 Any integer from –256 to +255

oprx16 Any integer from –32,768 to +65,535

page
8-bit value for PPAGE register
Some assemblers require the # symbol before this value.

rel8 Label of branch destination within –256 to +255 locations

rel9 Label of branch destination within –512 to +511 locations

rel16 Any label within the 64-Kbyte memory space

trapnum Any 8-bit integer from $30 to $39 or from $40 to $FF

xysp Register designator for X or Y or SP

xysppc Register designator for X or Y or SP or PC
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1.8.3  Operation Notation

1.8.4  Address Mode Notation

Table 1-5  Operation Notation

+ Add

– Subtract

• AND

| OR

⊕ Exclusive OR

× Multiply

÷ Divide

: Concatenate

⇒ Transfer

⇔ Exchange

Table 1-6  Address Mode Notation

INH Inherent; no operands in instruction stream

IMM Immediate; operand immediate value in instruction stream

DIR Direct; operand is lower byte of address from $0000 to $00FF

EXT Operand is a 16-bit address

REL Two’s complement relative offset; for branch instructions

IDX Indexed (no extension bytes); includes:
5-bit constant offset from X, Y, SP or PC
Pre/post increment/decrement by 1–8
Accumulator A, B, or D offset

IDX1 9-bit signed offset from X, Y, SP, or PC; 1 extension byte

IDX2 16-bit signed offset from X, Y, SP, or PC; 2 extension bytes

[IDX2] Indexed-indirect; 16-bit offset from X, Y, SP, or PC

[D, IDX] Indexed-indirect; accumulator D offset from X, Y, SP, or PC
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1.8.5  Machine Code Notation

In theMachine Code (Hex)column of the summary inTable 1-2 , digits 0–9 and upper case letters A–F
represent hexadecimal values. Pairs of lower-case letters represent 8-bit values as shown inTable 1-7 .

Table 1-7  Machine Code Notation

dd 8-bit direct address from $0000 to $00FF; high byte is $00

ee High byte of a 16-bit constant offset for indexed addressing

eb Exchange/transfer postbyte

ff
Low eight bits of a 9-bit signed constant offset in indexed addressing, or low byte of a 16-bit
constant offset in indexed addressing

hh High byte of a 16-bit extended address

ii 8-bit immediate data value

jj High byte of a 16-bit immediate data value

kk Low byte of a 16-bit immediate data value

lb Loop primitive (DBNE) postbyte

ll Low byte of a 16-bit extended address

mm
8-bit immediate mask value for bit manipulation instructions; bits that are set indicate bits to be
affected

pg Program page or bank number used in CALL instruction

qq High byte of a 16-bit relative offset for long branches

tn Trap number from $30 to $39 or from $40 to $FF

rr
Signed relative offset $80 (–128) to $7F (+127) relative to the byte following the relative offset byte,
or low byte of a 16-bit relative offset for long branches

xb Indexed addressing postbyte
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n

1.8.6  Access Detail Notation

A single-letter code in theAccess Detailcolumn ofTable 1-2 represents a single CPU access cycle. A
upper-case letter indicates a 16-bit access.

Table 1-8  Access Detail Notation

f Free cycle. During an f  cycle, the CPU does not use the bus. An f  cycle is always one cycle of the
system bus clock. An f cycle can be used by a queue controller or the background debug system to
perform a single-cycle access without disturbing the CPU.

g Read PPAGE register. A g cycle is used only in CALL instructions and is not visible on the external
bus. Since PPAGE is an internal 8-bit register, a g cycle is never stretched.

I Read indirect pointer. Indexed-indirect instructions use the 16-bit indirect pointer from memory to
address the instruction operand. An I  cycle is a 16-bit read that can be aligned or misaligned. An I
cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the
corresponding data is stored in external memory. There can be additional stretching when the
address space is assigned to a chip-select circuit programmed for slow memory. An I  cycle is also
stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle
misaligned access.

i Read indirect PPAGE value. An i  cycle is used only in indexed-indirect CALL instructions. The 8-bit
PPAGE value for the CALL destination is fetched from an indirect memory location. An i  cycle is
stretched only when controlled by a chip-select circuit that is programmed for slow memory.

n Write PPAGE register. An n cycle is used only in CALL and RTC instructions to write the destination
value of the PPAGE register and is not visible on the external bus. Since the PPAGE register is an
internal 8-bit register, an n cycle is never stretched.

O Optional cycle. An Ocycle adjusts instruction alignment in the instruction queue. An Ocycle can be a
free cycle (f ) or a program word access cycle (P). When the first byte of an instruction with an odd
number of bytes is misaligned, the O cycle becomes a P cycle to maintain queue order. If the first
byte is aligned, the O cycle is an f  cycle.

The $18 prebyte for a page-two opcode is treated as a special one-byte instruction. If the prebyte is
misaligned, the O cycle at the beginning of the instruction becomes a P cycle to maintain queue
order. If the prebyte is aligned, the O cycle is an f  cycle. If the instruction has an odd number of
bytes, it has a second O cycle at the end. If the first O cycle is a P cycle (prebyte misaligned), the
second Ocycle is an f cycle. If the first Ocycle is an f cycle (prebyte aligned), the second Ocycle is
a P cycle.

An Ocycle that becomes a P cycle can be extended to two bus cycles if the MCU is operating with an
8-bit external data bus and the program is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
An O cycle that becomes an f  cycle is never stretched.

P Program word access. Program information is fetched as aligned 16-bit words. A P cycle is extended
to two bus cycles if the MCU is operating with an 8-bit external data bus and the program is stored
externally. There can be additional stretching when the address space is assigned to a chip-select
circuit programmed for slow memory.

r 8-bit data read. An r cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

R 16-bit data read. An R cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
An R cycle is also stretched if it corresponds to a misaligned access to a memory that is not
designed for single-cycle misaligned access.

s Stack 8-bit data. An s cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.
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S Stack 16-bit data. An S cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external memory. There can be additional stretching if the
address space is assigned to a chip-select circuit programmed for slow memory. An S cycle is also
stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle
misaligned access. The internal RAM is designed to allow single cycle misaligned word access.

w 8-bit data write. A w cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

W 16-bit data write. A W cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
A Wcycle is also stretched if it corresponds to a misaligned access to a memory that is not designed
for single-cycle misaligned access.

u Unstack 8-bit data. A W cycle is stretched only when controlled by a chip-select circuit programmed
for slow memory.

U Unstack 16-bit data. A U cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external memory. There can be additional stretching
when the address space is assigned to a chip-select circuit programmed for slow memory. A U cycle
is also stretched if it corresponds to a misaligned access to a memory that is not designed for
single-cycle misaligned access. The internal RAM is designed to allow single-cycle misaligned word
access.

V 16-bit vector fetch. Vectors are always aligned 16-bit words. A V cycle is extended to two bus cycles
if the MCU is operating with an 8-bit external data bus and the program is stored in external memory.
There can be additional stretching when the address space is assigned to a chip-select circuit
programmed for slow memory.

t 8-bit conditional read. A t cycle is either a data read cycle or a free cycle, depending on the data and
flow of the REVW instruction. A t  cycle is stretched only when controlled by a chip-select circuit
programmed for slow memory.

T 16-bit conditional read. A T cycle is either a data read cycle or a free cycle, depending on the data
and flow of the REV or REVW instruction. A T cycle is extended to two bus cycles if the MCU is
operating with an 8-bit external data bus and the corresponding data is stored in external memory.
There can be additional stretching when the address space is assigned to a chip-select circuit
programmed for slow memory. A T cycle is also stretched if it corresponds to a misaligned access to
a memory that is not designed for single-cycle misaligned access.

x 8-bit conditional write. An x  cycle is either a data write cycle or a free cycle, depending on the data
and flow of the REV or REVW instruction. An x  cycle is stretched only when controlled by a
chip-select circuit programmed for slow memory.

Special Notation for Branch Taken/Not Taken
PPP/P A short branch requires three cycles if taken, one cycle if not taken. Since the instruction consists of

a single word containing both an opcode and an 8-bit offset, the not-taken case is simple — the
queue advances, another program word fetch is made, and execution continues with the next
instruction. The taken case requires that the queue be refilled so that execution can continue at a
new address. First, the effective address of the destination is determined, then the CPU performs
three program word fetches from that address.

OPPP/OPO A long branch requires four cycles if taken, three cycles if not taken. An O cycle is required because
all long branches are page two opcodes and thus include the $18 prebyte. The prebyte is treated as
a one-byte instruction. If the prebyte is misaligned, the O cycle is a P cycle; if the prebyte is aligned,
the O cycle is an f  cycle. As a result, both the taken and not-taken cases use one O cycle for the
prebyte. In the not-taken case, the queue must advance so that execution can continue with the next
instruction, and another O cycle is required to maintain the queue. The taken case requires that the
queue be refilled so that execution can continue at a new address. First, the effective address of the
destination is determined, then the CPU performs three program word fetches from that address.

Table 1-8  Access Detail Notation (Continued)
48



Core User Guide — S12CPU15UG V1.2
1.8.7  Condition Code State Notation

Table 1-9  Condition Code State Notation

– Not changed by operation

0 Cleared by operation

1 Set by operation

∆ Set or cleared by operation

⇓ May be cleared or remain set, but not set by operation

⇑ May be set or remain cleared, but not cleared by operation

? May be changed by operation but final state not defined

! Used for a special purpose
49



Core User Guide — S12CPU15UG V1.2
50



Core User Guide — S12CPU15UG V1.2
Section 2  Nomenclature

This section describes the conventions and notation used to describe the Core operation.

2.1  References

This document uses theSematech Official Dictionary and the JEDEC/EIAReference Guide to Letter
Symbols for Semiconductor Devices as references for terminology and symbology.

2.2  Units and Measures

SIU units and abbreviations are used throughout this guide.

2.3  Symbology

The symbols and operators used throughout this guide are shown inTable 2-1 .

2.4  Terminology

Logic level one is a voltage that corresponds to Boolean true (1) state.

Table 2-1  Symbols and Operators

Symbol Function
+ Addition

- Subtraction (two’s complement) or negation

* Multiplication

/ Division

> Greater

< Less

= Equal

≥ Equal or greater

≤ Equal or less

Not equal

• AND

+ Inclusive OR (OR)

⊕ Exclusive OR (EOR)

NOT Complementation

: Concatenation

⇒ Transferred

⇔ Exchanged

Tolerance

0b0011 Binary value

0x0F Hexadecimal value
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Logic level zero is a voltage that corresponds to Boolean false (0) state.

To set a bit or bits means to establish logic level one on them.

To clear a bit or bits means to establish logic level zero on them.

A signal is an electronic construct whose state or changes in state convey information.

A pin is an external physical connection. The same pin can be used to connect a number of signa

Asserted means that a discrete signal is in active logic state.

• Active low signals change from logic level one to logic level zero.

• Active high signals change from logic level zero to logic level one.

Negated means that an asserted discrete signal changes logic state.

• Active low signals change from logic level zero to logic level one.

• Active high signals change from logic level one to logic level zero.

LSB means least significant bit or bits.MSB means most significant bit or bits. References to low and hi
bytes or words are spelled out.

Memory and registers usebig-endianordering. The most significant byte (byte 0) of word 0 is located
address 0. Bits within a word are numbered downward from the MSB, bit 15.

Signal, bit field, and control bit mnemonics follow a general numbering scheme:

• A range of mnemonicsis referred to by mnemonic and numbers that define the range, from hig
to lowest. For example,p_addr[4:0] are lines four to zero of an address bus.

• A single mnemonic stands alone or includes a single numeric designator when appropriate. 
example,m_rst is a unique mnemonic, whilep_addr15 represents line 15 of an address bus.
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Section 3   Core Registers

This section provides detailed descriptions of the Core programming model, registers and accumu
In addition, a general description of the complete Core register map which includes all Core sub-blo
included.

3.1  Programming Model

The Core CPU12 programming model, shown inFigure 3-1 , is the same as that of the 68HC12 and
68HC11. The register set and data types used in the model are covered in the subsections that fo

Figure 3-1  Programming Model

3.1.1  Accumulators

General-purpose 8-bit accumulators A and B hold operands and results of operations. Some instr
use the combined 8-bit accumulators, A:B, as a 16-bit double accumulator, D, with the most signi
byte in A.

7

15

15

15

15

15

D

X

Y

SP

PC

A B

NS X H I Z V C

0

0

0

0

0

0

70

CONDITION CODE REGISTER

8-BIT ACCUMULATORS A AND B

16-BIT DOUBLE ACCUMULATOR D (A: B)

INDEX REGISTER X

INDEX REGISTER Y

STACK POINTER

PROGRAM COUNTER

STOP DISABLE (IGNORE STOP INSTRUCTION)

CARRY

OVERFLOW

ZERO

NEGATIVE

IRQ INTERRUPT MASK (DISABLE)

HALF-CARRY FOR BCD ARITHMETIC

XIRQ INTERRUPT MASK (DISABLE)
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Most operations can use accumulator A or B interchangeably. However, there are a few exceptions
subtract, and compare instructions involving both A and B (ABA, SBA, and CBA) only operate in o
direction, so it is important to verify that the correct operand is in the correct accumulator. The dec
adjust accumulator A (DAA) instruction is used after binary-coded decimal (BCD) arithmetic operat
There is no equivalent instruction to adjust accumulator B.

3.1.2  Index Registers (X and Y)

16-bit index registers X and Y are used for indexed addressing. In indexed addressing, the content
index register are added to a 5-bit, 9-bit, or 16-bit constant or to the contents of an accumulator to fo
effective address of the instruction operand. Having two index registers is especially useful for move
in cases where operands from two separate tables are used in a calculation.

7 6 5 4 3 2 1 0

Read:

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-2  Accumulator A

7 6 5 4 3 2 1 0

Read:

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-3  Accumulator B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  0

Read:

Write:

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3-4  Index Register X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  0

Figure 3-5  Index Register Y
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3.1.3  Stack Pointer (SP)

The stack stores system context during subroutine calls and interrupts, and can also be used for tem
data storage. It can be located anywhere in the standard 64K byte address space and can grow to
up to the total amount of memory available in the system.

SP holds the 16-bit address of the last stack location used. Normally, SP is initialized by one of th
instructions in an application program. The stack grows downward from the address pointed to by
Each time a byte is pushed onto the stack, the stack pointer is automatically decremented, and eac
byte is pulled from the stack, the stack pointer is automatically incremented.

When a subroutine is called, the address of the instruction following the calling instruction is automat
calculated and pushed onto the stack. Normally, a return from subroutine (RTS) is executed at the
a subroutine. The return instruction loads the program counter with the previously stacked return a
and execution continues at that address.

When an interrupt occurs, the CPU:

• Completes execution of the current instruction

• Calculates the address of the next instruction and pushes it onto the stack

• Pushes the contents of all the CPU registers onto the stack

• Loads the program counter with the address pointed to by the interrupt vector, and begins exe
at that address

The stacked CPU registers are referred to as an interrupt stack frame. The Core stack frame is the
that of the CPU.

Read:

Write:

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Read:

Write:

Reset: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Figure 3-6  Stack Pointer (SP)

Figure 3-5  Index Register Y
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3.1.4  Program Counter (PC)

PC is a 16-bit register that holds the address of the next instruction to be executed. The address i
automatically incremented each time an instruction is executed.

3.1.5  Condition Code Register (CCR)

CCR has five status bits, two interrupt mask bits, and a STOP instruction mask bit. It is named for th
conditions indicated by the status bits.

The status bits reflect the results of CPU operations. The five status bits are half-carry (H), negativ
zero (Z), overflow (V), and carry/borrow (C). The half-carry bit is used only for BCD arithmetic
operations. The N, Z, V, and C status bits allow for branching based on the results of a CPU oper

Most instructions automatically update condition codes, so it is rarely necessary to execute extra
instructions to load and test a variable. The condition codes affected by each instruction are show
Appendix A  of this guide.

The following paragraphs describe common uses of the condition codes. There are other, more spe
uses. For instance, the C status bit is used to enable weighted fuzzy logic rule evaluation. Specia
usages are described in the relevant portions of this guide and inAppendix A .

S — STOP Mask Bit

Clearing the S bit enables the STOP instruction. Execution of a STOP instruction causes the o
oscillator to stop. This may be undesirable in some applications. When the S bit is set, the CPU
the STOP instruction as a no-operation (NOP) instruction and continues on to the next instruc
Reset sets the S bit.

1 = STOP instruction disabled
0 = STOP instruction enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Read:

Write:

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3-7  Program Counter (PC)

Bit 7 6 5 4 3 2 1 Bit 0

Read:
S X H I N Z V C

Write:

Reset: 1 1 0 1 0 0 0 0

Figure 3-8  Condition Code Register (CCR)
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X — XIRQ Mask Bit

Clearing the X bit enables interrupt requests on theXIRQ pin. TheXIRQ input is an updated version
of the nonmaskable interrupt (NMI) input found on earlier generations of Motorola microcontroller
units (MCUs). Nonmaskable interrupts are typically used to deal with major system failures su
loss of power. However, enabling nonmaskable interrupts before a system is fully powered an
initialized can lead to spurious interrupts. The X bit provides a mechanism for masking nonmas
interrupts until the system is stable.

Reset sets the X bit. As long as the X bit remains set, interrupt service requests made via theXIRQ pin
are not recognized. Software must clear the X bit to enable interrupt service requests from theXIRQ
pin. Once software clears the X bit, enablingXIRQ interrupt requests, only a reset can set it again. T
X bit does not affect I bit maskable interrupt requests.

When the X bit is clear and anXIRQ interrupt request occurs, the CPU stacks the cleared X bit. It th
automatically sets the X and I bits in the CCR to disableXIRQ and maskable interrupt requests durin
theXIRQ interrupt service routine.

An RTI instruction at the end of the interrupt service routine restores the cleared X bit to the C
re-enablingXIRQ interrupt requests.

1 = XIRQ interrupt requests disabled
0 = XIRQ interrupt requests enabled

H — Half-Carry Bit

The H bit indicates a carry from bit 3 of the result during an addition operation. The DAA instruc
uses the value of the H bit to adjust the result in accumulator A to BCD format. ABA, ADD, and A
are the only instructions that update the H bit.

1 = Carry from bit 3 after ABA, ADD, or ADC instruction
0 = No carry from bit 3 after ABA, ADD, or ADC instruction

I — Interrupt Mask Bit

Clearing the I bit enables maskable interrupt sources. Reset sets the I bit. To enable maskable in
requests, software must clear the I bit. Maskable interrupt requests that occur while the I bit is
remain pending until the I bit is cleared.

When the I bit is clear and a maskable interrupt request occurs, the CPU stacks the cleared I bit.
automatically sets the I bit in the CCR to prevent other maskable interrupt requests during the int
service routine.

An RTI instruction at the end of the interrupt service routine restores the cleared I bit to the CC
reenabling maskable interrupt requests. The I bit can be cleared within the service routine, but
implementing a nested interrupt scheme requires great care, and seldom improves system
performance.

1 = Maskable interrupt requests disabled
0 = Maskable interrupt requests enabled
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N — Negative Bit

The N bit is set when the MSB of the result is set. N is most commonly used in two’s complem
arithmetic, where the MSB of a negative number is one and the MSB of a positive number is zer
it has other uses. For instance, if the MSB of a register or memory location is used as a status b
user can test the bit by loading an accumulator.

1 = MSB of result set
0 = MSB of result clear

Z — Zero Bit

The Z bit is set when all the bits of the result are zeros. Compare instructions perform an inter
implied subtraction, and the condition codes, including Z, reflect the results of that subtraction.
INX, DEX, INY, and DEY instructions affect the Z bit and no other condition bits. These operat
can only determine = and≠.

1 = Result all zeros
0 = Result not all zeros

V — Overflow Bit

The V bit is set when a two’s complement overflow occurs as a result of an operation.
1 = Overflow
0 = No overflow

C — Carry Bit

The C bit is set when a carry occurs during addition or a borrow occurs during subtraction. The
also acts as an error flag for multiply and divide operations. Shift and rotate instructions opera
through the C bit to facilitate multiple-word shifts.

1 = Carry or borrow
0 = No carry or borrow

3.2  Core Register Map

The Core registers are those that are part of the sub-blocks that support the CPU to makeup the ent
block. In addition to the registers contributed by the Core sub-blocks, sections of the Core space 
reserved for registers contributed by the system peripherals and memory sub-blocks. These regis
configured at integration of the Core into the SoC design. The Core register map summary is sho
Figure 3-9  below.

The Core registers, with the exception of those associated with the BDM sub-block (addresses $F
through $FF07), can be mapped to any 2K byte block within the first 32K byte space of the standard
byte address area by configuring the INITRG register.
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For detailed descriptions of the Core register and bit functionality please refer to Core sub-block
description sections of this guide. To assist in locating this more detailed information,Table 3-1  below
lists the Core registers, the sub-block they are associated with and a brief description of function.

Address Name Bit 7 6 5 4 3 2 1 Bit 0

$0000 PORTA
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$0001 PORTB
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$0002 DDRA
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$0003 DDRB
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$0004 Reserved
read 0 0 0 0 0 0 0 0
write

$0005 Reserved
read 0 0 0 0 0 0 0 0
write

$0006 Reserved
read 0 0 0 0 0 0 0 0
write

$0007 Reserved
read 0 0 0 0 0 0 0 0
write

$0008 PORTE
read

Bit 7 6 5 4 3 2
1 Bit 0

write

$0009 DDRE
read

Bit 7 6 5 4 3 2
0 0

write

$000A PEAR
read

NOACCE
0

PIPOE NECLK LSTRE RDWE
0 0

write

$000B MODE
read

MODC MODB MODA
0

IVIS
0

EMK EME
write

$000C PUCR
read

PUPKE
0 0

PUPEE
0 0

PUPBE PUPAE
write

$000D RDRIV
read

RDPK
0 0

RDPE
0 0

RDPB RDPA
write

$000E EBICTL
read 0 0 0 0 0 0 0

ESTR
write

$000F Reserved
read 0 0 0 0 0 0 0 0
write

$0010 INITRM
read

RAM15 RAM14 RAM13 RAM12 RAM11
0 0

RAMHAL
write

$0011 INITRG
read 0

REG14 REG13 REG12 REG11
0 0 0

write

$0012 INITEE
read

EE15 EE14 EE13 EE12 EE11
0 0

EEON
write

$0013 MISC
read 0 0 0 0

EXSTR1 EXSTR0 ROMHM ROMON
write

$0014 Reserved
read 0 0 0 0 0 0 0 0
write

$0015 ITCR
read 0 0 0

WRTINT ADR3 ADR2 ADR1 ADR0
write
59



Core User Guide — S12CPU15UG V1.2
$0016 ITEST
read

INTE INTC INTA INT8 INT6 INT4 INT2 INT0
write

$0017 Reserved
read 0 0 0 0 0 0 0 0
write

$0018
Reserved Reserved for Peripheral Block Registersto

$001B

$001C MEMSIZ0
read reg_sw0 0 eeo_sw1 eep_sw0 0 ram_sw2 ram_sw1 ram_sw0
write

$001D MEMSIZ1
read rom_sw1 rom_sw0 0 0 0 0 pag_sw1 pag_sw0
write

$001E IRQCR
read

IRQE IRQEN
0 0 0 0 0 0

write

$001F HPRIO
read

PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1
0

write
$0020

Reserved Reserved for Peripheral Block Registersto
$0027

$0028 BKPCT0
read

BKEN BKFULL BKBDM BKTAG
0 0 0 0

write

$0029 BKPCT1
read

BK0MBH BK0MBL BK1MBH BK1MBL BK0RWE BK0RW BK1RWE BK1RW
write

$002A BKP0X
read 0 0

BK0V5 BK0V4 BK0V3 BK0V2 BK0V1 BK0V0
write

$002B BKP0H
read

Bit 15 14 13 12 11 10 9 Bit 8
write

$002C BKP0L
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$002D BKP1X
read 0 0

BK1V5 BK1V4 BK1V3 BK1V2 BK1V1 BK1V0
write

$002E BKP1H
read

Bit 15 14 13 12 11 10 9 Bit 8
write

$002F BKP1L
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$0030 PPAGE
read 0 0

PIX5 PIX4 PIX3 PIX2 PIX1 PIX0
write

$0031 Reserved
read 0 0 0 0 0 0 0 0
write

$0032 PORTK
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$0033 DDRK
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$0034
Reserved Reserved for Peripheral Block Registersto

$00FF
$0100

Reserved Reserved for Flash EEPROM or ROM Registersto
$010F
60



Core User Guide — S12CPU15UG V1.2
Figure 3-9  Core Register Map Summary

$0110
Reserved Reserved for EEPROM Registersto

$011B
$011C

Reserved Reserved for RAM Registersto
$011F
$0120

Reserved Reserved for Peripheral Block Registersto
$07FF

$FF00 Reserved
read X X X X X X 0 0
write

$FF01 BDMSTS
read

ENBDM BDMACT ENTAG SDV TRACE CLKSW
UNSEC CORE

write

$FF02 Reserved
read X X X X X X X X
write

$FF03 Reserved
read X X X X X X X X
write

$FF04 Reserved
read X X X X X X X X
write

$FF05 Reserved
read X X X X X X X X
write

$FF06 BDMCCR
read

CCR7 CCR6 CCR5 CCR4 CCR3 CCR2 CCR1 CCR0
write

$FF07 BDMINR
read REG15 REG14 REG13 REG12 REG11 0 0 0
write

 = Unimplemented X = Indeterminate

Table 3-1 Core Register Map Reference

Address Name Sub-block Description
$0000 PORTA MEBI Port A 8-bit Data Register

$0001 PORTB MEBI Port B 8-bit Data Register

$0002 DDRA MEBI Port A 8-bit Data Direction Register

$0003 DDRB MEBI Port B 8-bit Data Direction Register

$0008 PORTE MEBI Port E 8-bit Data Register

$0009 DDRE MEBI Port E 8-bit Data Direction Register

$000A PEAR MEBI
Port E Assignment Register - configures functionality of Port E as
general purpose I/O and/or alternate functions

$000B MODE MEBI
Used to establish mode of operation of the Core and configure
other miscellaneous functions

$000C PUCR MEBI
Pullup Control Register to configure state of pullups on Ports A, B,
E and K
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$000D RDRIV MEBI
Reduced Drive Register to configure drive strength of pins
associated with Ports A, B, E and K

$000E EBICTL MEBI
External Bus Interface Control Register to configure functionality of
external E-clock signal

$0010 INITRM MMC Initialization of Internal RAM Position Register

$0011 INITRG MMC Initialization of Internal Registers Position Register

$0012 INITEE MMC Initialization of Internal EEPROM Registers Position Register

$0013 MISC MMC Miscellaneous Register to configure various system functions

$0015 ITCR INT
Interrupt Test Control Register used in special modes of operation
for testing interrupt logic

$0016 ITEST INT
Interrupt Test Register used in special modes of operation testing
interrupt logic

$001C MEMSIZ0 MMC
Memory Size Register 0 to allow capability to read the state of the
system memory configuration switches

$001D MEMSIZ1 MMC
Memory Size Register 1 to allow capability to read the state of the
system memory configuration switches

$001E IRQCR MEBI IRQ Control Register to configure IRQ pin functionality

$001F HPRIO INT Highest Priority I Interrupt Register (optional)

$0028 BKPCT0 BKP
Breakpoint Control Register 0 to configure mode of operation of
breakpoint functions

$0029 BKPCT1 BKP
Breakpoint Control Register 1 to configure mode of operation of
breakpoint functions

$002A BKP0X BKP
First Address Memory Expansion Breakpoint Register to assign
first address match value for expanded addresses

$002B BKP0H BKP
First Address High Byte Breakpoint Register to assign high byte of
first address within system memory space to be matched

$002C BKP0L BKP
First Address Low Byte Breakpoint Register to assign low byte of
first address within system memory space to be matched

$002D BKP1X BKP
Second Address Memory Expansion Breakpoint Register to assign
second address match value for expanded addresses

$002E BKP1H BKP
Second Address High Byte Breakpoint Register to assign high byte
of first address within system memory space to be matched

$002F BKP1L BKP
Second Address Low Byte Breakpoint Register to assign low byte
of first address within system memory space to be matched

$0030 PPAGE MMC
Program Page Index Register to configure the active memory page
viewed through the program page window from $8000-$BFFF

$0032 PORTK MEBI Port K 8-bit Data Register

$0033 DDRK MEBI Port K 8-bit Data Direction Register

$FF01 BDMSTS BDM BDM Status Register

$FF06 BDMCCR BDM BDM CCR Holding Register for interaction of BDM with CPU

$FF07 BDMINR BDM
BDM Internal Register Position Register to configure BDM register
mapping

Table 3-1 Core Register Map Reference

Address Name Sub-block Description
62



Core User Guide — S12CPU15UG V1.2

ctions

ve

and

dition
ations,
Section 4  Instructions

This section describes the instruction set of the Core. This discussion includes descriptions of instru
grouped by type, the addressing modes used and the opcode map. Please refer toAppendix A  of this
guide for a detailed instruction-by-instruction description of each opcode.

4.1  Instruction Types

All memory and I/O are mapped in a common 64K byte address space, allowing the same set of
instructions to access memory, I/O, and control registers. Load, store, transfer, exchange, and mo
instructions facilitate movement of data to and from memory and peripherals.

There are instructions for signed and unsigned addition, division and multiplication with 8-bit, 16-bit,
some larger operands.

Special arithmetic and logic instructions aid stacking operations, indexing, BCD calculation, and con
code register manipulation. There are also dedicated instructions for multiply and accumulate oper
table interpolation, and specialized mathematical calculations for fuzzy logic operations.

4.2  Addressing Modes

A summary of the addressing modes used by the Core is given inTable 4-1 below. The operation of each
of these modes is discussed in the subsections that follow.

Table 4-1  Addressing Mode Summary

Addressing Mode Source Form Abbreviation Description

Inherent
INST
(no externally supplied
operands)

INH Operands (if any) are in CPU registers.

Immediate
INST #opr8i
or
INST #opr16i

IMM
Operand is included in instruction stream; 8-bit or
16-bit size implied by context.

Direct INST opr8a DIR
Operand is the lower 8-bits of an address in the range
$0000–$00FF.

Extended INST opr16a EXT Operand is a 16-bit address.

Relative
INST rel8
or
INST rel16

REL
Effective address is the value in PC plus an 8-bit or
16-bit relative offset value.

Indexed
(5-bit offset)

INST oprx5,xysp IDX
Effective address is the value in X, Y, SP, or PC plus a
5-bit signed constant offset.

Indexed
(predecrement)

INST oprx3,–xys IDX
Effective address is the value in X, Y, or SP
autodecremented by 1 to 8.

Indexed
(preincrement)

INST oprx3,+xys IDX
Effective address is the value in X, Y, or SP
autoincremented by 1 to 8.

Indexed
(postdecrement)

INST oprx3,xys– IDX
Effective address is the value in X, Y, or SP. The value
is postdecremented by 1 to 8.
63



Core User Guide — S12CPU15UG V1.2

 address
 do not

l CPU
truction.

ta is
 mode

mon
t the
eans
 from
ted as
4.2.1  Effective Address

Every addressing mode except inherent mode generates a 16-bit effective address. The effective
is the address of the memory location that the instruction acts on. Effective address computations
require extra execution cycles.

4.2.2  Inherent Addressing Mode

Instructions that use this addressing mode either have no operands or all operands are in interna
registers. In either case, the CPU does not need to access any memory locations to complete the ins

4.2.3  Immediate Addressing Mode

Operands for immediate mode instructions are included in the instruction and are fetched into the
instruction queue one 16-bit word at a time during normal program fetch cycles. Since program da
read into the instruction queue several cycles before it is needed, when an immediate addressing
operand is called for by an instruction, it is already present in the instruction queue.

The pound symbol (#) is used to indicate an immediate addressing mode operand. One very com
programming error is to accidentally omit the # symbol. This causes the assembler to misinterpre
following expression as an address rather than explicitly provided data. For example LDAA #$55 m
to load the immediate value $55 into the A accumulator, while LDAA $55 means to load the value
address $0055 into the A accumulator. Without the # symbol the instruction is erroneously interpre
a direct addressing instruction.

Indexed
(postincrement)

INST oprx3,xys+ IDX
Effective address is the value in X, Y, or SP. The value
is postincremented by 1 to 8.

Indexed
(accumulator offset)

INST abd,xysp IDX
Effective address is the value in X, Y, SP, or PC plus
the value in A, B, or D.

Indexed
(9-bit offset)

INST oprx9,xysp IDX1
Effective address is the value in X, Y, SP, or PC plus a
9-bit signed constant offset.

Indexed
(16-bit offset)

INST oprx16,xysp IDX2
Effective address is the value in X, Y, SP, or PC plus a
16-bit constant offset.

Indexed-indirect
(16-bit offset)

INST [oprx16,xysp] [IDX2]
The value in X, Y, SP, or PC plus a 16-bit constant
offset points to the effective address.

Indexed-indirect
(D accumulator offset)

INST [D,xysp] [D,IDX]
The value in X, Y, SP, or PC plus the value in D points
to the effective address.

NOP ;this instruction has no operands

INX ;operand is a CPU register

LDAA #$55

Table 4-1  Addressing Mode Summary

Addressing Mode Source Form Abbreviation Description
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The size of the immediate operand is implied by the instruction context. In the third example, the
instruction implies a 16-bit immediate value but only an 8-bit value is supplied. In this case the asse
generates the 16-bit value $0067 because the CPU expects a 16-bit value in the instruction strea

In this example, extended addressing is used to access the operand FOO, immediate addressing is
access the mask value $03, and relative addressing is used to identify the destination address of a
in case the branch-taken conditions are met. BRSET is listed as an extended mode instruction even
immediate and relative modes are also used.

4.2.4  Direct Addressing Mode

This addressing mode is sometimes called zero-page addressing because it accesses operands 
address range $0000 through $00FF. Since these addresses always begin with $00, only the low
the address needs to be included in the instruction, which saves program space and execution tim
system can be optimized by placing the most commonly accessed data in this area of memory. T
byte of the operand address is supplied with the instruction and the high byte of the address is assu
be zero.

The value $55 is taken to be the low byte of an address in the range $0000 through $00FF. The hig
of the address is assumed to be zero. During execution, the CPU combines the value $55 from th
instruction with the assumed value of $00 to form the address $0055, which is then used to access t
to be loaded into accumulator A.

In this example, the value $20 is combined with the assumed value of $00 to form the address $0020
the LDX instruction requires a 16-bit value, a 16-bit word of data is read from addresses $0020 and $
After execution, the X index register has the value from address $0020 in its high byte and the value
address $0021 in its low byte.

4.2.5  Extended Addressing Mode

In extended addressing, the full 16-bit address of the memory location to be operated on is provided
instruction. Extended addressing can access any location in the 64K byte memory map.

LDX #$1234

LDY #$67

BRSET FOO,#$03,THERE

LDAA $55

LDX $20

LDAA $F03B
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The value from address $F03B is loaded into the A accumulator.

4.2.6  Relative Addressing Mode

Relative addressing is for branch instructions only. Relative addressing determines the branch dest
The short and long versions of conditional branch instructions use relative addressing exclusively
branching bit-condition instructions, BRSET and BRCLR, use multiple addressing modes, includin
relative mode.

A conditional branch instruction tests a status bit in the condition code register. If the bit tests true
execution begins at the destination formed by adding an offset to the address of the memory locatio
the offset. If the bit does not test true, execution continues with the instruction that follows the bra
instruction.

A short conditional branch instruction has an 8-bit opcode and a signed 8-bit relative offset in the byt
follows the opcode. A long conditional branch instruction has an 8-bit prebyte, an 8-bit opcode an
signed 16-bit relative offset in the two bytes that follow the opcode.

A branching bit-condition instruction, BRCLR or BRSET, tests the state of one or more bits in a mem
byte. Direct, extended, or indexed addressing can determine the location of the memory byte. The
instruction includes an immediate 8-bit mask operand to test the bits and an 8-bit relative offset. If th
test true, execution begins at the destination formed by adding the 8-bit offset to the address of the m
location after the offset. If the bits do not test true, execution continues with the instruction that fol
the branch instruction.

Both 8-bit and 16-bit offsets are signed two’s complement numbers to support branching upward 
downward in memory. The numeric range of short branch offset values is $80 (–128) to $7F (127
numeric range of long branch offset values is $8000 (–32768) to $7FFF (32767). If the offset is zer
CPU executes the instruction that follows the branch instruction.

Since the offset is at the end of a branch instruction, using a negative offset value can cause the PC
to the opcode and initiate a loop. For instance, a branch always (BRA) instruction consists of two 
so using an offset of $FE sets up an infinite loop; the same is true of a long branch always (LBRA
instruction with an offset of $FFFC.

An offset that points to the opcode can cause a branching bit-condition instruction to repeat executio
the specified bit condition is satisfied. Since branching bit-condition instructions can consist of four,
or six bytes depending on the addressing mode used, the offset value that sets up a loop can var
instance, an offset of $FC in a 4-byte BRCLR instruction sets up a loop that executes until all the 
the tested memory byte are clear.

4.2.7  Indexed Addressing Modes

There are seven indexed addressing modes:

• 5-bit constant offset

• Autodecrement/increment

• 9-bit constant offset
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• 16-bit constant offset

• 16-bit constant offset indexed-indirect

• Accumulator offset

• Accumulator D offset indexed-indirect

Features of indexed addressing include:

• The stack pointer can be used as an indexing register in all indexed operations

• The program counter can be used as an indexing register in all but autoincrement and
autodecrement modes

• A, B, or D accumulators can be used for accumulator offsets

• Automatic pre- or postincrement or pre- or postdecrement by –8 to +8

• A choice of 5-, 9-, or 16-bit signed constant offsets

• Two indexed-indirect modes:

– Indexed-indirect mode with 16-bit offset

– Indexed-indirect mode with accumulator D offset

4.2.7.1  Indexed Addressing Postbyte

A postbyte follows all indexed addressing opcodes. There may be 0, 1, or 2 extension bytes after
postbyte. The postbyte and extensions do the following tasks:

1. Select a register for indexing (X, Y, SP, PC, A, B, or D)

2. Enable automatic pre- or postincrementing or decrementing of X, Y, or SP and select the p
postincrement value

3. Select 5-bit, 9-bit, or 16-bit signed constant offsets

Table 4-2  shows how the postbyte enhances indexed addressing capabilities.
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All indexed addressing modes use a 16-bit CPU register and additional information to create an in
address. In most cases the indexed address is the effective address of the instruction, that is, the ad
the memory location that the instruction acts on. In indexed-indirect addressing, the indexed addres
location of a value that points to the effective address.

Table 4-2  Summary of Indexed Operations

5-bit constant offset indexed addressing (IDX)
7 6 5 4 3 2 1 0

Postbyte: rr1

NOTES:
1. rr selects X (00), Y (01), SP (10), or PC (11).

0 5-bit signed offset

Effective address = 5-bit signed offset + (X, Y, SP, or PC)

Accumulator offset addressing (IDX)
7 6 5 4 3 2 1 0

Postbyte: 1 1 1 rr1 1 aa2

2. aa selects A (00), B (01), or D (10).

Effective address = (X, Y, SP, or PC) + (A, B, or D)

Autodecrement/autoincrement) indexed addressing (IDX)
7 6 5 4 3 2 1 0

Postbyte: rr1,3

3. In autoincrement/decrement indexed addressing, PC is not a valid selection.

1 p4

4. p selects pre- (0) or post- (1) increment/decrement.

4-bit inc/dec value5

5. Increment values range from 0000 (+1) to 0111 (+8). Decrement values range from 1111 (–1) to 1000 (–8).

Effective address = (X, Y, or SP) ± 1 to 8

9-bit constant offset indexed addressing (IDX1)
7 6 5 4 3 2 1 0

Postbyte: 1 1 1 rr1 0 0 s6

6. s is the sign bit of the offset extension byte.

Effective address = s:(offset extension byte) + (X, Y, SP, or PC)

16-bit constant offset indexed addressing (IDX2)
7 6 5 4 3 2 1 0

Postbyte: 1 1 1 rr1 0 1 0

Effective address = (two offset extension bytes) + (X, Y, SP, or PC)

16-bit constant offset indexed-indirect addressing ([IDX2])
7 6 5 4 3 2 1 0

Postbyte: 1 1 1 rr1 0 1 1

(two offset extension bytes) + (X, Y, SP, or PC) is address of pointer to effective address

Accumulator D offset indexed-indirect addressing ([D,IDX])
7 6 5 4 3 2 1 0

Postbyte: 1 1 1 rr1 1 1 1

(X, Y, SP, or PC) + (D) is address of pointer to effective address
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PC offsets are calculated from the location immediately following the current instruction.

This example moves a byte of data from $2000 to $1007.

4.2.7.2  5-Bit Constant Offset Indexed Addressing

This addressing mode calculates the effective address by adding a 5-bit signed offset in the postbyt
indexing register (X, Y, SP, or PC). The value in the indexing register does not change. The 5-bit 
offset gives a range of–16 through +15 from the value in the indexing register. The majority of index
instructions use offsets that fit in the 5-bit offset range.

For these examples, assume X contains $1000 and Y contains $2000:

The value at address $1000 is loaded into A.

The value in B is stored at address $2000 – $8, or $1FF8.

4.2.7.3  9-Bit Constant Offset Indexed Addressing

This addressing mode calculates the effective address by adding a 9-bit signed offset in an extensi
to the indexing register (X, Y, SP, or PC). The value in the indexing register does not change. The s
of the offset is in the postbyte. The 9-bit offset gives a range of–256 through +255 from the value in the
indexing register.

For these examples assume X contains $1000 and Y contains $2000:

The value at address $10FF is loaded into A.

The value at address $2000 – $14, or $1FEC, is loaded into B.

4.2.7.4  16-Bit Constant Offset Indexed Addressing

This addressing mode calculates the effective address by adding a 16-bit offset in two extension b
the indexing register (X, Y, SP, or PC). The value in the indexing register does not change. The 1
offset allows access to any address in the 64K byte address space. The address bus and the offset

1000 18 09 C2 20 00 MOVB $2000 2,PC

1005 A7 NOP

LDAA 0,X

STAB –8,Y

LDAA $FF,X

LDAB –20,Y
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16 bits, so it does not matter whether the offset is considered to be signed or unsigned ($FFFF m
thought of as +65,535 or as–1).

4.2.7.5  16-Bit Constant Indexed-Indirect Addressing

This addressing mode calculates the address of a pointer to the effective address. It adds a 16-bit o
two extension bytes to the indexing register (X, Y, SP, or PC). The value in the indexing register doe
change. The square brackets distinguish this addressing mode from 16-bit constant offset indexe
addressng.

For this example, assume X contains $1000 and the value at address $100A is $2000:

The value 10 is added to the value in X to form the address $100A. The CPU fetches the effective a
pointer, $2000, from address $100A and loads the value at address $2000 into A.

4.2.7.6  Autodecrement/Autoincrement Indexed Addressing

This addressing mode calculates the effective address by adding an integer value between –8 an
between 1 and 8 to the indexing register (X, Y, or SP). The indexing register retains its changed v

NOTE: Autodecrementing and autoincrementing do not apply to the program counter.

When predecremented or preincremented, the indexing register changes before indexing takes p
When postdecremented or postincremented, the indexing register changes after indexing takes p

This addressing mode adjusts the indexing value without increasing execution time by using an add
instruction.

In this example, the instruction compares X with the value that X points to and then increments X b

The next two examples are equivalent to common push instructions. In the first example, the instr
predecrements the stack pointer by one and then stores A to the address contained in the stack p

The next two examples are equivalent to common pull instructions. In the first example, the instru
loads X from the address in the stack pointer and then postincrements the stack pointer by two:

LDAA [10,X]

CPX 1,X+

STAA 1,–SP ;equivalent to PSHA

STX 2,–SP ;equivalent to PSHX

LDX 2,SP+ ;equivalent to PULX

LDAA 1,SP+ ;equivalent to PULA
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The next example demonstrates how to work with data structures larger than bytes and words. W
instruction in a program loop, it is possible to move words of data from a list having one word per 
into a second table that has four bytes per table element. The instruction postincrements the source
after reading the data from memory and preincrements the destination pointer before accessing m

Using a predecrement/increment version of LEAS, LEAX, or LEAY when SP, X, or Y is the respec
indexing register changes the value in the indexing register. Using a postdecrement/increment ver
LEAS, LEAX, LEAY when SP, X, or Y is the respective indexing register has no effect.

4.2.7.7  Accumulator Offset Indexed Addressing

This addressing mode calculates the effective address by adding the value in the indexing registe
unsigned offset value in one of the accumulators. The value in the indexing register is not change
indexing register can be X, Y, SP, or PC, and the accumulator can be A, B, or D.

Example:

This instruction adds B to X to form the address from which A will be loaded. B and X are not cha
by this instruction. This example is similar to the following two-instruction combination in an M68HC

4.2.7.8  Accumulator D Indexed-Indirect Addressing

This addressing mode calculates address of a pointer to the effective address. It adds the value in D
value in the indexing register (X, Y, SP, or PC) The value in the indexing register does not change
square brackets distinguish this addressing mode from D accumulator offset indexing.

In this example, accumulator D indexed-indirect addressing is used in a computed GOTO:

The values beginning at GO1 are addresses of potential destinations of the jump instruction. At th
the JMP [D,PC] instruction is executed, PC points to the address GO1, and D holds one of the va
$0000, $0002, or $0004, determined by the program some time before the JMP.

Assume that the value in D is $0002. The JMP instruction adds the values in D and PC to form the a
of GO2. Next the CPU reads the address PLACE2 from memory at GO2 and jumps to PLACE2. T
locations of PLACE1 through PLACE3 were known at the time of program assembly but the destin
of the JMP depends upon the value in D computed during program execution.

4.2.8  Instructions Using Multiple Modes

Several instructions use more than one addressing mode in the course of execution.

MOVW 2,X+,4,+Y

LDAA B,X

JMP [D,PC]

GO1 DC.W PLACE1

GO2 DC.W PLACE2

GO3 DC.W PLACE3
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4.2.8.1  Move Instructions

Move instructions can use one addressing mode to access the source of the move and another ad
mode to access the destination. There are move variations for most combinations of immediate, ext
and indexed addressing modes.

The only combinations of addressing modes that are not allowed are those with an immediate mo
destination; the operand of an immediate instruction is data, not an address. For indexed moves, 
indexing register can be X, Y, SP, or PC.

Move instructions do not have indirect modes, or 9-bit or 16-bit offset modes.

4.2.8.2  Bit Manipulation Instructions

Bit manipulation instructions use a combination of two or three addressing modes.

A BCLR or BSET instruction has an 8-bit mask to clear or set bits in a memory byte. The mask is 
immediate value supplied with the instruction. Direct, extended, or indexed addressing determine
location of the memory byte.

A BRCLR or BRSET instruction has an 8-bit mask to test the states of bits in a memory byte. The
is an immediate value supplied with the instruction. Direct, extended, or indexed addressing deter
the location of the memory byte. Relative addressing determines the branch address. A signed 8-bi
must be supplied with the instruction.
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4.3  Instruction Descriptions

A brief discussion of the CPU instructions group by type is given in the subsections below. For a de
instruction-by-instruction description please consultAppendix A  of this guide.

4.3.1  Load and Store Instructions

Load instructions copy a value in memory or an immediate value into a CPU register. The value in me
is not changed by the operation. Load instructions (except LEAS, LEAX, and LEAY) affect conditi
code bits so no separate test instructions are needed to check the loaded values for negative or z
conditions.

Store instructions copy the value in a CPU register to memory. The CPU register value is not chang
the operation. Store instructions automatically update the N and Z condition code bits, which can elim
the need for a separate test instruction in some programs.

A summary of the load and store instructions is given inTable 4-3 .

Table 4-3  Load and Store Instructions

Mnemonic Function Operation

LDAA
Load A from memory
Load A with immediate value

(M) ⇒ A
imm ⇒ A

LDAB
Load B from memory
Load B with immediate value

(M) ⇒ B
imm ⇒ B

LDD
Load D from memory
Load D with immediate value

(M) ⇒ A, (M + 1) ⇒ B
immH ⇒ A, immL ⇒ B

LDS
Load SP from memory
Load SP with immediate value

(M) ⇒ SPH, (M + 1) ⇒ SPL
immH ⇒ SPH, immL ⇒ SPL

LDX
Load X from memory
Load X with immediate value

(M) ⇒ XH, (M + 1) ⇒ XL
immH ⇒ XH, immL ⇒ XL

LDY
Load Y from memory
Load Y with immediate value

(M) ⇒ YH, (M + 1) ⇒ YL
immH ⇒ YH, immL ⇒ YL

LEAS Load effective address into SP Effective address ⇒ SP

LEAX Load effective address into X Effective address ⇒ X

LEAY Load effective address into Y Effective address ⇒ Y

STAA Store A in memory (A) ⇒ M

STAB Store B in memory (B) ⇒ M

STD Store D in memory (A) ⇒ M, (B) ⇒ M + 1

STS Store SP in memory (SPH) ⇒ M, (SPL) ⇒ M + 1

STX Store X in memory (XH) ⇒ M, (XL) ⇒ M + 1

STY Store Y in memory (YH) ⇒ M, (YL) ⇒ M + 1
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4.3.2  Transfer and Exchange Instructions

Transfer instructions copy the value in a CPU register into another CPU register. The source value
changed by the operation. TFR is a universal transfer instruction, but other mnemonics are accep
compatibility with the M68HC12. The TAB and TBA instructions affect the N, Z, and V condition c
bits in the same way as M68HC12 instructions. The TFR instruction does not affect the condition 
bits.

Exchange instructions exchange the values in pairs of CPU registers.

The sign-extend instruction, SEX, is a special case of the universal transfer instruction. It adds a s
extension to an 8-bit two’s complement number so that the number can be used in 16-bit operation
8-bit number is copied from accumulator A, B, or the condition code register to accumulator D, the
index register, the Y index register, or the stack pointer. All the bits in the upper byte of the 16-bit 
are given the value of the MSB of the 8-bit number.

A summary of the transfer and exchange instructions is given inTable 4-4 .

4.3.3  Move Instructions

These instructions move bytes or words from a source in memory, M1 or M1:M1 + 1, to a destination in
memory, M2 or M2:M2 + 1. Six combinations of immediate, extended, and indexed addressing can sp
source and destination addresses: IMM/EXT, IMM/IDX, EXT/EXT, EXT/IDX, IDX/EXT, and IDX/IDX
A summary of the move instructions is given inTable 4-5 .

Table 4-4  Transfer and Exchange Instructions

Mnemonic Function Operation
TAB Transfer A to B (A) ⇒ B

TAP Transfer A to CCR (A) ⇒ CCR

TBA Transfer B to A (B) ⇒ A

TFR Transfer register (A, B, CCR, D, X, Y, or SP) ⇒ A, B, CCR, D, X, Y, or SP

TPA Transfer CCR to A (CCR) ⇒ A

TSX Transfer SP to X (SP) ⇒ X

TSY Transfer SP to Y (SP) ⇒ Y

TXS Transfer X to SP (X) ⇒ SP

TYS Transfer Y to SP (Y) ⇒ SP

EXG Exchange registers (A, B, CCR, D, X, Y, or SP) ⇔ (A, B, CCR, D, X, Y, or SP)

XGDX Exchange D with X (D) ⇔ (X)

XGDY Exchange D with Y (D) ⇔ (Y)

SEX Sign-extend 8-bit operand 00:(A, B, or CCR) or FF:(A, B, or CCR) ⇒ D, X, Y, or SP

Table 4-5  Move Instructions

Mnemonic Function Operation

MOVB Move byte (8-bit) (M1) ⇒ M2

MOVW Move word (16-bit) (M1):(M1 + 1) ⇒ M2:M2 + 1
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4.3.4  Add and Subtract Instructions

Signed and unsigned 8-bit and 16-bit addition and subtraction can be performed on CPU registers
CPU register and memory, or on a CPU register and an immediate value. Special instructions sup
index calculation. Instructions that add or subtract the carry bit, C, in the CCR facilitate multiple prec
computation. A summary of the add and subtract instructions is given inTable 4-6 .

Table 4-6  Add and Subtract Instructions

Mnemonic Function Operation
ABA Add A to B (A) + (B) ⇒ A

ABX Add B to X (B) + (X) ⇒ X

ABY Add B to Y (B) + (Y) ⇒ Y

ADCA
Add memory and carry to A
Add immediate value and carry to A

(A) + (M) + C ⇒ A
(A) + imm + C ⇒ A

ADCB
Add memory and carry to B
Add immediate value and carry to B

(B) + (M) + C ⇒ B
(B) + imm + C ⇒ B

ADDA
Add memory to A
Add immediate value to A

(A) + (M) ⇒ A
(A) + imm ⇒ A

ADDB
Add memory to B
Add immediate value to B

(B) + (M) ⇒ B
(B) + imm ⇒ B

ADDD
Add memory to D
Add immediate value to D

(A):(B) + (M):(M + 1) ⇒ A:B
(A):(B) + imm ⇒ A:B

SBA Subtract B from A (A) – (B) ⇒ A

SBCA
Subtract memory and carry from A
Subtract immediate value and carry from A

(A) – (M) – C ⇒ A
(A) – imm – C ⇒ A

SBCB
Subtract memory and carry from B
Subtract immediate value and carry from B

(B) – (M) – C ⇒ B
(B) – imm – C ⇒ B

SUBA
Subtract memory from A
Subtract immediate value from A

(A) – (M) ⇒ A
(A) – imm ⇒ A

SUBB
Subtract memory from B
Subtract immediate value from B

(B) – (M) ⇒ B
(B) – imm ⇒ B

SUBD
Subtract memory from D
Subtract immediate value from D

(A):(B) – (M):(M + 1) ⇒ A:B
(A):(B) – imm ⇒ A:B
75



Core User Guide — S12CPU15UG V1.2

 H, in
n in

ed to
well

 and
4.3.5  Binary Coded Decimal Instructions

To add binary coded decimal (BCD) operands, use addition instructions that set the half-carry bit,
the CCR. Then adjust the result with the DAA instruction. A summary of the BCD instructions is give
Table 4-7 .

4.3.6  Decrement and Increment Instructions

These instructions are optimized 8-bit and 16-bit addition and subtraction operations. They are us
implement counters. Because they do not affect the carry bit, C, in the CCR, they are particularly 
suited for loop counters in multiple-precision computation routines. See4.3.17.4 Loop Primitive
Instructions for information concerning automatic counter branches. A summary of the decrement
increment instructions is given inTable 4-8 Decrement and Increment Instructions.

Table 4-7  BCD Instructions

Mnemonic Function Operation
ABA Add B to A (A) + (B) ⇒ A

ADCA
Add memory and carry to A
Add immediate value and carry to A

(A) + (M) + C ⇒ A
(A) + imm + C ⇒ A

ADCB
Add memory and carry to B
Add immediate value and carry to B

(B) + (M) + C ⇒ B
(B) + imm + C ⇒ B

ADDA
Add memory to A
Add immediate value to A

(A) + (M) ⇒ A
(A) + imm ⇒ A

ADDB
Add memory to B
Add immediate value to B

(B) + (M) ⇒ B
(B) + imm ⇒ B

DAA Decimal adjust A (A)10 ⇒ A

Table 4-8  Decrement and Increment Instructions

Mnemonic Function Operation
DEC Decrement memory (M) – $01 ⇒ M

DECA Decrement A (A) – $01 ⇒ A

DECB Decrement B (B) – $01 ⇒ B

DES Decrement SP (SP) – $0001 ⇒ SP

DEX Decrement X (X) – $0001 ⇒ X

DEY Decrement Y (Y) – $0001 ⇒ Y

INC Increment memory (M) + $01 ⇒ M

INCA Increment A (A) + $01 ⇒ A

INCB Increment B (B) + $01 ⇒ B

INS Increment SP (SP) + $0001 ⇒ SP

INX Increment X (X) + $0001 ⇒ X

INY Increment Y (Y) + $0001 ⇒ Y
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4.3.7  Compare and Test Instructions

Compare and test instructions perform subtraction on a pair of CPU registers, on a CPU register a
memory, or on a CPU register and an immediate value. The result is not stored, but the operation can
condition codes in the CCR. These instructions are used to establish conditions for branch instruc
However, most instructions update condition codes automatically, so it is often unnecessary to inc
separate compare or test instructions. A summary of the compare and test instructions is given inTable
4-9.

Table 4-9  Compare and Test Instructions

Mnemonic Function Operation
CBA Compare A to B (A) – (B)

CMPA
Compare A to memory
Compare A to immediate value

(A) – (M)
(A) – imm

CMPB
Compare B to memory
Compare B to immediate value

(B) – (M)
(B) – imm

CPD
Compare D to memory
Compare D to immediate value

(A):(B) – (M):(M + 1)
(A):(B) – imm

CPS
Compare SP to memory
Compare SP to immediate value

(SP) – (M):(M + 1)
(SP) – imm

CPX
Compare X to memory
Compare X to immediate value

(X) – (M):(M + 1)
(X) – imm

CPY
Compare Y to memory
Compare Y to immediate value

(Y) – (M):(M + 1)
(Y) – imm

TST Test memory for zero or minus (M) – $00

TSTA Test A for zero or minus (A) – $00

TSTB Test B for zero or minus (B) – $00
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4.3.8  Boolean Logic Instructions

These instructions perform a logic operation on the A or B accumulator and a memory value or imme
value, or on the CCR and an immediate value. A summary of the boolean logic instructions is give
Table 4-10 .

4.3.9  Clear, Complement, and Negate Instructions

These instructions perform binary operations on values in an accumulator or in memory. Clear oper
clear the value, complement operations replace the value with its one’s complement, and negate ope
replace the value with its two’s complement. A summary of the clear, complement and negate instru
is given inTable 4-11 .

Table 4-10  Boolean Logic Instructions

Mnemonic Function Operation

ANDA
AND A with memory
AND A with immediate value

(A) • (M) ⇒ A
(A) • imm ⇒ A

ANDB
AND B with memory
AND B with immediate value

(B) • (M) ⇒ B
(B) • imm ⇒ B

ANDCC AND CCR with immediate value (to clear CCR bits) (CCR) • imm ⇒ CCR

EORA
Exclusive OR A with memory
Exclusive OR A with immediate value

(A) ⊕ (M) ⇒ A
(A) ⊕ imm ⇒ A

EORB
Exclusive OR B with memory
Exclusive OR B with immediate value

(B) ⊕ (M) ⇒ B
(B) ⊕ imm ⇒ B

ORAA
OR A with memory
OR A with immediate value

(A) + (M) ⇒ A
(A) + imm ⇒ A

ORAB
OR B with memory
OR B with immediate value

(B) + (M) ⇒ B
(B) + imm ⇒ B

ORCC OR CCR with immediate value (to set CCR bits) (CCR) + imm ⇒ CCR

Table 4-11  Clear, Complement, and Negate Instructions

Mnemonic Function Operation
CLC Clear C bit in CCR 0 ⇒ C

CLI Clear I bit in CCR 0 ⇒ I

CLR Clear memory $00 ⇒ M

CLRA Clear A $00 ⇒ A

CLRB Clear B $00 ⇒ B

CLV Clear V bit in CCR 0 ⇒ V

COM One’s complement memory $FF – (M) ⇒ M or (M) ⇒ M

COMA One’s complement A $FF – (A) ⇒ A or (A) ⇒ A

COMB One’s complement B $FF – (B) ⇒ B or (B) ⇒ B

NEG Two’s complement memory $00 – (M) ⇒ M or (M) + 1 ⇒ M

NEGA Two’s complement A $00 – (A) ⇒ A or (A) + 1 ⇒ A

NEGB Two’s complement B $00 – (B) ⇒ B or (B) + 1 ⇒ B
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4.3.10  Multiply and Divide Instructions

The multiply instructions perform signed and unsigned, 8-bit and 16-bit multiplication. An 8-bit
multiplication gives a 16-bit product. A 16-bit multiplication gives a 32-bit product.

An integer divide or fractional divide instruction has a 16-bit dividend, divisor, quotient, and remain
Extended divide instructions use a 32-bit dividend and a 16-bit divisor to produce a 16-bit quotient
16-bit remainder.

A summary of the multiply and divide instructions is given inTable 4-12 .

4.3.11  Bit Test and Bit Manipulation Instructions

These operations use a mask value to test or change the value of individual bits in an accumulato
memory. BITA and BITB provide a convenient means of testing bits without altering the value of e
operand. A summary of the bit test and bit manipulation instructions is given inTable 4-13 .

Table 4-12  Multiplication and Division Instructions

Mnemonic Function Operation
EMUL 16 by 16 multiply (unsigned) (Y) × (D) ⇒ Y:D

EMULS 16 by 16 multiply (signed) (Y) × (D) ⇒ Y:D

MUL 8 by 8 multiply (unsigned) (A) × (B) ⇒ A:B

EDIV 32 by 16 divide (unsigned) (Y):(D) ÷ (X), quotient ⇒ Y, remainder ⇒ D

EDIVS 32 by 16 divide (signed) (Y):(D) ÷ (X), quotient ⇒ Y, remainder ⇒ D

FDIV 16 by 16 fractional divide (unsigned) (D) ÷ (X) ⇒ X, remainder ⇒ D

IDIV 16 by 16 integer divide (unsigned) (D) ÷ (X) ⇒ X, remainder ⇒ D

IDIVS 16 by 16 integer divide (signed) (D) ÷ (X) ⇒ X, remainder ⇒ D

Table 4-13  Bit Test and Bit Manipulation Instructions

Mnemonic Function Operation
BCLR Clear bit(s) in memory (M) • mask byte ⇒ M

BITA Bit test A (A) • (M)

BITB Bit test B (B) • (M)

BSET Set bits in memory (M) + mask byte ⇒ M
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4.3.12  Shift and Rotate Instructions

There are shifts and rotates for accumulators and memory bytes. For multiple-byte operations, all
and rotates pass the shifted-out bit through the carry bit, C. Because logical and arithmetic left sh
identical, there are no separate logical left shift operations. LSL mnemonics are assembled as AS
operations. A summary of the shift and rotate instructions is given inTable 4-14 .

Table 4-14  Shift and Rotate Instructions

Mnemonic Function Operation
LSL
LSLA
LSLB

Logic shift left memory
Logic shift left A
Logic shift left B

LSLD Logic shift left D

LSR
LSRA
LSRB

Logic shift right memory
Logic shift right A
Logic shift right B

LSRD Logic shift right D

ASL
ASLA
ASLB

Arithmetic shift left memory
Arithmetic shift left A
Arithmetic shift left B

ASLD Arithmetic shift left D

ASR
ASRA
ASRB

Arithmetic shift right memory
Arithmetic shift right A
Arithmetic shift right B

ROL
ROLA
ROLB

Rotate left memory
Rotate left A
Rotate left B

ROR
RORA
RORB

Rotate right memory
Rotate right A
Rotate right B

C
0

7 0

C
0

7 0A B70

C
0

7 0

C7 0A B70
0

C
0

7 0

C
0

7 0A B70

C7 0

C 7 0

C70
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4.3.13  Fuzzy Logic Instructions

The instruction set supports efficient processing of fuzzy logic operations. A summary of the fuzzy
instructions is given inTable 4-15 .

4.3.14  Maximum and Minimum Instructions

4.3.14.1  Fuzzy Logic Membership Instruction

The MEM instruction is used during the fuzzification process. During fuzzification, current system in
values are compared to stored input membership functions to determine the degree to which each
each system input is true. This is accomplished by finding the y value for the current input on a trape
membership function for each label of each system input. The MEM instruction performs this calcul
for one label of one system input. To perform the complete fuzzification task for a system, several M
instructions must be executed, usually in a program loop structure.

Table 4-15  Fuzzy Logic Instructions

Mnemonic Function Operation

MEM
Membership
evaluation

µ (grade) ⇒ M(Y), (X) + 4 ⇒ X, (Y) + 1 ⇒ Y, A unchanged
If (A) < P1 or (A) > P2, then µ = 0, else µ = MIN [((A) – P1) × S1, (P2 – (A)) × S2, $FF]

A contains current crisp input value.
X points to 4-byte data structure describing trapezoidal membership function as base
intercept points and slopes (P1, P2, S1, S2).
Y points to fuzzy input (RAM location).

REV
MIN-MAX
rule
evaluation

Find smallest rule input (MIN).
Store to rule outputs unless fuzzy output is larger (MAX). Rules are unweighted.
Each rule input is 8-bit offset from base address in Y.
Each rule output is 8-bit offset from base address in Y.
$FE separates rule inputs from rule outputs. $FF terminates rule list.
REV can be interrupted.

REVW

Weighted
MIN-MAX
rule
evaluation

Find smallest rule input (MIN). Multiply by rule-weighting factor (optional).
Store to rule outputs unless fuzzy output is larger (MAX).
Each rule input is 16-bit address of a fuzzy input.
Each rule output is 16-bit address of fuzzy output.
Address $FFFE separates rule inputs from rule outputs. $FFFF terminates rule list.
Weights are 8-bit values in separate table.
REVW can be interrupted.

WAV
Weighted
average
calculation

Calculate numerator (sum of products) and denominator (sum of weights).

Put results in correct CPU registers for EDIV immediately after WAV.

wavr

Return to
interrupted
WAV
instruction

Recover intermediate results from stack rather than initializing to zero.

SiFi
i 1=

B

∑ Y:D⇒

Fi
i 1=

B

∑ X⇒
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4.3.14.2  Fuzzy Logic Rule Evaluation Instructions

The REV and REVW instructions perform MIN-MAX rule evaluations that are central elements of a fu
logic inference program. Fuzzy input values are processed using a list of rules from the knowledg
to produce a list of fuzzy outputs. The REV instruction treats all rules as equally important. The R
instruction allows each rule to have a separate weighting factor. REV and REVW also differ in the
rules are encoded into the knowledge base.

Because they require a number of cycles to execute, rule evaluation instructions can be interrupted
the interrupt has been serviced, instruction execution resumes at the point the interrupt occurred.

4.3.14.3  Fuzzy Logic Averaging Instruction

The WAV instruction calculates weighted averages. In order to be usable, the fuzzy outputs produc
rule evaluation must be defuzzified to produce a single output value which represents the combined
of all of the fuzzy outputs. Fuzzy outputs correspond to the labels of a system output and each is d
by a membership function in the knowledge base. The CPU typically uses singletons for output
membership functions rather than the trapezoidal shapes used for inputs. As with inputs, the x-ax
represents the range of possible values for a system output. Singleton membership functions consis
x-axis position for a label of the system output. Fuzzy outputs correspond to the y-axis height of th
corresponding output membership function. The WAV instruction calculates the numerator and
denominator sums for a weighted average of the fuzzy outputs.

Because WAV requires a number of cycles to execute, it can be interrupted. The wavr pseudoinstr
causes execution to resume at the point where it was interrupted.

These instructions make comparisons between an accumulator and a memory location. They can
for linear programming operations such as Simplex-method optimization or for fuzzification.

MAX and MIN instructions use accumulator A to perform 8-bit comparisons, while EMAX and EM
instructions use accumulator D to perform 16-bit comparisons. The result (maximum or minimum v
can be stored in the accumulator or in the memory location. A summary of the minimum and max
instructions is given inTable 4-16 .

Table 4-16  Minimum and Maximum Instructions

Mnemonic Function Operation
EMIND Put smaller of two unsigned 16-bit values in D MIN [(D), (M):(M + 1)] ⇒ D

EMINM Put smaller of two unsigned 16-bit values in memory MIN [(D), (M):(M + 1)] ⇒ M:M + 1

MINA Put smaller of two unsigned 8-bit values in A MIN [(A), (M)] ⇒ A

MINM Put smaller of two unsigned 8-bit values in memory MIN [(A), (M)] ⇒ M

EMAXD Put larger of two unsigned 16-bit values in D MAX [(D), (M):(M + 1)] ⇒ D

EMAXM Put larger of two unsigned 16-bit values in memory MAX [(D), (M):(M + 1)] ⇒ M:M + 1

MAXA Put larger of two unsigned 8-bit values in A MAX [(A), (M)] ⇒ A

MAXM Put larger of two unsigned 8-bit values in memory MAX[(A), (M)] ⇒ M
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4.3.15  Multiply and Accumulate Instruction

The EMACS instruction multiplies two 16-bit operands stored in memory and accumulates the 32
result in a third memory location. EMACS can be used to implement simple digital filters and
defuzzification routines that use 16-bit operands. The WAV instruction incorporates an 8-bit to 16
multiply and accumulate operation that obtains a numerator for the weighted average calculation.
EMACS instruction can automate this portion of the averaging operation when 16-bit operands are
A summary of the multiply and accumulate instructions is given inTable 4-17 .

4.3.16  Table Interpolation Instructions

The TBL and ETBL instructions interpolate values from tables stored in memory. Any function tha
be represented as a series of linear equations can be represented by a table. Interpolation can be
many purposes, including tabular fuzzy logic membership functions. TBL uses 8-bit table entries a
returns an 8-bit result; ETBL uses 16-bit table entries and returns a 16-bit result. Indexed addressing
provide flexibility in structuring tables.

Consider each of the successive values stored in a table as y-values for the endpoint of a line segme
value in the B accumulator before instruction execution begins represents change in x from the beg
of the line segment to the lookup point divided by total change in x from the beginning to the end 
line segment. B is treated as an 8-bit binary fraction with radix point left of the MSB, so each line seg
is effectively divided into 256 smaller segments. During instruction execution, the change in y betw
the beginning and end of the segment (a signed byte for TBL or a signed word for ETBL) is multiplie
the value in B to obtain an intermediate delta-y term. The result (stored in the A accumulator by TB
the D accumulator by ETBL) is the y-value of the beginning point plus the signed intermediate del
value.

A summary of the table interpolation instructions is given inTable 4-18 .

Table 4-17  Multiply and Accumulate Instruction

Mnemonic Function Operation

EMACS

Multiply and
accumulate
(signed)
16 × 16 bit ⇒ 32 bit

(MX):(MX + 1) × (MY):MY + 1) + (M):(M + 1):(M + 2):(M + 3) ⇒ M:M + 1:M + 2:M + 3

Table 4-18  Table Interpolation Instructions

Mnemonic Function Operation

ETBL
16-bit table lookup and interpolate
(indirect addressing not allowed)

(M):(M + 1) + [(B) × [(M + 2):(M + 3) – (M):(M + 1)]] ⇒ D
Initialize B, and index before ETBL.
Effective address points to the first 16-bit table entry (M):(M + 1)
B is fractional part of lookup value

TBL
8-bit table lookup and interpolate
(indirect addressing not allowed)

(M) + [(B) × [(M + 1) – (M)]] ⇒ A
Initialize B, and index before TBL.
Effective address points to the first 8-bit table entry (M)
B is fractional part of lookup value.
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4.3.17  Branch Instructions

A branch instruction causes a program sequence change when specific conditions exist. There ar
types of branch instructions: short, long, and bit-conditional.

Branch instructions can also be classified by the type of condition that must be satisfied in order f
branch to be taken:

• Unary branch instructions are always executed

• Simple branch instructions are executed when a specific bit in the condition code register is
specific state as a result of a previous operation

• Unsigned branch instructions are executed when a comparison or test of unsigned quantities
in a specific combination of bit states in the condition code register

• Signed branch instructions are executed when a comparison or test of signed quantities resu
specific combination of bit states in the condition code register

Some branch instructions belong to more than one type.

4.3.17.1  Short Branch Instructions

When a specified condition is met, a short branch instruction adds a signed 8-bit offset to the value
program counter. Program execution continues at the new address. The numeric range of short b
offset values is $80 (–128) to $7F (127) from the address of the next memory location after the offset
A summary of the short branch instructions is given inTable 4-19 .

Table 4-19  Short Branch Instructions

Mnemonic Type Function Condition Equation
BRA

Unary
Branch always 1 = 1

BRN Branch never 1 = 0

BCC

Simple

Branch if carry clear C = 0

BCS Branch if carry set C = 1

BEQ Branch if equal Z = 1

BMI Branch if minus N = 1

BNE Branch if not equal Z = 0

BPL Branch if plus N = 0

BVC Branch if overflow clear V = 0

BVS Branch if overflow set V = 1

BHI

Unsigned

Branch if higher (R > M) C + Z = 0

BHS Branch if higher or same (R ≥ M) C = 0

BLO Branch if lower (R < M) C = 1

BLS Branch if lower or same (R ≤ M) C + Z = 1

BGE

Signed

Branch if greater than or equal (R ≥ M) N ⊕ V = 0

BGT Branch if greater than (R > M) Z + (N ⊕ V) = 0

BLE Branch if less than or equal (R ≤ M) Z + (N ⊕ V) = 1

BLT Branch if less than (R < M) N ⊕ V = 1
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4.3.17.2  Long Branch Instructions

When a specified condition is met, a long branch instruction adds a signed 16-bit offset to the value
program counter. Program execution continues at the new address. Long branches are used whe
displacements between decision-making steps are necessary. The numeric range of long branch 
values is $8000 (–32,768) to $7FFF (32,767) from the address of the next memory location after the
value. This permits branching from any location in the standard 64K byte address map to any oth
location in the map. A summary of the long branch instructions is given inTable 4-20 .

4.3.17.3  Bit Condition Branch Instructions

Bit condition branches are taken when bits in a memory byte are in a specific state. A mask operand
to test the location. If all bits in that location that correspond to ones in the mask are set (BRSET) or c
(BRCLR), the branch is taken. The numeric range of 8-bit offset values is $80 (–128) to $7F (127) from
the address of the next memory location after the offset value. A summary of the bit condition bra
instructions is given inTable 4-21 .

Table 4-20  Long Branch Instructions

Mnemonic Class Function Condition Equation
LBRA

Unary
Long branch always 1 = 1

LBRN Long branch never 1 = 0

LBCC

Simple

Long branch if carry clear C = 0

LBCS Long branch if carry set C = 1

LBEQ Long branch if equal Z = 1

LBMI Long branch if minus N = 1

LBNE Long branch if not equal Z = 0

LBPL Long branch if plus N = 0

LBVC Long branch if overflow clear V = 0

LBVS Long branch if overflow set V = 1

LBHI

Unsigned

Long branch if higher (R > M) C + Z = 0

LBHS Long branch if higher or same (R ≥ M) C = 0

LBLO Long branch if lower (R < M) Z = 1

LBLS Long branch if lower or same (R ≤ M) C + Z = 1

LBGE

Signed

Long branch if greater than or equal (R ≥ M) N ⊕ V = 0

LBGT Long branch if greater than (R > M) Z + (N ⊕ V) = 0

LBLE Long branch if less than or equal (R ≤ M) Z + (N ⊕ V) = 1

LBLT Long branch if less than (R < M) N ⊕ V = 1

Table 4-21  Bit Condition Branch Instructions

Mnemonic Function Condition Equation

BRCLR Branch if selected bits clear (M) • (mm) = 0

BRSET Branch if selected bits set (M) • (mm) = 0
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4.3.17.4  Loop Primitive Instructions

Loop primitive instructions test a counter value in a CPU register (A, B, D, X, Y, or SP) for a zero 
nonzero value as a branch condition. There are predecrement, preincrement and test-only versions
instructions. The numeric range of 9-bit offset values is –256 to +255 from the address of the next me
location after the offset value. A summary of the loop primitive instructions is given inTable 4-22 .

4.3.18  Jump and Subroutine Instructions

Jump instructions cause immediate changes in program sequence. The JMP instruction loads the P
an address in the 64K byte memory map, and program execution continues at that address. The 
can be provided as an absolute 16-bit address or determined by various forms of indexed addres

Subroutine instructions transfer control to a code segment that performs a particular task. A short b
to subroutine (BSR), a jump to subroutine (JSR), or an expanded-memory call (CALL) can be use
initiate subroutines. There is no long branch to subroutine instruction (LBSR), but a PC-relative JS
performs the same function. A return address is stacked, then execution begins at the subroutine a
Subroutines in the normal 64K byte address space are terminated with an RTS instruction. RTS un
the return address so that execution resumes with the instruction after BSR or JSR.

The CALL instruction is intended for use with expanded memory. CALL stacks the value in the PPA
register and the return address, then writes a new value to PPAGE to select the memory page wh
subroutine resides. The page value is an immediate operand in all addressing modes except inde
indirect modes; in these modes, an operand points to locations in memory where the new page va
subroutine address are stored. The RTC instruction ends subroutines in expanded memory. RTC u
the PPAGE value and the return address so that execution resumes with the next instruction after
For software compatibility, CALL and RTC operate correctly on devices that do not have expande
addressing capability.

Table 4-22  Loop Primitive Instructions

Mnemonic Function Operation

DBEQ
Decrement counter
and branch if zero

(counter) – 1 ⇒ counter
If (counter) = 0, then branch, else continue to next instruction

DBNE
Decrement counter
and branch if not zero

(counter) – 1 ⇒ counter
If (counter) ≠ 0, then branch, else continue to next instruction

IBEQ
Increment counter
and branch if zero

(counter) + 1 ⇒ counter
If (counter) = 0, then branch, else continue to next instruction

IBNE
Increment counter
and branch if not zero

(counter) + 1 ⇒ counter
If (counter) ≠ 0, then branch, else continue to next instruction

TBEQ
Test counter
and branch if zero

If (counter) = 0, then branch, else continue to next instruction

TBNE
Test counter
and branch if not zero

If (counter) ≠ 0, then branch, else continue to next instruction
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A summary of the jump and subroutine instructions is given inTable 4-23 .

4.3.19  Interrupt Instructions

Interrupt instructions handle transfer of control to and from interrupt service routines.

The SWI instruction initiates a software interrupt. It stacks the return address and the values in th
registers. Then execution begins at the address pointed to by the SWI vector.

The SWI instruction causes an interrupt without an interrupt request. The global mask bits I and X
CCR do not inhibit SWI. SWI sets the I bit, inhibiting maskable interrupts until the I bit is cleared.

The TRAP instruction The CPU uses the software interrupt for unimplemented opcode trapping. The
opcodes in all 256 positions in the page 1 opcode map, but only 54 of the 256 positions on page 2
opcode map are used. If the CPU attempts to execute one of the unimplemented opcodes on pag
opcode trap interrupt occurs. Traps are essentially interrupts that share the $FFF8:$FFF9 interrupt

The RTI instruction is used to terminate all exception handlers, including interrupt service routines
first restores the CCR, B:A, X, Y, and the return address from the stack. If no other interrupt is pe
normal execution resumes with the instruction following the last instruction that executed prior to
interrupt. A summary of the interrupt instructions is given inTable 4-24 .

Table 4-23  Jump and Subroutine Instructions

Mnemonic Function Operation

BSR Branch to subroutine (SP) – $0002 ⇒ SP, RTNH:RTNL ⇒ MSP:MSP + 1, subroutine address ⇒ PC

CALL
Call subroutine
in expanded memory

(SP) – $0002 ⇒ SP, RTNH:RTNL ⇒ MSP:MSP + 1,(SP) – $0001 ⇒ SP,
(PPAGE) ⇒ MSP, page ⇒ PPAGE, subroutine address ⇒ PC

JMP Jump Subroutine address ⇒ PC

JSR Jump to subroutine (SP) – $0002 ⇒ SP, RTNH:RTNL ⇒ MSP:MSP + 1, subroutine address ⇒ PC

RTS Return from subroutine
(MSP) ⇒ PPAGE, (SP) + $0001 ⇒ SP, (MSP):(MSP + 1) ⇒ PCH:PCL,
(SP) + $0002 ⇒ SP

RTC Return from call (MSP):(MSP + 1) ⇒ PCH:PCL, (SP) + $0002 ⇒ SP

Table 4-24  Interrupt Instructions

Mnemonic Function Operation

RTI Return from interrupt

(MSP) ⇒ CCR, (SP) + $0001 ⇒ SP
(MSP):(MSP + 1) ⇒ B:A, (SP) + $0002 ⇒ SP
(MSP):(MSP + 1) ⇒ XH:XL, (SP) + $0004 ⇒ SP
(MSP):(MSP + 1) ⇒ PCH:PCL, (SP) + $0002 ⇒ SP
(MSP):(MSP + 1) ⇒ YH:YL, (SP) + $0004 ⇒ SP

SWI

Software interrupt

(SP) – $0002 ⇒ SP, RTNH:RTNL ⇒ MSP:MSP + 1
(SP) – $0002 ⇒ SP, (YH):(YL) ⇒ MSP:MSP + 1
(SP) – $0002 ⇒ SP, (XH):(XL) ⇒ MSP:MSP + 1
(SP) – $0002 ⇒ SP, (B):(A) ⇒ MSP:MSP + 1
(SP) – $0001 ⇒ SP, (CCR) ⇒ MSP, 1 ⇒ I

TRAP
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4.3.20  Index Manipulation Instructions

Index manipulation instructions perform 8-bit and 16-bit operations on CPU registers or memory. 
summary of the index manipulation instructions is given inTable 4-25 .

Table 4-25  Index Manipulation Instructions

Mnemonic Function Operation
ABX Add B to X (B) + (X) ⇒ X

ABY Add B to Y (B) + (Y) ⇒ Y

CPS Compare SP to memory (SP) – (M):(M + 1)

CPX Compare X to memory (X) – (M):(M + 1)

CPY Compare Y to memory (Y) – (M):(M + 1)

LDS Load SP from memory (M):(M + 1) ⇒ SP

LDX Load X from memory (M):(M + 1) ⇒ X

LDY Load Y from memory (M):(M + 1) ⇒ Y

LEAS Load effective address into SP Effective address ⇒ SP

LEAX Load effective address into X Effective address ⇒ X

LEAY Load effective address into Y Effective address ⇒ Y

STS Store SP in memory (SP) ⇒ M:M + 1

STX Store X in memory (X) ⇒ M:M + 1

STY Store Y in memory (Y) ⇒ M:M + 1

TFR Transfer registers (A, B, CCR, D, X, Y, or SP) ⇒ A, B, CCR, D, X, Y, or SP

TSX Transfer SP to X (SP) ⇒ X

TSY Transfer SP to Y (SP) ⇒ Y

TXS Transfer X to SP (X) ⇒ SP

TYS Transfer Y to SP (Y) ⇒ SP

EXG Exchange registers (A, B, CCR, D, X, Y, or SP) ⇔ (A, B, CCR, D, X, Y, or SP)

XGDX Exchange D with X (D) ⇔ (X)

XGDY Exchange D with Y (D) ⇔ (Y)
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4.3.21  Stacking Instructions

There are two types of stacking instructions:

• Stack pointer manipulation

• Stack operation (saving and retrieving CPU register contents)

A summary of the stacking instructions is given inTable 4-26 .

Table 4-26  Stacking Instructions

Mnemonic Type Function Operation
CPS

Stack pointer
manipulation

Compare SP to memory (SP) – (M):(M + 1)

DES Decrement SP (SP) – $0001 ⇒ SP

INS Increment SP (SP) + $0001 ⇒ SP

LDS Load SP (M):(M + 1) ⇒ SP

LEAS Load effective address into SP Effective address ⇒ SP

STS Store SP (SP) ⇒ M:M + 1

TSX Transfer SP to X (SP) ⇒ X

TSY Transfer SP to Y (SP) ⇒ Y

TXS Transfer X to SP (X) ⇒ SP

TYS Transfer Y to SP (Y) ⇒ SP

PSHA

Stack operation

Push A (SP) – $0001 ⇒ SP, (A) ⇒ MSP

PSHB Push B (SP) – $0001 ⇒ SP, (B) ⇒ MSP

PSHC Push CCR (SP) – $0001 ⇒ SP, (CCR) ⇒ MSP

PSHD Push D (SP) – $0002 ⇒ SP, (A):(B) ⇒ MSP:MSP + 1

PSHX Push X (SP) – $0002 ⇒ SP, (X) ⇒ MSP:MSP + 1

PSHY Push Y (SP) – $0002 ⇒ SP, (Y) ⇒ MSP:MSP + 1

PULA Pull A (MSP) ⇒ A, (SP) + 1 ⇒ SP

PULB Pull B (MSP) ⇒ B, (SP) + 1 ⇒ SP

PULC Pull CCR (MSP) ⇒ CCR, (SP) + 1 ⇒ SP

PULD Pull D (MSP):(MSP + 1) ⇒ A:B, (SP) + 2 ⇒ SP

PULX Pull X (MSP):(MSP + 1) ⇒ X, (SP) + 2 ⇒ SP

PULY Pull Y (MSP):(MSP + 1) ⇒ Y, (SP) + 2 ⇒ SP
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4.3.22  Load Effective Address Instructions

Load effective address instructions add a constant or the value in an accumulator to the value in an
register, the stack pointer, or the program counter. The constant can be a 5-, 8-, or 16-bit value. T
accumulator can be A, B, or D. A summary of the load effective address instructions is given inTable
4-27.

4.3.23  Condition Code Instructions

A summary of the condition code instructions is given inTable 4-28 .

Table 4-27  Load Effective Address Instructions

Mnemonic Function Operation

LEAS Load effective address into SP
(X), (Y), (SP), or (PC) ± constant ⇒ SP
(X, (Y), (SP), or (PC) + (A, B, or D) ⇒ SP

LEAX Load effective address into X
(X), (Y), (SP), or (PC) ± constant ⇒ X
(X), (Y), (SP), or (PC) + (A, B, or D) ⇒ X

LEAY Load effective address into Y
(X), (Y), (SP), or (PC) ± constant ⇒ Y
(R) + (A), (B), or (D) ⇒ Y

Table 4-28  Condition Code Instructions

Mnemonic Function Operation
ANDCC Logical AND CCR with immediate value (CCR) • imm ⇒ CCR

CLC Clear C bit 0 ⇒ C

CLI Clear I bit 0 ⇒ I

CLV Clear V bit 0 ⇒ V

ORCC Logical OR CCR with immediate value (CCR) + imm ⇒ CCR

PSHC Push CCR onto stack (SP) – $0001 ⇒ SP, (CCR) ⇒ MSP

PULC Pull CCR from stack (MSP) ⇒ CCR, (SP) + $0001 ⇒ SP

SEC Set C bit 1 ⇒ C

SEI Set I bit 1 ⇒ I

SEV Set V bit 1 ⇒ V

TAP Transfer A to CCR (A) ⇒ CCR

TPA Transfer CCR to A (CCR) ⇒ A
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4.3.24  STOP and WAI Instructions

The STOP and WAI instructions put the MCU in a standby state to reduce power consumption.

The STOP instruction stacks a return address and the values in the CPU registers, then stops all 
clocks, halting program execution. A reset or an external interrupt request recovers the stacked valu
restarts the system clocks, and program execution resumes.

The WAI instruction stacks a return address and the values in the CPU registers, then stops the C
clocks, halting program execution. A reset or any enabled interrupt request recovers the stacked val
restarts the CPU clocks, and program execution resumes.

Although recovery from STOP or WAI takes the same number of clock cycles, restarting after STO
requires extra time for the oscillator to reach operating speed.

A summary of the STOP and WAI instructions is given inTable 4-29 .

4.3.25  Background Mode and Null Operation Instructions

Executing the BGND instruction when BDM is enabled puts the MCU in background debug mode
system development and debugging.

Null operations are often used to replace other instructions during software debugging. Replacing
conditional branch instructions with BRN, for instance, permits testing a decision-making routine wit
actually taking the branches.

A summary of the background mode and null operation instructions is given inTable 4-30 .

Table 4-29  STOP and WAI Instructions

Mnemonic Function Operation

STOP Stop

(SP) – $0002 ⇒ SP, RTNH:RTNL ⇒ MSP:MSP + 1
(SP) – $0002 ⇒ SP, (YH):(YL) ⇒ MSP:MSP + 1
(SP) – $0002 ⇒ SP, (XH):(XL) ⇒ MSP:MSP + 1
(SP) – $0002 ⇒ SP, (B):(A) ⇒ MSP:MSP + 1
(SP) – $0001 ⇒ SP, (CCR) ⇒ MSP
Stop all clocks

WAI Wait for interrupt

(SP) – $0002 ⇒ SP, RTNH:RTNL ⇒ MSP:MSP + 1
(SP) – $0002 ⇒ SP, (YH):(YL) ⇒ MSP:MSP + 1
(SP) – $0002 ⇒ SP, (XH):(XL) ⇒ MSP:MSP + 1
(SP) – $0002 ⇒ SP, (B):(A) ⇒ MSP:MSP + 1
(SP) – $0001 ⇒ SP, (CCR) ⇒ MSP
Stop CPU clocks

Table 4-30  Background Mode and Null Operation Instructions

Mnemonic Function Operation
BGND Enter background debug mode If BDM enabled, enter BDM, else resume normal processing

BRN Branch never Does not branch

LBRN Long branch never Does not branch

NOP Null operation Does nothing
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4.4  High-Level Language Support

Many programmers are turning to high-level languages such as C as an alternative to coding in n
assembly languages. High-level language (HLL) programming can improve productivity and produ
code that is more easily maintained than assembly language programs. Historically, the most seri
drawback to the use of HLL in microcontrollers has been the relatively large size of programs writ
HLL. Larger program memory space size requirements translate into increased system costs.

Motorola solicited the cooperation of third-party software developers to assure that the HCS12 instr
set would meet the needs of a more efficient generation of compilers. Several features of the HCS1
specifically designed to improve the efficiency of compiled HLL, and thus minimize cost.

This subsection identifies HCS12 instructions and addressing modes that provide improved suppo
high-level language. C language examples are provided to demonstrate how these features supp
efficient HLL structures and concepts. Since the HCS12 instruction set is a superset of the M68H
instruction set, some of the discussions use the M68HC11 as a basis for comparison.

4.4.1  Data Types

The HCS12 CPU supports the bit-sized data type with bit-manipulation instructions that are availa
extended, direct, and indexed variations. The char data type is a simple 8-bit value that is commonl
to specify variables in a small microcontroller system because it requires less memory space than a
integer (provided the variable has a range small enough to fit into eight bits). The 16-bit HCS12 CP
easily handle 16-bit integer types and the set of conditional branches, including long branches, al
branching based on signed or unsigned arithmetic results. Some of the higher math functions allo
division and multiplication involving 32-bit values, although it is somewhat less common to use such
values in a microcontroller system.

Special sign-extension instructions allow easy type-casting from smaller data types to larger ones, s
from char to integer. This sign extension is automatically performed when an 8-bit value is transferr
a 16-bit register.

4.4.2  Parameters and Variables

High-level languages make extensive use of the stack, both to pass variables and for temporary an
storage. It follows that there should be easy ways to push and pull all CPU registers, that stack
pointer-based indexing should be allowed, and that direct arithmetic manipulation of the stack poi
value should be allowed. The HCS12 instruction set provides for all of these needs with improved ind
addressing, the addition of an LEAS instruction, and the addition of push and pull instructions for 
accumulator and the CCR.

4.4.2.1  Register Pushes and Pulls

The M68HC11 has push and pull instructions for A, B, X, and Y, but requires separate 8-bit pushe
pulls of accumulators A and B to stack or unstack the 16-bit D accumulator (the concatenated combi
A:B). The PSHD and PULD instructions allow directly stacking the D accumulator in the expected 1
order.
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Adding PSHC and PULC improved orthogonality by completing the set of stacking instructions so
any of the CPU registers can be pushed or pulled. These instructions are also useful for preserving th
value during a function call subroutine.

4.4.2.2  Allocating and Deallocating Stack Space

The LEAS instruction can be used to allocate or deallocate space on the stack for temporary varia

LEAS –10,S ;Allocate space for 5 16-bit integers

LEAS 10,S ;Deallocate space for 5 16-bit ints

The (de)allocation can even be combined with a register push or pull as in the following example:

LDX 8,S+ ;Load return value and deallocate

X is loaded with the 16-bit integer value at the top of the stack, and the stack pointer is adjusted up by
to deallocate space for eight bytes’ worth of temporary storage. Postincrement indexed addressing
in this example, but all four combinations of pre/post increment/decrement are available (offsets fro
to +8 inclusive, from X, Y, or SP). This form of indexing can often be used to get an index or stack po
adjustment for free during an indexed operation: the instruction requires no more code space or cycl
a zero-offset indexed instruction.

4.4.2.3  Frame Pointer

In the C language, it is common to have a frame pointer in addition to the CPU stack pointer. The
is an area of memory within the system stack which is used for parameters and local storage of va
used within a function subroutine. The following is a description of how a frame pointer can be set u
used.

First, parameters (typically values in CPU registers) are pushed onto the system stack prior to using
or CALL to get to the function subroutine. At the beginning of the called subroutine, the frame point
the calling program is pushed onto the stack. Typically, an index register, such as X, is used as the
pointer, so a PSHX instruction would save the frame pointer from the calling program.

Next, the called subroutine establishes a new frame pointer by executing a TFR S,X. Space is alloca
local variables by executing an LEAS –n,S, where n is the number of bytes needed for local varia

Notice that parameters are at positive offsets from the frame pointer while locals are at negative o
In the M68HC11, the indexed addressing mode uses only positive offsets, so the frame pointer al
points to the lowest address of any parameter or local. After the function subroutine finishes, calcul
are required to restore the stack pointer to the midframe position between the locals and the para
before returning to the calling program. The HCS12 CPU requires only the execution of TFR X,S 
deallocate the local storage and return.

The concept of a frame pointer is supported in the HCS12 through a combination of improved ind
addressing, universal transfer/exchange, and the LEA instruction. These instructions work togethe
achieve more efficient handling of frame pointers. It is important to consider the complete instructio
as a complex system with subtle interrelationships rather than simply examining individual instruc
when trying to improve an instruction set. Adding or removing a single instruction can have unexp
consequences.
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4.4.3  Increment and Decrement Operators

In C, the notation+ + i or i – – is often used to form loop counters. Within limited constraints, the HCS
loop primitives can speed up the loop-count-and-branch function.

The HCS12 includes a set of six basic loop-control instructions that decrement, increment, or test
loop-count register and then branch if the register is either equal to zero or not equal to zero. The
loop-count register can be A, B, D, X, Y, or SP. A or B could be used if the loop count fits in an 8-bit c
variable; the other choices are all 16-bit registers. The relative offset for the loop branch is a 9-bit s
value, so these instructions can be used with loops as long as 256 bytes.

In some cases, the pre- or postincrement operation can be combined with an indexed instruction 
eliminate the cost of the increment operation. This is typically done by postcompile optimization bec
the indexed instruction that could absorb the increment/decrement operation may not be apparen
compile time.

4.4.4  Higher Math Functions

In the HCS12 CPU, subtle characteristics of higher math operations such as IDIVS and EMUL are
arranged so a compiler can handle inputs and outputs more efficiently.

The most apparent case is the IDIVS instruction, which divides two 16-bit signed numbers to prod
16-bit result. While the same function can be accomplished with the EDIVS instruction (a 32 by 16
divide), doing so is much less efficient because extra steps are required to prepare inputs to the E
and because EDIVS uses the Y index register. EDIVS uses a 32-bit signed numerator and the C co
would typically want to use a 16-bit value (the size of an integer data type). The 16-bit C value would
to be sign-extended into the upper 16-bits of the 32-bit EDIVS numerator before the divide operat

Operand size is also a potential problem in the extended multiply operations but the difficulty can 
minimized by putting the results in CPU registers. Having higher-precision math instructions is no
necessarily a requirement for supporting high-level language because these functions can be perfo
library functions. However, if an application requires these functions, the code is much more effici
the CPU can use native instructions instead of relatively large, slow routines.

4.4.5  Conditional If Constructs

In the HCS12 instruction set, most arithmetic and data manipulation instructions automatically upda
condition code register, unlike other architectures that only change condition codes during a few sp
compare instructions. The HCS12 includes branch instructions that perform conditional branching
on the state of the indicators in the condition code register. Short branches use a single byte-relative
that allows branching to a destination within about±128 locations from the branch. Long branches use
16-bit relative offset that allows conditional branching to any location in the 64K byte map.
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4.4.6  Case and Switch Statements

Case and switch statements (and computed GOTOs) can use PC-relative indexed-indirect addres
determine which path to take. Depending upon the situation, cases can use either the constant of
variation or the accumulator D offset variation of indexed-indirect addressing.

4.4.7  Pointers

The HCS12 supports pointers with direct arithmetic operations on the 16-bit index registers (LEAS
LEAX, and LEAY instructions) and with indexed-indirect addressing modes.

4.4.8  Function Calls

Bank switching is a common way of adapting a CPU with a 16-bit address bus to accommodate mor
64K bytes of program memory space. One of the most significant drawbacks of this technique is t
requirement of masking interrupts while the bank page value is being changed. Another problem 
the physical location of the bank page register can change from one system to another or even du
change to mapping controls by a user program. In these situations, an operating system program
keep track of the physical location of the page register. The HCS12 addresses both of these problem
the uninterruptible CALL and return from call (RTC) instructions.

The CALL instruction is similar to a JSR instruction, except that the programmer supplies a destin
page value as part of the instruction. When CALL executes, the old page value is saved on the st
the new page value is written to the bank page register. Since the CALL instruction is uninterruptible
eliminates the need to separately mask off interrupts during the context switch.

The HCS12 has dedicated signal lines that allow the CPU to access the bank page register without
to use an address in the normal 64K byte address space. This eliminates the need for the program
where the page register is physically located.

The RTC instruction is similar to the RTS instruction, except that RTC uses the byte of information
was saved on the stack by the corresponding CALL instruction to restore the bank page register to
value. A CALL/RTC pair can be used to access any function subroutine on any page. But when the
subroutine is on the current page or in an area of memory that is always visible, it is more efficient to a
it with JSR/RTS instructions.

Push and pull instructions can be used to stack some or all the CPU registers during a function ca
HCS12 CPU can push and pull any of the CPU registers A, B, D, CCR, X, Y, or SP.

4.4.9  Instruction Set Orthogonality

One very helpful aspect of the HCS12 instruction set, orthogonality, is difficult to quantify in terms
direct benefit to an HLL compiler. Orthogonality refers to the regularity of the instruction set. A
completely orthogonal instruction set would allow any instruction to operate in any addressing mo
would have identical code sizes and execution times for similar operations, and would include both s
and unsigned versions of all mathematical instructions. Greater regularity of the instruction set ma
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pecial
possible to implement compilers more efficiently because operation is more consistent, and fewer s
cases must be handled.
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BA
3

3
SUBB

1C0

IM 2
SUBB

3D0

DI 2
SUBB

3/4/6E0

ID 2–4
SUBB

3F0

EX 3

PA
3

3
CMPB

1C1

IM 2
CMPB

3D1

DI 2
CMPB

3/4/6E1

ID 2–4
CMPB

3F1

EX 3

CA
3

3
SBCB

1C2

IM 2
SBCB

3D2

DI 2
SBCB

3/4/6E2

ID 2–4
SBCB

3F2

EX 3

BD
3

3
ADDD

2C3

IM 3
ADDD

3D3

DI 2
ADDD

3/4/6E3

ID 2–4
ADDD

3F3

EX 3

DA
3

3
ANDB

1C4

IM 2
ANDB

3D4

DI 2
ANDB

3/4/6E4

ID 2–4
ANDB

3F4

EX 3

TA
3

3
BITB

1C5

IM 2
BITB

3D5

DI 2
BITB

3/4/6E5

ID 2–4
BITB

3F5

EX 3

AA
3

3
LDAB

1C6

IM 2
LDAB

3D6

DI 2
LDAB

3/4/6E6

ID 2–4
LDAB

3F6

EX 3

/EXG
1

2
CLRB

1C7

IH 1
TSTB

1D7

IH 1
TST

3/4/6E7

ID 2–4
TST

3F7

EX 3

RA
3

3
EORB

1C8

IM 2
EORB

3D8

DI 2
EORB

3/4/6E8

ID 2–4
EORB

3F8

EX 3

CA
3

3
ADCB

1C9

IM 2
ADCB

3D9

DI 2
ADCB

3/4/6E9

ID 2–4
ADCB

3F9

EX 3

AA
3

3
ORAB

1CA

IM 2
ORAB

3DA

DI 2
ORAB

3/4/6EA

ID 2–4
ORAB

3FA

EX 3

DA
3

3
ADDB

1CB

IM 2
ADDB

3DB

DI 2
ADDB

3/4/6EB

ID 2–4
ADDB

3FB

EX 3

PD
3

3
LDD

2CC

IM 3
LDD

3DC

DI 2
LDD

3/4/6EC

ID 2–4
LDD

3FC

EX 3

PY
3

3
LDY

2CD

IM 3
LDY

3DD

DI 2
LDY

3/4/6ED

ID 2–4
LDY

3FD

EX 3

PX
3

3
LDX

2CE

IM 3
LDX

3DE

DI 2
LDX

3/4/6EE

ID 2–4
LDX

3FE

EX 3

PS
3

3
LDS

2CF

IM 3
LDS

3DF

DI 2
LDS

3/4/6EF

ID 2–4
LDS

3FF

EX 3

e
ic

Number of cycles00
BGND

IH

5

Number of bytese 1
4.5  Opcode Map

BGND
500

IH 1
ANDCC

110

IM 2
BRA

320

RL 2
PULX

330

IH 1
NEGA

140

IH 1
NEGB

150

IH 1
NEG

3–660

ID 2–4
NEG

470

EX 3
SUBA

180

IM 2
SUBA

390

DI 2
SUBA

3/4/6A0

ID 2–4
SU

B0

EX

MEM
501

IH 1
EDIV

1111

IH 1
BRN

121

RL 2
PULY

331

IH 1
COMA

141

IH 1
COMB

151

IH 1
COM

3–661

ID 2–4
COM

471

EX 3
CMPA

181

IM 2
CMPA

391

DI 2
CMPA

3/4/6A1

ID 2–4
CM

B1

EX

INY
102

IH 1
MUL

112

IH 1
BHI

3/122

RL 2
PULA

332

IH 1
INCA

142

IH 1
INCB

152

IH 1
INC

3–662

ID 2–4
INC

472

EX 3
SBCA

182

IM 2
SBCA

392

DI 2
SBCA

3/4/6A2

ID 2–4
SB

B2

EX

DEY
103

IH 1
EMUL

313

IH 1
BLS

3/123

RL 2
PULB

333

IH 1
DECA

143

IH 1
DECB

153

IH 1
DEC

3–663

ID 2–4
DEC

473

EX 3
SUBD

283

IM 3
SUBD

393

DI 2
SUBD

3/4/6A3

ID 2–4
SU

B3

EX

loop
304

RL 3
ORCC

114

IM 2
BCC

3/124

RL 2
PSHX

234

IH 1
LSRA

144

IH 1
LSRB

154

IH 1
LSR

3–664

ID 2–4
LSR

474

EX 3
ANDA

184

IM 2
ANDA

394

DI 2
ANDA

3/4/6A4

ID 2–4
AN

B4

EX

JMP
3/4/605

ID 2–4
JSR

4/5/715

ID 2–4
BCS

3/125

RL 2
PSHY

235

IH 1
ROLA

145

IH 1
ROLB

155

IH 1
ROL

3–665

ID 2–4
ROL

475

EX 3
BITA

185

IM 2
BITA

395

DI 2
BITA

3/4/6A5

ID 2–4
BI

B5

EX

JMP
306

EX 3
JSR

416

EX 3
BNE

3/126

RL 2
PSHA

236

IH 1
RORA

146

IH 1
RORB

156

IH 1
ROR

3–666

ID 2–4
ROR

476

EX 3
LDAA

186

IM 2
LDAA

396

DI 2
LDAA

3/4/6A6

ID 2–4
LD

B6

EX

BSR
407

RL 2
JSR

417

DI 2
BEQ

3/127

RL 2
PSHB

237

IH 1
ASRA

147

IH 1
ASRB

157

IH 1
ASR

3–667

ID 2–4
ASR

477

EX 3
CLRA

187

IH 1
TSTA

197

IH 1
NOP

1A7

IH 1
TFR
B7

IH

INX
108

IH 1
page 2

–18

– –
BVC

3/128

RL 2
PULC

338

IH 1
ASLA

148

IH 1
ASLB

158

IH 1
ASL

3–668

ID 2–4
ASL

478

EX 3
EORA

188

IM 2
EORA

398

DI 2
EORA

3/4/6A8

ID 2–4
EO

B8

EX

DEX
109

IH 1
LEAY

219

ID 2–4
BVS

3/129

RL 2
PSHC

239

IH 1
LSRD

149

IH 1
ASLD

159

IH 1
CLR

2–469

ID 2–4
CLR

379

EX 3
ADCA

189

IM 2
ADCA

399

DI 2
ADCA

3/4/6A9

ID 2–4
AD

B9

EX

RTC
70A

IH 1
LEAX

21A

ID 2–4
BPL

3/12A

RL 2
PULD

33A

IH 1
CALL

74A

EX 4
STAA

25A

DI 2
STAA

2–46A

ID 2–4
STAA

37A

EX 3
ORAA

18A

IM 2
ORAA

39A

DI 2
ORAA

3/4/6AA

ID 2–4
OR

BA

EX

RTI
8/110B

IH 1
LEAS

21B

ID 2–4
BMI

3/12B

RL 2
PSHD

23B

IH 1
CALL

7/8/104B

ID 2–5
STAB

25B

DI 2
STAB

2–46B

ID 2–4
STAB

37B

EX 3
ADDA

18B

IM 2
ADDA

39B

DI 2
ADDA

3/4/6AB

ID 2–4
AD

BB

EX

BSET
4/60C

ID 3–5
BSET

41C

EX 4
BGE

3/12C

RL 2
wavr

93C

SP 1
BSET

44C

DI 3
STD

25C

DI 2
STD

2–46C

ID 2–4
STD

37C

EX 3
CPD

28C

IM 3
CPD

39C

DI 2
CPD

3/4/6AC

ID 2–4
C

BC

EX

BCLR
4/60D

ID 3–5
BCLR

41D

EX 4
BLT

3/12D

RL 2
RTS

53D

IH 1
BCLR

44D

DI 3
STY

25D

DI 2
STY

2–46D

ID 2–4
STY

37D

EX 3
CPY

28D

IM 3
CPY

39D

DI 2
CPY

3/4/6AD

ID 2–4
C

BD

EX

BRSET
4–60E

ID 4–6
BRSET

51E

EX 5
BGT

3/12E

RL 2
WAI

7+63E

IH 1
BRSET

44E

DI 4
STX

25E

DI 2
STX

2–46E

ID 2–4
STX

37E

EX 3
CPX

28E

IM 3
CPX

39E

DI 2
CPX

3/4/6AE

ID 2–4
C

BE

EX

BRCLR
4–60F

ID 4–6
BRCLR

51F

EX 5
BLE

3/12F

RL 2
SWI

93F

IH 1
BRCLR

44F

DI 4
STS

25F

DI 2
STS

2–46F

ID 2–4
STS

37F

EX 3
CPS

28F

IM 3
CPS

39F

DI 2
CPS

3/4/6AF

ID 2–4
C

BF

EX

Hex opcod
Mnemon

Address mod

Opcode $04 is for one of the loop primitive instructions DBEQ, DBNE, IBNE, TBEQ, or TBNE.
Address mode abbreviations: DI — direct

EX — extended
ID — indexed

IH — inherent
IM — immediate
RL — relative

SP — special
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98

AP
10

2
TRAP

10C0

IH 2
TRAP

10D0

IH 2
TRAP

10E0

IH 2
TRAP

10F0

IH 2

AP
10

2
TRAP

10C1

IH 2
TRAP

10D1

IH 2
TRAP

10E1

IH 2
TRAP

10F1

IH 2

AP
10

2
TRAP

10C2

IH 2
TRAP

10D2

IH 2
TRAP

10E2

IH 2
TRAP

10F2

IH 2

AP
10

2
TRAP

10C3

IH 2
TRAP

10D3

IH 2
TRAP

10E3

IH 2
TRAP

10F3

IH 2

AP
10

2
TRAP

10C4

IH 2
TRAP

10D4

IH 2
TRAP

10E4

IH 2
TRAP

10F4

IH 2

AP
10

2
TRAP

10C5

IH 2
TRAP

10D5

IH 2
TRAP

10E5

IH 2
TRAP

10F5

IH 2

AP
10

2
TRAP

10C6

IH 2
TRAP

10D6

IH 2
TRAP

10E6

IH 2
TRAP

10F6

IH 2

AP
10

2
TRAP

10C7

IH 2
TRAP

10D7

IH 2
TRAP

10E7

IH 2
TRAP

10F7

IH 2

AP
10

2
TRAP

10C8

IH 2
TRAP

10D8

IH 2
TRAP

10E8

IH 2
TRAP

10F8

IH 2

AP
10

2
TRAP

10C9

IH 2
TRAP

10D9

IH 2
TRAP

10E9

IH 2
TRAP

10F9

IH 2

AP
10

2
TRAP

10CA

IH 2
TRAP

10DA

IH 2
TRAP

10EA

IH 2
TRAP

10FA

IH 2

AP
10

2
TRAP

10CB

IH 2
TRAP

10DB

IH 2
TRAP

10EB

IH 2
TRAP

10FB

IH 2

AP
10

2
TRAP

10CC

IH 2
TRAP

10DC

IH 2
TRAP

10EC

IH 2
TRAP

10FC

IH 2

AP
10

2
TRAP

10CD

IH 2
TRAP

10DD

IH 2
TRAP

10ED

IH 2
TRAP

10FD

IH 2

AP
10

2
TRAP

10CE

IH 2
TRAP

10DE

IH 2
TRAP

10EE

IH 2
TRAP

10FE

IH 2

AP
10

2
TRAP

10CF

IH 2
TRAP

10DF

IH 2
TRAP

10EF

IH 2
TRAP

10FF

IH 2

e
ic

Number of cycles00
BGND

IH

5

Number of bytese 1
MOVW
400

IM–ID 5
IDIV

1210

IH 2
LBRA

420

RL 4
TRAP

1030

IH 2
TRAP

1040

IH 2
TRAP

1050

IH 2
TRAP

1060

IH 2
TRAP

1070

IH 2
TRAP

1080

IH 2
TRAP

1090

IH 2
TRAP

10A0

IH 2
TR

B0

IH

MOVW
501

EX–ID 5
FDIV

1211

IH 2
LBRN

321

RL 4
TRAP

1031

IH 2
TRAP

1041

IH 2
TRAP

1051

IH 2
TRAP

1061

IH 2
TRAP

1071

IH 2
TRAP

1081

IH 2
TRAP

1091

IH 2
TRAP

10A1

IH 2
TR

B1

IH

MOVW
502

ID–ID 4
EMACS

1312

SP 4
LBHI

4/322

RL 4
TRAP

1032

IH 2
TRAP

1042

IH 2
TRAP

1052

IH 2
TRAP

1062

IH 2
TRAP

1072

IH 2
TRAP

1082

IH 2
TRAP

1092

IH 2
TRAP

10A2

IH 2
TR

B2

IH

MOVW
503

IM–EX 6
EMULS

313

IH 2
LBLS

4/323

RL 4
TRAP

1033

IH 2
TRAP

1043

IH 2
TRAP

1053

IH 2
TRAP

1063

IH 2
TRAP

1073

IH 2
TRAP

1083

IH 2
TRAP

1093

IH 2
TRAP

10A3

IH 2
TR

B3

IH

MOVW
604

EX–EX 6
EDIVS

1214

IH 2
LBCC

4/324

RL 4
TRAP

1034

IH 2
TRAP

1044

IH 2
TRAP

1054

IH 2
TRAP

1064

IH 2
TRAP

1074

IH 2
TRAP

1084

IH 2
TRAP

1094

IH 2
TRAP

10A4

IH 2
TR

B4

IH

MOVW
505

ID–EX 5
IDIVS

1215

IH 2
LBCS

4/325

RL 4
TRAP

1035

IH 2
TRAP

1045

IH 2
TRAP

1055

IH 2
TRAP

1065

IH 2
TRAP

1075

IH 2
TRAP

1085

IH 2
TRAP

1095

IH 2
TRAP

10A5

IH 2
TR

B5

IH

ABA
206

IH 2
SBA

216

IH 2
LBNE

4/326

RL 4
TRAP

1036

IH 2
TRAP

1046

IH 2
TRAP

1056

IH 2
TRAP

1066

IH 2
TRAP

1076

IH 2
TRAP

1086

IH 2
TRAP

1096

IH 2
TRAP

10A6

IH 2
TR

B6

IH

DAA
307

IH 2
CBA

217

IH 2
LBEQ

4/327

RL 4
TRAP

1037

IH 2
TRAP

1047

IH 2
TRAP

1057

IH 2
TRAP

1067

IH 2
TRAP

1077

IH 2
TRAP

1087

IH 2
TRAP

1097

IH 2
TRAP

10A7

IH 2
TR

B7

IH

MOVB
408

IM–ID 4
MAXA

4/5/718

ID 3–5
LBVC

4/328

RL 4
TRAP

1038

IH 2
TRAP

1048

IH 2
TRAP

1058

IH 2
TRAP

1068

IH 2
TRAP

1078

IH 2
TRAP

1088

IH 2
TRAP

1098

IH 2
TRAP

10A8

IH 2
TR

B8

IH

MOVB
509

EX–ID 5
MINA

4/5/719

ID 3–5
LBVS

4/329

RL 4
TRAP

1039

IH 2
TRAP

1049

IH 2
TRAP

1059

IH 2
TRAP

1069

IH 2
TRAP

1079

IH 2
TRAP

1089

IH 2
TRAP

1099

IH 2
TRAP

10A9

IH 2
TR

B9

IH

MOVB
50A

ID–ID 4
EMAXD

4/5/71A

ID 3–5
LBPL

4/32A

RL 4
REV

3n3A

SP 2
TRAP

104A

IH 2
TRAP

105A

IH 2
TRAP

106A

IH 2
TRAP

107A

IH 2
TRAP

108A

IH 2
TRAP

109A

IH 2
TRAP

10AA

IH 2
TR

BA

IH

MOVB
40B

IM–EX 5
EMIND

4/5/71B

ID 3–5
LBMI

4/32B

RL 4
REVW

5n/3n3B

SP 2
TRAP

104B

IH 2
TRAP

105B

IH 2
TRAP

106B

IH 2
TRAP

107B

IH 2
TRAP

108B

IH 2
TRAP

109B

IH 2
TRAP

10AB

IH 2
TR

BB

IH

MOVB
60C

EX–EX 6
MAXM

4–71C

ID 3–5
LBGE

4/32C

RL 4
WAV

7n3C

SP 2
TRAP

104C

IH 2
TRAP

105C

IH 2
TRAP

106C

IH 2
TRAP

107C

IH 2
TRAP

108C

IH 2
TRAP

109C

IH 2
TRAP

10AC

IH 2
TR

BC

IH

MOVB
50D

ID–EX 5
MINM

4–71D

ID 3–5
LBLT

4/32D

RL 4
TBL

63D

ID 3
TRAP

104D

IH 2
TRAP

105D

IH 2
TRAP

106D

IH 2
TRAP

107D

IH 2
TRAP

108D

IH 2
TRAP

109D

IH 2
TRAP

10AD

IH 2
TR

BD

IH

TAB
20E

IH 2
EMAXM

4–71E

ID 3–5
LBGT

4/32E

RL 4
STOP

8+63E

IH 2
TRAP

104E

IH 2
TRAP

105E

IH 2
TRAP

106E

IH 2
TRAP

107E

IH 2
TRAP

108E

IH 2
TRAP

109E

IH 2
TRAP

10AE

IH 2
TR

BE

IH

TBA
20F

IH 2
EMINM

4–71F

EX 3–5
LBLE

4/32F

RL 4
ETBL

103F

ID 3
TRAP

104F

IH 2
TRAP

105F

IH 2
TRAP

106F

IH 2
TRAP

107F

IH 2
TRAP

108F

IH 2
TRAP

109F

IH 2
TRAP

10AF

IH 2
TR

BF

IH

Hex opcod
Mnemon

Address mod

Address mode abbreviations: DI — direct
EX — extended
ID — indexed

IM — immediate
RL — relative
SP — special

IH — inherent
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4.6  Transfer and Exchange Postbyte Encoding

Transfers

↓ LS MS→ 0 1 2 3 4 5 6 7

0 A⇒A B⇒A CCR⇒A TMP3L⇒A B⇒A XL⇒A YL⇒A SPL⇒A

1 A⇒B B⇒B CCR⇒B TMP3L⇒B B⇒B XL⇒B YL⇒B SPL⇒B

2 A⇒CCR B⇒CCR CCR⇒CCR TMP3L⇒CCR B⇒CCR XL⇒CCR YL⇒CCR SPL⇒CCR

3 sex:A⇒TMP2 sex:B⇒TMP2 sex:CCR⇒TMP2 TMP3⇒TMP2 D⇒TMP2 X⇒TMP2 Y⇒TMP2 SP⇒TMP2

4
sex:A⇒D
SEX A,D

sex:B⇒D
SEX B,D

sex:CCR⇒D
SEX CCR,D

TMP3⇒D D⇒D X⇒D Y⇒D SP⇒D

5
sex:A⇒X
SEX A,X

sex:B⇒X
SEX B,X

sex:CCR⇒X
SEX CCR,X

TMP3⇒X D⇒X X⇒X Y⇒X SP⇒X

6
sex:A⇒Y
SEX A,Y

sex:B⇒Y
SEX B,Y

sex:CCR⇒Y
SEX CCR,Y

TMP3⇒Y D⇒Y X⇒Y Y⇒Y SP⇒Y

7
sex:A⇒SP
SEX A,SP

sex:B⇒SP
SEX B,SP

sex:CCR⇒SP
SEX CCR,SP

TMP3⇒SP D⇒SP X⇒SP Y⇒SP SP⇒SP

Exchanges

↓ LS MS→ 8 9 A B C D E F

0 A⇔A B⇔A CCR⇔A
TMP3L⇒A

$00:A⇒TMP3
B⇒A
A⇒B

XL⇒A
$00:A⇒X

YL⇒A
$00:A⇒Y

SPL⇒A
$00:A⇒SP

1 A⇔B B⇔B CCR⇔B
TMP3L⇒B

$FF:B⇒TMP3
B⇒B

$FF⇒A
XL⇒B

$FF:B⇒X
YL⇒B

$FF:B⇒Y
SPL⇒B

$FF:B⇒SP

2 A⇔CCR B⇔CCR CCR⇔CCR
TMP3L⇒CCR

$FF:CCR⇒TMP3
B⇒CCR

$FF:CCR⇒D
XL⇒CCR

$FF:CCR⇒X
YL⇒CCR

$FF:CCR⇒Y
SPL⇒CCR

$FF:CCR⇒SP

3
$00:A⇒TMP2

TMP2L⇒A
$00:B⇒TMP2

TMP2L⇒B
$00:CCR⇒TMP2

TMP2L⇒CCR
TMP3⇔TMP2 D⇔TMP2 X⇔TMP2 Y⇔TMP2 SP⇔TMP2

4 $00:A⇒D $00:B⇒D
$00:CCR⇒D

B⇒CCR
TMP3⇔D D⇔D X⇔D Y⇔D SP⇔D

5
$00:A⇒X

XL⇒A
$00:B⇒X

XL⇒B
$00:CCR⇒X

XL⇒CCR
TMP3⇔X D⇔X X⇔X Y⇔X SP⇔X

6
$00:A⇒Y

YL⇒A
$00:B⇒Y

YL⇒B
$00:CCR⇒Y

YL⇒CCR
TMP3⇔Y D⇔Y X⇔Y Y⇔Y SP⇔Y

7
$00:A⇒SP

SPL⇒A
$00:B⇒SP

SPL⇒B
$00:CCR⇒SP

SPL⇒CCR
TMP3⇔SP D⇔SP X⇔SP Y⇔SP SP⇔SP

TMP2 and TMP3 registers are for factory use only.
99
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4.7  Loop Primitive Postbyte (lb) Encoding

00 A
DBEQ

(+)

10 A
DBEQ

(–)

20 A
DBNE

(+)

30 A
DBNE

(–)

40 A
TBEQ

(+)

50 A
TBEQ

(–)

60 A
TBNE

(+)

70 A
TBNE

(–)

80 A
IBEQ

(+)

90 A
IBEQ

(–)

A0 A
IBNE

(+)

B0 A
IBNE

(–)
01 B

DBEQ
(+)

11 B
DBEQ

(–)

21 B
DBNE

(+)

31 B
DBNE

(–)

41 B
TBEQ

(+)

51 B
TBEQ

(–)

61 B
TBNE

(+)

71 B
TBNE

(–)

81 B
IBEQ

(+)

91 B
IBEQ

(–)

A1 B
IBNE

(+)

B1 B
IBNE

(–)
02

—
12

—
22

—
32

—
42

—
52

—
62

—
72

—
82

—
92

—
A2

—
B2

—

03
—

13
—

23
—

33
—

43
—

53
—

63
—

73
—

83
—

93
—

A3
—

B3
—

04 D
DBEQ

(+)

14 D
DBEQ

(–)

24 D
DBNE

(+)

34 D
DBNE

(–)

44 D
TBEQ

(+)

54 D
TBEQ

(–)

64 D
TBNE

(+)

74 D
TBNE

(–)

84 D
IBEQ

(+)

94 D
IBEQ

(–)

A4 D
IBNE

(+)

B4 D
IBNE

(–)
05 X

DBEQ
(+)

15 X
DBEQ

(–)

25 X
DBNE

(+)

35 X
DBNE

(–)

45 X
TBEQ

(+)

55 X
TBEQ

(–)

65 X
TBNE

(+)

75 X
TBNE

(–)

85 X
IBEQ

(+)

95 X
IBEQ

(–)

A5 X
IBNE

(+)

B5 X
IBNE

(–)
06 Y

DBEQ
(+)

16 Y
DBEQ

(–)

26 Y
DBNE

(+)

36 Y
DBNE

(–)

46 Y
TBEQ

(+)

56 Y
TBEQ

(–)

66 Y
TBNE

(+)

76 Y
TBNE

(–)

86 Y
IBEQ

(+)

96 Y
IBEQ

(–)

A6 Y
IBNE

(+)

B6 Y
IBNE

(–)
07 SP

DBEQ
(+)

17 SP
DBEQ

(–)

27 SP
DBNE

(+)

37 SP
DBNE

(–)

47 SP
TBEQ

(+)

57 SP
TBEQ

(–)

67 SP
TBNE

(+)

77 SP
TBNE

(–)

87 SP
IBEQ

(+)

97 SP
IBEQ

(–)

A7 SP
IBNE

(+)

B7 SP
IBNE

(–)

Hex postbyte (bit 3 is don’t care)

Mnemonic

Counter00
DBEQ

(+)

A

Sign of 9-bit relative branch offset
(lower eight bits are an extension byte following postbyte)
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15U
G
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0,PC
 const

D0
–16,PC

5b const

E0
n,X

9b const

F0
n,SP

9b const

1,PC
 const

D1
–15,PC

5b const

E1
–n,X

9b const

F1
–n,SP

9b const

2,PC
 const

D2
–14,PC

5b const

E2
n,X

16b const

F2
n,SP

16b const

3,PC
 const

D3
–13,PC

5b const

E3
[n,X]

16b indr

F3
[n,SP]

16b indr

4,PC
 const

D4
–12,PC

5b const

E4
A,X

A offset

F4
A,SP

A offset

5,PC
 const

D5
–11,PC

5b const

E5
B,X

B offset

F5
B,SP

B offset

6,PC
 const

D6
–10,PC

5b const

E6
D,X

D offset

F6
D,SP

D offset

7,PC
 const

D7
–9,PC

5b const

E7
[D,X]

D indirect

F7
[D,SP]

D indirect

8,PC
 const

D8
–8,PC

5b const

E8
n,Y

9b const

F8
n,PC

9b const

9,PC
 const

D9
–7,PC

5b const

E9
–n,Y

9b const

F9
–n,PC

9b const

10,PC
 const

DA
–6,PC

5b const

EA
n,Y

16b const

FA
n,PC

16b const

11,PC
 const

DB
–5,PC

5b const

EB
[n,Y]

16b indr

FB
[n,PC]

16b indr

12,PC
 const

DC
–4,PC

5b const

EC
A,Y

A offset

FC
A,PC

A offset

13,PC
 const

DD
–3,PC

5b const

ED
B,Y

B offset

FD
B,PC

B offset

14,PC
 const

DE
–2,PC

5b const

EE
D,Y

D offset

FE
D,PC

D offset

15,PC
 const

DF
–1,PC

5b const

EF
[D,Y]

D indirect

FF
[D,PC]

D indirect
4.8  Indexed Addressing Postbyte (xb) Encoding

00
0,X

5b const

10
–16,X

5b const

20
1,+X

pre-inc

30
1,X+

post-inc

40
0,Y

5b const

50
–16,Y

5b const

60
1,+Y

pre-inc

70
1,Y+

post-inc

80
0,SP

5b const

90
–16,SP

5b const

A0
1,+SP

pre-inc

B0
1,SP+

post-inc

C0

5b
01

1,X
5b const

11
–15,X

5b const

21
2,+X

pre-inc

31
2,X+

post-inc

41
1,Y

5b const

51
–15,Y

5b const

61
2,+Y

pre-inc

71
2,Y+

post-inc

81
1,SP

5b const

91
–15,SP

5b const

A1
2,+SP

pre-inc

B1
2,SP+

post-inc

C1

5b
02

2,X
5b const

12
–14,X

5b const

22
3,+X

pre-inc

32
3,X+

post-inc

42
2,Y

5b const

52
–14,Y

5b const

62
3,+Y

pre-inc

72
3,Y+

post-inc

82
2,SP

5b const

92
–14,SP

5b const

A2
3,+SP

pre-inc

B2
3,SP+

post-inc

C2

5b
03

3,X
5b const

13
–13,X

5b const

23
4,+X

pre-inc

33
4,X+

post-inc

43
3,Y

5b const

53
–13,Y

5b const

63
4,+Y

pre-inc

73
4,Y+

post-inc

83
3,SP

5b const

93
–13,SP

5b const

A3
4,+SP

pre-inc

B3
4,SP+

post-inc

C3

5b
04

4,X
5b const

14
–12,X

5b const

24
5,+X

pre-inc

34
5,X+

post-inc

44
4,Y

5b const

54
–12,Y

5b const

64
5,+Y

pre-inc

74
5,Y+

post-inc

84
4,SP

5b const

94
–12,SP

5b const

A4
5,+SP

pre-inc

B4
5,SP+

post-inc

C4

5b
05

5,X
5b const

15
–11,X

5b const

25
6,+X

pre-inc

35
6,X+

post-inc

45
5,Y

5b const

55
–11,Y

5b const

65
6,+Y

pre-inc

75
6,Y+

post-inc

85
5,SP

5b const

95
–11,SP

5b const

A5
6,+SP

pre-inc

B5
6,SP+

post-inc

C5

5b
06

6,X
5b const

16
–10,X

5b const

26
7,+X

pre-inc

36
7,X+

post-inc

46
6,Y

5b const

56
–10,Y

5b const

66
7,+Y

pre-inc

76
7,Y+

post-inc

86
6,SP

5b const

96
–10,SP

5b const

A6
7,+SP

pre-inc

B6
7,SP+

post-inc

C6

5b
07

7,X
5b const

17
–9,X

5b const

27
8,+X

pre-inc

37
8,X+

post-inc

47
7,Y

5b const

57
–9,Y

5b const

67
8,+Y

pre-inc

77
8,Y+

post-inc

87
7,SP

5b const

97
–9,SP

5b const

A7
8,+SP

pre-inc

B7
8,SP+

post-inc

C7

5b
08

8,X
5b const

18
–8,X

5b const

28
8,–X

pre-dec

38
8,X–

post-dec

48
8,Y

5b const

58
–8,Y

5b const

68
8,–Y

pre-dec

78
8,Y–

post-dec

88
8,SP

5b const

98
–8,SP

5b const

A8
8,–SP

pre-dec

B8
8,SP–

post-dec

C8

5b
09

9,X
5b const

19
–7,X

5b const

29
7,–X

pre-dec

39
7,X–

post-dec

49
9,Y

5b const

59
–7,Y

5b const

69
7,–Y

pre-dec

79
7,Y–

post-dec

89
9,SP

5b const

99
–7,SP

5b const

A9
7,–SP

pre-dec

B9
7,SP–

post-dec

C9

5b
0A

10,X
5b const

1A
–6,X

5b const

2A
6,–X

pre-dec

3A
6,X–

post-dec

4A
10,Y

5b const

5A
–6,Y

5b const

6A
6,–Y

pre-dec

7A
6,Y–

post-dec

8A
10,SP

5b const

9A
–6,SP

5b const

AA
6,–SP

pre-dec

BA
6,SP–

post-dec

CA

5b
0B

11,X
5b const

1B
–5,X

5b const

2B
5,–X

pre-dec

3B
5,X–

post-dec

4B
11,Y

5b const

5B
–5,Y

5b const

6B
5,–Y

pre-dec

7B
5,Y–

post-dec

8B
11,SP

5b const

9B
–5,SP

5b const

AB
5,–SP

pre-dec

BB
5,SP–

post-dec

CB

5b
0C

12,X
5b const

1C
–4,X

5b const

2C
4,–X

pre-dec

3C
4,X–

post-dec

4C
12,Y

5b const

5C
–4,Y

5b const

6C
4,–Y

pre-dec

7C
4,Y–

post-dec

8C
12,SP

5b const

9C
–4,SP

5b const

AC
4,–SP

pre-dec

BC
4,SP–

post-dec

CC

5b
0D

13,X
5b const

1D
–3,X

5b const

2D
3,–X

pre-dec

3D
3,X–

post-dec

4D
13,Y

5b const

5D
–3,Y

5b const

6D
3,–Y

pre-dec

7D
3,Y–

post-dec

8D
13,SP

5b const

9D
–3,SP

5b const

AD
3,–SP

pre-dec

BD
3,SP–

post-dec

CD

5b
0E

14,X
5b const

1E
–2,X

5b const

2E
2,–X

pre-dec

3E
2,X–

post-dec

4E
14,Y

5b const

5E
–2,Y

5b const

6E
2,–Y

pre-dec

7E
2,Y–

post-dec

8E
14,SP

5b const

9E
–2,SP

5b const

AE
2,–SP

pre-dec

BE
2,SP–

post-dec

CE

5b
0F

15,X
5b const

1F
–1,X

5b const

2F
1,–X

pre-dec

3F
1,X–

post-dec

4F
15,Y

5b const

5F
–1,Y

5b const

6F
1,–Y

pre-dec

7F
1,Y–

post-dec

8F
15,SP

5b const

9F
–1,SP

5b const

AF
1,–SP

pre-dec

BF
1,SP–

post-dec

CF

5b

Hex postbyte

Type of offset
Source code syntax

00
0,X

5b const
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Section 5  Instruction Execution

The CPU uses a three-stage instruction queue to facilitate instruction fetching and increase execu
speed. This section provides a general description of the instruction queue during normal program
execution and during changes in execution flow. Operation of the queue is automatic and genera
transparent to the user.

5.1  Normal Instruction Execution

Queue logic prefetches program information and positions it for sequential execution, one instructio
time. The relationship between bus cycles and execution cycles is straightforward and facilitates tra
and debugging.

There are three 16-bit stages in the instruction queue. Instructions enter the queue at stage1 and
after stage 3. Each byte in the queue is selectable. An opcode-prediction algorithm determines the lo
of the next opcode in the instruction queue.

Each instruction refills the queue by fetching the same number of bytes that the instruction uses. Pr
information is fetched in aligned 16-bit words. Each program fetch indicates that two bytes need t
replaced in the instruction queue. Each optional fetch indicates that only one byte needs to be rep
For example, an instruction composed of five bytes does two program fetches and one optional fe
the first byte of the five-byte instruction was even-aligned, the optional fetch is converted into a free c
If the first byte was odd-aligned, the optional fetch is executed as a program fetch.

Two external pins, IPIPE[1:0], provide time-multiplexed information about instruction execution and
movement in the queue. Decoding and using the IPIPE signals is discussed in.

5.2  Execution Sequence

All queue operations are defined by two basic queue movement cycles. Queue movement cycles a
one factor in instruction execution time and should not be confused with bus cycles.

5.2.1  No Movement

There is no data movement in the instruction queue during the cycle. This occurs during executio
instructions that must perform a number of internal operations, such as division instructions.

5.2.2  Advance and Load from Data Bus

The content of queue stage 1 advances to stage 2, stage 2 advances to stage 3, and stage 1 is lo
a word of program information from the data bus.
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5.3  Changes of Flow

Most of the time, the instruction queue operates in a continuous sequence of queue movement cy
When program flow changes because of an exception, subroutine call, branch, or jump, the queu
automatically adjusts its movement sequence to accommodate the change in program flow.

5.3.1  Exceptions

Exceptions include three types of reset, an unimplemented opcode trap, a software interrupt instruc
bit maskable interrupts, and I bit maskable interrupts.

To minimize the effect of queue operation on exception handling:

• The exception vector fetch is the first part of exception processing.

• Fetches to refill the queue from the new address are interleaved with the context-stacking
operations, so that program access time does not delay the switch.

Please seeSection 6  of this guide for more detailed information on exception processing.

5.3.2  Subroutines

The CPU can branch to (BSR), jump to (JSR), or CALL subroutines. The BSR and JSR instructio
for accessing subroutines in the normal 64K byte address space. The CALL instruction is for acce
subroutines in expanded memory.

BSR uses relative addressing mode to generate the effective address of the subroutine, while JSR
other addressing modes. Both instructions calculate a return address, stack the address, then do 
program word fetches to refill the queue.

A subroutine in the normal 64K byte address space ends with a return from subroutine instruction (
RTS unstacks the return address and does three program word fetches from that address to refill th

CALL is similar to JSR. MCUs with expanded memory treat the 16K bytes of addresses from $80
$BFFF as an expanded memory window. An 8-bit PPAGE register switches the memory pages in
window. CALL calculates and stacks a return address along with the current PPAGE value and w
new instruction-supplied value to PPAGE. Then it calculates the subroutine address and fetches t
program words from that address to refill the queue.

A subroutine in expanded memory ends with a return from call instruction (RTC). RTC unstacks th
PPAGE value and the return address and does three program word fetches from that address to 
queue.

5.3.3  Branches

A branch instruction changes the execution flow when a specific condition exists. There are short
conditional branches, long conditional branches, and bit-condition branches. All branch instructions
the queue similarly, but there are differences in cycle counts between the various types. Loop prim
instructions are a special type of branch instruction for implementing counter-based loops.
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A branch instruction has two execution cases. Either the branch condition is satisfied, and a change
takes place, or the condition is not satisfied, and no change of flow occurs.

5.3.3.1  Short Branches

The branch-not-taken case for a short branch is simple. Since the instruction consists of a single 
containing both an opcode and an 8-bit offset, the queue advances, the CPU fetches another progra
and execution continues with the next instruction.

The branch-taken case for a short branch requires that the queue be refilled so that execution can b
a new address. First, the CPU calculates the effective address of the destination using the relative o
the instruction. Then it loads the address into the program counter, and performs three program w
fetches at the new address to refill the queue.

5.3.3.2  Long Branches

The branch-not-taken case for a long branch requires three cycles, while the branch-taken case r
four cycles. This is due to differences in the amount of program information needed to fill the queu

A long branch instruction begins with a $18 prebyte which indicates that the opcode is on page 2 
opcode map. The CPU treats the prebyte as a special one-byte instruction. To maintain alignmen
two-byte queue, the first cycle of a long branch instruction is an optional cycle. If the prebyte is no
aligned, the CPU does a program word access; if the prebyte is aligned, the first cycle is a free cy

Optional cycles align byte-sized and misaligned instructions with aligned word-length instructions.
Program information is always fetched as aligned 16-bit words. When an instruction has an odd n
of bytes, and the first byte is not aligned with an even byte boundary, the optional cycle makes an
additional program word access that maintains queue order. In all other cases, the optional cycle is
cycle. In the branch-not-taken case, the queue advances so that execution can continue with the 
instruction. The CPU does one program fetch and one optional fetch to refill the queue.

In the branch-taken case, the CPU calculates the effective address of the branch using the 16-bit
offset contained in the second word of the instruction. It loads the address into the program count
then does three program word fetches at the new address to refill the queue.

5.3.3.3  Bit Condition Branches

A bit-condition branch instruction reads a location in memory and branches if the bits in that locatio
in a certain state. It can use direct, extended, or indexed addressing mode. Indexed operations re
varying amounts of information to determine the effective address, so instruction length varies wit
addressing mode. The amount of program information fetched also varies with instruction length. 
shorten execution time, the CPU does one program word fetch in anticipation of the branch-taken
The data from this fetch is ignored if the branch is not taken, and the CPU refills the queue accord
the instruction length. If the branch is taken, the CPU refills the queue from the new address accord
the instruction length.
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5.3.3.4  Loop Primitive Instructions

A loop primitive instruction tests a counter value in a register or accumulator. If the test condition is
the CPU branches to an address specified by a 9-bit relative offset contained in the instruction. The
autoincrement and autodecrement versions of the instructions. The test and increment/decremen
operations are performed on internal CPU registers, and require no additional program informatio
shorten execution time, the CPU does one program word fetch in anticipation of the branch-taken
The data from this fetch is ignored if the branch is not taken, and the CPU does one program fetch a
optional fetch to refill the queue. If the branch is taken, the CPU refills the queue with two addition
program word fetches at the new address.

5.3.4  Jumps

JMP is the simplest change-of-flow instruction. JMP can use extended or indexed addressing. Ind
operations require varying amounts of information to determine the effective address, so instruction
varies with the addressing mode. The amount of program information fetched also varies with instru
length. In all forms of JMP, the CPU refills the queue with three program word fetches at the new ad

5.4  Instruction Timing

TheAccess Detailcolumn of the summary inTable 5-1 shows how many bytes of information the CPU
accesses while executing an instruction. With this information and knowledge of the type and spe
memory in the system, you can determine the execution time for any instruction in any system. Si
count the code letters to determine the execution time of an instruction in a best-case system. An ex
of a best-case system is a single-chip 16-bit system with no 16-bit off-boundary data accesses to 
locations other than on-chip RAM.

A description of the notation used in each column of the table is given in the subsections that follo
including that of theAccess Detail column. This information as well as the summary inTable 5-1  is
repeated fromSection 1  of this guide for completeness.

Table 5-1  Instruction Set Summary

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

ABA Add B to A; (A)+(B)⇒A INH 18 06 OO

ABXSame as LEAX B,X Add B to X; (X)+(B)⇒X IDX 1A E5 Pf

ABYSame as LEAY B,Y Add B to Y; (Y)+(B)⇒Y IDX 19 ED Pf

ADCA #opr8i
ADCA opr8a
ADCA opr16a
ADCA oprx0_xysppc
ADCA oprx9,xysppc
ADCA oprx16,xysppc
ADCA [D,xysppc]
ADCA [oprx16,xysppc]

Add with carry to A; (A)+(M)+C⇒A
or (A)+imm+C⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

89 ii
99 dd
B9 hh ll
A9 xb
A9 xb ff
A9 xb ee ff
A9 xb
A9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

– – ∆ – ∆ ∆ ∆ ∆

– – – – – – – –

– – – – – – – –

– – ∆ – ∆ ∆ ∆ ∆
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ADCB #opr8i
ADCB opr8a
ADCB opr16a
ADCB oprx0_xysppc
ADCB oprx9,xysppc
ADCB oprx16,xysppc
ADCB [D,xysppc]
ADCB [oprx16,xysppc]

Add with carry to B; (B)+(M)+C⇒B
or (B)+imm+C⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C9 ii
D9 dd
F9 hh ll
E9 xb
E9 xb ff
E9 xb ee ff
E9 xb
E9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ADDA #opr8i
ADDA opr8a
ADDA opr16a
ADDA oprx0_xysppc
ADDA oprx9,xysppc
ADDA oprx16,xysppc
ADDA [D,xysppc]
ADDA [oprx16,xysppc]

Add to A; (A)+(M)⇒A
or (A)+imm⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8B ii
9B dd
BB hh ll
AB xb
AB xb ff
AB xb ee ff
AB xb
AB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ADDB #opr8i
ADDB opr8a
ADDB opr16a
ADDB oprx0_xysppc
ADDB oprx9,xysppc
ADDB oprx16,xysppc
ADDB [D,xysppc]
ADDB [oprx16,xysppc]

Add to B; (B)+(M)⇒B
or (B)+imm⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CB ii
DB dd
FB hh ll
EB xb
EB xb ff
EB xb ee ff
EB xb
EB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ADDD #opr16i
ADDD opr8a
ADDD opr16a
ADDD oprx0_xysppc
ADDD oprx9,xysppc
ADDD oprx16,xysppc
ADDD [D,xysppc]
ADDD [oprx16,xysppc]

Add to D; (A:B)+(M:M+1)⇒A:B
or (A:B)+imm⇒A:B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C3 jj kk
D3 dd
F3 hh ll
E3 xb
E3 xb ff
E3 xb ee ff
E3 xb
E3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

ANDA #opr8i
ANDA opr8a
ANDA opr16a
ANDA oprx0_xysppc
ANDA oprx9,xysppc
ANDA oprx16,xysppc
ANDA [D,xysppc]
ANDA [oprx16,xysppc]

AND with A; (A)•(M)⇒A
or (A)•imm⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

84 ii
94 dd
B4 hh ll
A4 xb
A4 xb ff
A4 xb ee ff
A4 xb
A4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ANDB #opr8i
ANDB opr8a
ANDB opr16a
ANDB oprx0_xysppc
ANDB oprx9,xysppc
ANDB oprx16,xysppc
ANDB [D,xysppc]
ANDB [oprx16,xysppc]

AND with B; (B)•(M)⇒B
or (B)•imm⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C4 ii
D4 dd
F4 hh ll
E4 xb
E4 xb ff
E4 xb ee ff
E4 xb
E4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ANDCC #opr8i AND with CCR; (CCR)•imm⇒CCR IMM 10 ii P

ASL opr16aSame as LSL
ASL oprx0_xysp
ASL oprx9,xysppc
ASL oprx16,xysppc
ASL [D,xysppc]
ASL [oprx16,xysppc]
ASLASame as LSLA
ASLBSame as LSLB

Arithmetic shift left M

Arithmetic shift left A
Arithmetic shift left B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff
48
58

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

ASLDSame as LSLD Arithmetic shift left D INH 59 O

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

– – ∆ – ∆ ∆ ∆ ∆

– – ∆ – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

C
0

b7 b0

– – – – ∆ ∆ ∆ ∆

• • • • • •

C
0

b7 b0A Bb7b0

– – – – ∆ ∆ ∆ ∆
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ASR opr16a
ASR oprx0_xysppc
ASR oprx9,xysppc
ASR oprx16,xysppc
ASR [D,xysppc]
ASR [oprx16,xysppc]
ASRA
ASRB

Arithmetic shift right M

Arithmetic shift right A
Arithmetic shift right B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

77 hh ll
67 xb
67 xb ff
67 xb ee ff
67 xb
67 xb ee ff
47
57

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

BCC rel8Same as BHS Branch if C clear; if C=0, then
(PC)+2+rel⇒PC

REL 24 rr PPP (branch)
P (no branch)

BCLR opr8a, msk8
BCLR opr16a, msk8
BCLR oprx0_xysppc, msk8
BCLR oprx9,xysppc, msk8
BCLR oprx16,xysppc, msk8

Clear bit(s) in M; (M)•mask byte⇒M

DIR
EXT
IDX
IDX1
IDX2

4D dd mm
1D hh ll mm
0D xb mm
0D xb ff mm
0D xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO

BCS rel8Same as BLO Branch if C set; if C=1, then
(PC)+2+rel⇒PC

REL 25 rr PPP (branch)
P (no branch)

BEQ rel8 Branch if equal; if Z=1, then
(PC)+2+rel⇒PC

REL 27 rr PPP (branch)
P (no branch)

BGE rel8 Branch if ≥ 0, signed; if N⊕V=0, then
(PC)+2+rel⇒PC

REL 2C rr PPP (branch)
P (no branch)

BGND Enter background debug mode INH 00 VfPPP

BGT rel8 Branch if > 0, signed; if Z | (N⊕V)=0,
then (PC)+2+rel⇒PC

REL 2E rr PPP (branch)
P (no branch)

BHI rel8 Branch if higher, unsigned; if
C | Z=0, then (PC)+2+rel⇒PC

REL 22 rr PPP (branch)
P (no branch)

BHS rel8Same as BCC Branchifhigherorsame,unsigned;if
C=0,then(PC)+2+rel⇒PC

REL 24 rr PPP (branch)
P (no branch)

BITA #opr8i
BITA opr8a
BITA opr16a
BITA oprx0_xysppc
BITA oprx9,xysppc
BITA oprx16,xysppc
BITA [D,xysppc]
BITA [oprx16,xysppc]

Bit test A; (A)•(M)
or (A)•imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

85 ii
95 dd
B5 hh ll
A5 xb
A5 xb ff
A5 xb ee ff
A5 xb
A5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

BITB #opr8i
BITB opr8a
BITB opr16a
BITB oprx0_xysppc
BITB oprx9,xysppc
BITB oprx16,xysppc
BITB [D,xysppc]
BITB [oprx16,xysppc]

Bit test B; (B)•(M)
or (B)•imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C5 ii
D5 dd
F5 hh ll
E5 xb
E5 xb ff
E5 xb ee ff
E5 xb
E5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

BLE rel8 Branch if≤ 0,signed; ifZ | (N⊕V)=1,
then(PC)+2+rel⇒PC

REL 2F rr PPP (branch)
P (no branch)

BLO rel8Same as BCS Branch if lower, unsigned; if C=1,
then (PC)+2+rel⇒PC

REL 25 rr PPP (branch)
P (no branch)

BLS rel8 Branch if lower or same, unsigned; if
C | Z=1, then (PC)+2+rel⇒PC

REL 23 rr PPP (branch)
P (no branch)

BLT rel8 Branch if < 0, signed; if N⊕V=1, then
(PC)+2+rel⇒PC

REL 2D rr PPP (branch)
P (no branch)

BMI rel8 Branch if minus; if N=1, then
(PC)+2+rel⇒PC

REL 2B rr PPP (branch)
P (no branch)

BNE rel8 Branch if not equal to 0; if Z=0, then
(PC)+2+rel⇒PC

REL 26 rr PPP (branch)
P (no branch)

BPL rel8 Branch if plus; if N=0, then
(PC)+2+rel⇒PC

REL 2A rr PPP (branch)
P (no branch)

BRA rel8 Branch always REL 20 rr PPP

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

Cb7 b0

– – – – ∆ ∆ ∆ ∆

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –
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BRCLR opr8a, msk8, rel8
BRCLR opr16a, msk8, rel8
BRCLR oprx0_xysppc, msk8, rel8
BRCLR oprx9,xysppc, msk8, rel8
BRCLR oprx16,xysppc, msk8, rel8

Branch if bit(s) clear; if
(M)•(mask byte)=0, then
(PC)+2+rel⇒PC

DIR
EXT
IDX
IDX1
IDX2

4F dd mm rr
1F hh ll mm rr
0F xb mm rr
0F xb ff mm rr
0F xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP

BRN rel8 Branch never REL 21 rr P

BRSET opr8, msk8, rel8
BRSET opr16a, msk8, rel8
BRSET oprx0_xysppc, msk8, rel8
BRSET oprx9,xysppc, msk8, rel8
BRSET oprx16,xysppc, msk8, rel8

Branch if bit(s) set; if
(M)•(mask byte)=0, then
(PC)+2+rel⇒PC

DIR
EXT
IDX
IDX1
IDX2

4E dd mm rr
1E hh ll mm rr
0E xb mm rr
0E xb ff mm rr
0E xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP

BSET opr8, msk8
BSET opr16a, msk8
BSET oprx0_xysppc, msk8
BSET oprx9,xysppc, msk8
BSET oprx16,xysppc, msk8

Set bit(s) in M
(M) | mask byte⇒M

DIR
EXT
IDX
IDX1
IDX2

4Cdd mm
1C hh ll mm
0C xb mm
0C xb ff mm
0C xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO

BSR rel8 Branch to subroutine; (SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
(PC)+2+rel⇒PC

REL 07 rr SPPP

BVC rel8 Branch if V clear; if V=0, then
(PC)+2+rel⇒PC

REL 28 rr PPP (branch)
P (no branch)

BVS rel8 Branch if V set; if V=1, then
(PC)+2+rel⇒PC

REL 29 rr PPP (branch)
P (no branch)

CALL opr16a, page
CALL oprx0_xysppc, page
CALL oprx9,xysppc, page
CALL oprx16,xysppc, page
CALL [D,xysppc]
CALL [oprx16, xysppc]

Call subroutine inexpandedmemory
(SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
(SP)–1⇒SP; (PPG)⇒MSP
pg⇒PPAGE register
subroutine address⇒PC

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

4A hh ll pg
4B xb pg
4B xb ff pg
4B xb ee ff pg
4B xb
4B xb ee ff

gnSsPPP
gnSsPPP
gnSsPPP
fgnSsPPP
fIignSsPPP
fIignSsPPP

CBA Compare A to B; (A)–(B) INH 18 17 OO

CLCSame as ANDCC #$FE Clear C bit IMM 10 FE P

CLISame as ANDCC #$EF Clear I bit IMM 10 EF P

CLR opr16a
CLR oprx0_xysppc
CLR oprx9,xysppc
CLR oprx16,xysppc
CLR [D,xysppc]
CLR [oprx16,xysppc]
CLRA
CLRB

Clear M; $00⇒M

Clear A; $00⇒A
Clear B; $00⇒B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

79 hh ll
69 xb
69 xb ff
69 xb ee ff
69 xb
69 xb ee ff
87
C7

PwO
Pw
PwO
PwP
PIfw
PIPw
O
O

CLVSame as ANDCC #$FD Clear V IMM 10 FD P

CMPA #opr8i
CMPA opr8a
CMPA opr16a
CMPA oprx0_xysppc
CMPA oprx9,xysppc
CMPA oprx16,xysppc
CMPA [D,xysppc]
CMPA [oprx16,xysppc]

Compare A
(A)–(M) or (A)–imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

81 ii
91 dd
B1 hh ll
A1 xb
A1 xb ff
A1 xb ee ff
A1 xb
A1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

CMPB #opr8i
CMPB opr8a
CMPB opr16a
CMPB oprx0_xysppc
CMPB oprx9,xysppc
CMPB oprx16,xysppc
CMPB [D,xysppc]
CMPB [oprx16,xysppc]

Compare B
(B)–(M) or (B)–imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C1 ii
D1 dd
F1 hh ll
E1 xb
E1 xb ff
E1 xb ee ff
E1 xb
E1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – ∆ ∆ ∆ ∆

– – – – – – – 0

– – – 0 – – – –

– – – – 0 1 0 0

– – – – – – 0 –

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆
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COM opr16a
COM oprx0_xysppc
COM oprx9,xysppc
COM oprx16,xysppc
COM [D,xysppc]
COM [oprx16,xysppc]
COMA
COMB

Complement M; (M)=$FF–(M)⇒M

Complement A; (A)=$FF–(A)⇒A
Complement B; (B)=$FF–(B)⇒B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

71 hh ll
61 xb
61 xb ff
61 xb ee ff
61 xb
61 xb ee ff
41
51

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

CPD #opr16i
CPD opr8a
CPD opr16a
CPD oprx0_xysppc
CPD oprx9,xysppc
CPD oprx16,xysppc
CPD [D,xysppc]
CPD [oprx16,xysppc]

Compare D
(A:B)–(M:M+1)
or (A:B)–imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8C jj kk
9C dd
BC hh ll
AC xb
AC xb ff
AC xb ee ff
AC xb
AC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

CPS #opr16i
CPS opr8a
CPS opr16a
CPS oprx0_xysppc
CPS oprx9,xysppc
CPS oprx16,xysppc
CPS [D,xysppc]
CPS [oprx16,xysppc]

Compare SP
(SP)–(M:M+1)
or (SP)–imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8F jj kk
9F dd
BF hh ll
AF xb
AF xb ff
AF xb ee ff
AF xb
AF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

CPX #opr16i
CPX opr8a
CPX opr16a
CPX oprx0_xysppc
CPX oprx9,xysppc
CPX oprx16,xysppc
CPX [D,xysppc]
CPX [oprx16,xysppc]

Compare X
(X)–(M:M+1)
or (X)–imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8E jj kk
9E dd
BE hh ll
AE xb
AE xb ff
AE xb ee ff
AE xb
AE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

CPY #opr16i
CPY opr8a
CPY opr16a
CPY oprx0_xysppc
CPY oprx9,xysppc
CPY oprx16,xysppc
CPY [D,xysppc]
CPY [oprx16,xysppc]

Compare Y
(Y)–(M:M+1)
or (Y)–imm

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8D jj kk
9D dd
BD hh ll
AD xb
AD xb ff
AD xb ee ff
AD xb
AD xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

DAA Decimal adjust A for BCD INH 18 07 OfO

DBEQ abdxysp, rel9 Decrement and branch if equal to 0
(counter)–1⇒counter
if (counter)=0, then branch

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

DBNE abdxysp, rel9 Decrementandbranch ifnotequal to0;
(counter)–1⇒counter;
if (counter)≠0, then branch

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

DEC opr16a
DEC oprx0_xysppc
DEC oprx9,xysppc
DEC oprx16,xysppc
DEC [D,xysppc]
DEC [oprx16,xysppc]
DECA
DECB

Decrement M; (M)–1⇒M

Decrement A; (A)–1⇒A
Decrement B; (B)–1⇒B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

73 hh ll
63 xb
63 xb ff
63 xb ee ff
63 xb
63 xb ee ff
43
53

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

DESSame as LEAS –1,SP Decrement SP; (SP)–1⇒SP IDX 1B 9F Pf

DEX Decrement X; (X)–1⇒X INH 09 O

DEY Decrement Y; (Y)–1⇒Y INH 03 O

EDIV Extendeddivide,unsigned;32by16
to16-bit; (Y:D)÷(X)⇒Y; remainder⇒D

INH 11 ffffffffffO

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – ∆ ∆ 0 1

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ? ∆

– – – – – – – –

– – – – – – – –

– – – – ∆ ∆ ∆ –

– – – – – – – –

– – – – – ∆ – –

– – – – – ∆ – –

– – – – ∆ ∆ ∆ ∆
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EDIVS Extendeddivide,signed;32by16 to
16-bit; (Y:D)÷(X)⇒Yremainder⇒D

INH 18 14 OffffffffffO

EMACS opr16a Extended multiply and accumulate,
signed; (MX:MX+1)×(MY:MY+1)+
(M~M+3)⇒M~M+3; 16 by 16 to 32-bit

Special 18 12 hh ll ORROfffRRfWWP

EMAXD oprx0_xysppc
EMAXD oprx9,xysppc
EMAXD oprx16,xysppc
EMAXD [D,xysppc]
EMAXD [oprx16,xysppc]

Extended maximum in D; put larger of
2
unsigned 16-bit values in D
MAX[(D), (M:M+1)]⇒D
N, Z, V, C bits reflect result of internal
compare [(D)–(M:M+1)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1A xb
18 1A xb ff
18 1A xb ee ff
18 1A xb
18 1A xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf

EMAXM oprx0_xysppc
EMAXM oprx9,xysppc
EMAXM oprx16,xysppc
EMAXM [D,xysppc]
EMAXM [oprx16,xysppc]

Extended maximum in M; put larger of
2
unsigned 16-bit values in M
MAX[(D), (M:M+1)]⇒M:M+1
N, Z, V, C bits reflect result of internal
compare [(D)–(M:M+1)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1E xb
18 1E xb ff
18 1E xb ee ff
18 1E xb
18 1E xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

EMIND oprx0_xysppc
EMIND oprx9,xysppc
EMIND oprx16,xysppc
EMIND [D,xysppc]
EMIND [oprx16,xysppc]

Extended minimum in D; put smaller
of
2 unsigned 16-bit values in D
MIN[(D), (M:M+1)]⇒D
N, Z, V, C bits reflect result of internal
compare [(D)–(M:M+1)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1B xb
18 1B xb ff
18 1B xb ee ff
18 1B xb
18 1B xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf

EMINM oprx0_xysppc
EMINM oprx9,xysppc
EMINM oprx16,xysppc
EMINM [D,xysppc]
EMINM [oprx16,xysppc]

Extended minimum in M; put smaller
of
2 unsigned 16-bit values in M
MIN[(D), (M:M+1)]⇒M:M+1
N, Z, V, C bits reflect result of internal
compare [(D)–(M:M+1)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1F xb
18 1F xb ff
18 1F xb ee ff
18 1F xb
18 1F xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

EMUL Extended multiply, unsigned
(D)×(Y)⇒Y:D; 16 by 16 to 32-bit

INH 13 ffO

EMULS Extended multiply, signed
(D)×(Y)⇒Y:D; 16 by 16 to 32-bit

INH 18 13 OfO
OffO  (if followed by
page 2 instruction)

EORA #opr8i
EORA opr8a
EORA opr16a
EORA oprx0_xysppc
EORA oprx9,xysppc
EORA oprx16,xysppc
EORA [D,xysppc]
EORA [oprx16,xysppc]

Exclusive OR A
(A)⊕(M)⇒A
or (A)⊕imm⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

88 ii
98 dd
B8 hh ll
A8 xb
A8 xb ff
A8 xb ee ff
A8 xb
A8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

EORB #opr8i
EORB opr8a
EORB opr16a
EORB oprx0_xysppc
EORB oprx9,xysppc
EORB oprx16,xysppc
EORB [D,xysppc]
EORB [oprx16,xysppc]

Exclusive OR B
(B)⊕(M)⇒B
or (B)⊕imm⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C8 ii
D8 dd
F8 hh ll
E8 xb
E8 xb ff
E8 xb ee ff
E8 xb
E8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ETBL oprx0_xysppc Extended table lookupand interpolate,
16-bit; (M:M+1)+
[(B)×((M+2:M+3)–(M:M+1))]⇒D

IDX 18 3F xb ORRffffffP

Before executing ETBL, initialize B with fractional part of lookup value; initialize index register to point to first table entry (M:M+1). No extensions or
indirect addressing allowed.

EXG abcdxysp,abcdxysp Exchangeregistercontents
(r1)⇔(r2) r1 and r2 same size
$00:(r1)⇒r2r1=8-bit; r2=16-bit
(r1L)⇔(r2)r1=16-bit; r2=8-bit

INH B7 eb P

FDIV Fractional divide; (D)÷(X)⇒X
remainder⇒D; 16 by 16-bit

INH 18 11 OffffffffffO

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ – ∆

– – – – ∆ ∆ – ∆

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ – ∆

– – – – – – – –

– – – – – ∆ ∆ ∆
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IBEQ abdxysp, rel9 Increment and branch if equal to 0
(counter)+1⇒counter
If (counter)=0, then branch

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

IBNE abdxysp, rel9 Increment and branch if not equal to 0
(counter)+1⇒counter
If (counter)≠0, then branch

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

IDIV Integer divide, unsigned; (D)÷(X)⇒X
Remainder⇒D; 16 by 16-bit

INH 18 10 OffffffffffO

IDIVS Integer divide, signed; (D)÷(X)⇒X
Remainder⇒D; 16 by 16-bit

INH 18 15 OffffffffffO

INC opr16a
INC oprx0_xysppc
INC oprx9,xysppc
INC oprx16,xysppc
INC [D,xysppc]
INC [oprx16,xysppc]
INCA
INCB

Increment M; (M)+1⇒M

Increment A; (A)+1⇒A
Increment B; (B)+1⇒B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

72 hh ll
62 xb
62 xb ff
62 xb ee ff
62 xb
62 xb ee ff
42
52

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

INSSame as LEAS 1,SP Increment SP; (SP)+1⇒SP IDX 1B 81 Pf

INX Increment X; (X)+1⇒X INH 08 O

INY Increment Y; (Y)+1⇒Y INH 02 O

JMP opr16a
JMP oprx0_xysppc
JMP oprx9,xysppc
JMP oprx16,xysppc
JMP [D,xysppc]
JMP [oprx16,xysppc]

Jump
Subroutine address⇒PC

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

06 hh ll
05 xb
05 xb ff
05 xb ee ff
05 xb
05 xb ee ff

PPP
PPP
PPP
fPPP
fIfPPP
fIfPPP

JSR opr8a
JSR opr16a
JSR oprx0_xysppc
JSR oprx9,xysppc
JSR oprx16,xysppc
JSR [D,xysppc]
JSR [oprx16,xysppc]

Jump to subroutine
(SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
Subroutine address⇒PC

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

17 dd
16 hh ll
15 xb
15 xb ff
15 xb ee ff
15 xb
15 xb ee ff

SPPP
SPPP
PPPS
PPPS
fPPPS
fIfPPPS
fIfPPPS

LBCC rel16Same as LBHS Long branch if C clear; if C=0, then
(PC)+4+rel⇒PC

REL 18 24 qq rr OPPP (branch)
OPO (no branch)

LBCS rel16Same as LBLO Long branch if C set; if C=1, then
(PC)+4+rel⇒PC

REL 18 25 qq rr OPPP (branch)
OPO (no branch)

LBEQ rel16 Long branch if equal; if Z=1, then
(PC)+4+rel⇒PC

REL 18 27 qq rr OPPP (branch)
OPO (no branch)

LBGE rel16 Long branch if ≥ 0, signed
If N⊕V=0, then (PC)+4+rel⇒PC

REL 18 2C qq rr OPPP (branch)
OPO (no branch)

LBGT rel16 Long branch if > 0, signed
If Z | (N⊕V)=0, then (PC)+4+rel⇒PC

REL 18 2E qq rr OPPP (branch)
OPO (no branch)

LBHI rel16 Long branch if higher, unsigned
If C | Z=0, then (PC)+4+rel⇒PC

REL 18 22 qq rr OPPP (branch)
OPO (no branch)

LBHS rel16Same as LBCC Long branch if higher or same,
unsigned; If C=0, (PC)+4+rel⇒PC

REL 18 24 qq rr OPPP (branch)
OPO (no branch)

LBLE rel16 Long branch if ≤ 0, signed; if
Z | (N⊕V)=1, then (PC)+4+rel⇒PC

REL 18 2F qq rr OPPP (branch)
OPO (no branch)

LBLO rel16Same as LBCS Long branch if lower, unsigned; if
C=1, then (PC)+4+rel⇒PC

REL 18 25 qq rr OPPP (branch)
OPO (no branch)

LBLS rel16 Long branch if lower or same,
unsigned; If C | Z=1, then
(PC)+4+rel⇒PC

REL 18 23 qq rr OPPP (branch)
OPO (no branch)

LBLT rel16 Long branch if < 0, signed
If N⊕V=1, then (PC)+4+rel⇒PC

REL 18 2D qq rr OPPP (branch)
OPO (no branch)

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – – – – –

– – – – – – – –

– – – – – ∆ 0 ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ –

– – – – – – – –

– – – – – ∆ – –

– – – – – ∆ – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –
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LBMI rel16 Long branch if minus
If N=1, then (PC)+4+rel⇒PC

REL 18 2B qq rr OPPP (branch)
OPO (no branch)

LBNE rel16 Long branch if not equal to 0
If Z=0, then (PC)+4+rel⇒PC

REL 18 26 qq rr OPPP (branch)
OPO (no branch)

LBPL rel16 Long branch if plus
If N=0, then (PC)+4+rel⇒PC

REL 18 2A qq rr OPPP (branch)
OPO (no branch)

LBRA rel16 Long branch always REL 18 20 qq rr OPPP

LBRN rel16 Long branch never REL 18 21 qq rr OPO

LBVC rel16 Long branch if V clear
If V=0,then (PC)+4+rel⇒PC

REL 18 28 qq rr OPPP (branch)
OPO (no branch)

LBVS rel16 Long branch if V set
If V=1,then (PC)+4+rel⇒PC

REL 18 29 qq rr OPPP (branch)
OPO (no branch)

LDAA #opr8i
LDAA opr8a
LDAA opr16a
LDAA oprx0_xysppc
LDAA oprx9,xysppc
LDAA oprx16,xysppc
LDAA [D,xysppc]
LDAA [oprx16,xysppc]

Load A
(M)⇒A
or imm⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

86 ii
96 dd
B6 hh ll
A6 xb
A6 xb ff
A6 xb ee ff
A6 xb
A6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

LDAB #opr8i
LDAB opr8a
LDAB opr16a
LDAB oprx0_xysppc
LDAB oprx9,xysppc
LDAB oprx16,xysppc
LDAB [D,xysppc]
LDAB [oprx16,xysppc]

Load B
(M)⇒B
or imm⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C6 ii
D6 dd
F6 hh ll
E6 xb
E6 xb ff
E6 xb ee ff
E6 xb
E6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

LDD #opr16i
LDD opr8a
LDD opr16a
LDD oprx0_xysppc
LDD oprx9,xysppc
LDD oprx16,xysppc
LDD [D,xysppc]
LDD [oprx16,xysppc]

Load D
(M:M+1)⇒A:B
or imm⇒A:B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CC jj kk
DC dd
FC hh ll
EC xb
EC xb ff
EC xb ee ff
EC xb
EC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

LDS #opr16i
LDS opr8a
LDS opr16a
LDS oprx0_xysppc
LDS oprx9,xysppc
LDS oprx16,xysppc
LDS [D,xysppc]
LDS [oprx16,xysppc]

Load SP
(M:M+1)⇒SP
or imm⇒SP

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CF jj kk
DF dd
FF hh ll
EF xb
EF xb ff
EF xb ee ff
EF xb
EF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

LDX #opr16i
LDX opr8a
LDX opr16a
LDX oprx0_xysppc
LDX oprx9,xysppc
LDX oprx16,xysppc
LDX [D,xysppc]
LDX [oprx16,xysppc]

Load X
(M:M+1)⇒X
or imm⇒X

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CE jj kk
DE dd
FE hh ll
EE xb
EE xb ff
EE xb ee ff
EE xb
EE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

LDY #opr16i
LDY opr8a
LDY opr16a
LDY oprx0_xysppc
LDY oprx9,xysppc
LDY oprx16,xysppc
LDY [D,xysppc]
LDY [oprx16,xysppc]

Load Y
(M:M+1)⇒Y
or imm⇒Y

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CD jj kk
DD dd
FD hh ll
ED xb
ED xb ff
ED xb ee ff
ED xb
ED xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –
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LEAS oprx0_xysppc
LEAS oprx9,xysppc
LEAS oprx16,xysppc

Load effective address into SP
EA⇒SP

IDX
IDX1
IDX2

1B xb
1B xb ff
1B xb ee ff

Pf
PO
PP

LEAX oprx0_xysppc
LEAX oprx9,xysppc
LEAX oprx16,xysppc

Load effective address into X
EA⇒X

IDX
IDX1
IDX2

1A xb
1A xb ff
1A xb ee ff

Pf
PO
PP

LEAY oprx0_xysppc
LEAY oprx9,xysppc
LEAY oprx16,xysppc

Load effective address into Y
EA⇒Y

IDX
IDX1
IDX2

19 xb
19 xb ff
19 xb ee ff

Pf
PO
PP

LSL opr16aSame as ASL
LSL oprx0_xysppc
LSL oprx9,xysppc
LSL oprx16,xysppc
LSL [D,xysppc]
LSL [oprx16,xysppc]
LSLASame as ASLA
LSLBSame as ASLB

Logical shift left M

Logical shift left A
Logical shift left B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff
48
58

rOPw
rPw
rPOw
frPPw
fIfrPw
fIPrPw
O
O

LSLDSame as ASLD Logical shift left D INH 59 O

LSR opr16a
LSR oprx0_xysppc
LSR oprx9,xysppc
LSR oprx16,xysppc
LSR [D,xysppc]
LSR [oprx16,xysppc]
LSRA
LSRB

Logical shift right M

Logical shift right A
Logical shift right B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

74 hh ll
64 xb
64 xb ff
64 xb ee ff
64 xb
64 xb ee ff
44
54

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

LSRD Logical shift right D INH 49 O

MAXA oprx0_xysppc
MAXA oprx9,xysppc
MAXA oprx16,xysppc
MAXA [D,xysppc]
MAXA [oprx16,xysppc]

Maximum in A; put larger of 2
unsigned 8-bit values in A
MAX[(A), (M)]⇒A
N, Z, V, C bits reflect result of internal
compare [(A)–(M)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 18 xb
18 18 xb ff
18 18 xb ee ff
18 18 xb
18 18 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf

MAXM oprx0_xysppc
MAXM oprx9,xysppc
MAXM oprx16,xysppc
MAXM [D,xysppc]
MAXM [oprx16,xysppc]

Maximum in M; put larger of 2
unsigned 8-bit values in M
MAX[(A), (M)]⇒M
N, Z, V, C bits reflect result of internal
compare [(A)–(M)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1C xb
18 1C xb ff
18 1C xb ee ff
18 1C xb
18 1C xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw

MEM Determine grade of membership;
µ (grade)⇒MY; (X)+4⇒X; (Y)+1⇒Y
If (A)<P1 or (A)>P2, then µ=0; else µ=
MIN[((A)–P1)×S1, (P2–(A))×S2, $FF]
(A)=current crisp input value; X points
at 4 data bytes (P1, P2, S1, S2) of a
trapezoidal membership function; Y
points at fuzzy input (RAM location)

Special 01 RRfOw

MINA oprx0_xysppc
MINA oprx9,xysppc
MINA oprx16,xysppc
MINA [D,xysppc]
MINA [oprx16,xysppc]

Minimum in A; put smaller of 2
unsigned 8-bit values in A
MIN[(A), (M)]⇒A
N, Z, V, C bits reflect result of internal
compare [(A)–(M)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 19 xb
18 19 xb ff
18 19 xb ee ff
18 19 xb
18 19 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf

MINM oprx0_xysppc
MINM oprx9,xysppc
MINM oprx16,xysppc
MINM [D,xysppc]
MINM [oprx16,xysppc]

Minimum in N; put smaller of two
unsigned 8-bit values in M
MIN[(A), (M)]⇒M
N, Z, V, C bits reflect result of internal
compare [(A)–(M)]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1D xb
18 1D xb ff
18 1D xb ee ff
18 1D xb
18 1D xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – – – – –

– – – – – – – –

– – – – – – – –

C
0

b7 b0

– – – – ∆ ∆ ∆ ∆

C
0

b7 b0A Bb7b0
• • • • • •

– – – – ∆ ∆ ∆ ∆

C
0

b7 b0

– – – – 0 ∆ ∆ ∆

Cb7 b0A Bb7b0
0

– – – – 0 ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – ? – ? ? ? ?

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆
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MOVB #opr8, opr16a
MOVB #opr8i, oprx0_xysppc
MOVB opr16a, opr16a
MOVB opr16a, oprx0_xysppc
MOVB oprx0_xysppc, opr16a
MOVB oprx0_xysppc, oprx0_xysppc

Move byte
Memory-to-memory 8-bit byte-move
(M1)⇒M2
First operand specifies byte to move

IMM-EXT
IMM-IDX
EXT-EXT
EXT-IDX
IDX-EXT
IDX-IDX

18 0B ii hh ll
18 08 xb ii
18 0C hh ll hh ll
18 09 xb hh ll
18 0D xb hh ll
18 0A xb xb

OPwP
OPwO
OrPwPO
OPrPw
OrPwP
OrPwO

MOVW #oprx16, opr16a
MOVW #opr16i, oprx0_xysppc
MOVW opr16a, opr16a
MOVW opr16a, oprx0_xysppc
MOVW oprx0_xysppc, opr16a
MOVW oprx0_xysppc, oprx0_xysppc

Move word
Memory-to-memory16-bitword-move
(M1:M1+1)⇒M2:M2+1
First operand specifies word to move

IMM-EXT
IMM-IDX
EXT-EXT
EXT-IDX
IDX-EXT
IDX-IDX

18 03 jj kk hh ll
18 00 xb jj kk
18 04 hh ll hh ll
18 01 xb hh ll
18 05 xb hh ll
18 02 xb xb

OPWPO
OPPW
ORPWPO
OPRPW
ORPWP
ORPWO

MUL Multiply, unsigned
(A)×(B)⇒A:B; 8 by 8-bit

INH 12 O

NEG opr16a
NEG oprx0_xysppc
NEG oprx9,xysppc
NEG oprx16,xysppc
NEG [D,xysppc]
NEG [oprx16,xysppc]
NEGA
NEGB

Negate M; 0–(M)⇒M or (M)+1⇒M

Negate A; 0–(A)⇒A or (A)+1⇒A
Negate B; 0–(B)⇒B or (B)+1⇒B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

70 hh ll
60 xb
60 xb ff
60 xb ee ff
60 xb
60 xb ee ff
40
50

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

NOP No operation INH A7 O

ORAA #opr8i
ORAA opr8a
ORAA opr16a
ORAA oprx0_xysppc
ORAA oprx9,xysppc
ORAA oprx16,xysppc
ORAA [D,xysppc]
ORAA [oprx16,xysppc]

OR accumulator A
(A) | (M)⇒A
or (A) | imm⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8A ii
9A dd
BA hh ll
AA xb
AA xb ff
AA xb ee ff
AA xb
AA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ORAB #opr8i
ORAB opr8a
ORAB opr16a
ORAB oprx0_xysppc
ORAB oprx9,xysppc
ORAB oprx16,xysppc
ORAB [D,xysppc]
ORAB [oprx16,xysppc]

OR accumulator B
(B) | (M)⇒B
or (B) | imm⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CA ii
DA dd
FA hh ll
EA xb
EA xb ff
EA xb ee ff
EA xb
EA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

ORCC #opr8i OR CCR; (CCR) | imm⇒CCR IMM 14 ii P

PSHA Push A; (SP)–1⇒SP; (A)⇒MSP INH 36 Os

PSHB Push B; (SP)–1⇒SP; (B)⇒MSP INH 37 Os

PSHC Push CCR; (SP)–1⇒SP;
(CCR)⇒MSP

INH 39 Os

PSHD Push D
(SP)–2⇒SP; (A:B)⇒MSP:MSP+1

INH 3B OS

PSHX Push X
(SP)–2⇒SP; (XH:XL)⇒MSP:MSP+1

INH 34 OS

PSHY Push Y
(SP)–2⇒SP; (YH:YL)⇒MSP:MSP+1

INH 35 OS

PULA Pull A
(MSP)⇒A; (SP)+1⇒SP

INH 32 ufO

PULB Pull B
(MSP)⇒B; (SP)+1⇒SP

INH 33 ufO

PULC Pull CCR
(MSP)⇒CCR; (SP)+1⇒SP

INH 38 ufO

PULD Pull D
(MSP:MSP+1)⇒A:B; (SP)+2⇒SP

INH 3A UfO

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – – – – –

– – – – – – – –

– – – – – – – ∆

– – – – ∆ ∆ ∆ ∆

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

⇑ – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

– – – – – – – –
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PULX Pull X
(MSP:MSP+1)⇒XH:XL; (SP)+2⇒SP

INH 30 UfO

PULY Pull Y
(MSP:MSP+1)⇒YH:YL; (SP)+2⇒SP

INH 31 UfO

REV Rule evaluation, unweighted; find
smallest rule input; store to rule
outputs unless fuzzy output is larger

Special 18 3A Orf(t^tx)O*
ff+Orft^**

*The t^tx loop is executed once for each element in the rule list. The ^  denotes a check for pending interrupt requests.
**These are additional cycles caused by an interrupt: ff is the exit sequence and Orft^  is the re-entry sequence.

REVW Rule evaluation, weighted; rule
weights optional; find smallest rule
input; store to rule outputs unless
fuzzy output is larger

Special 18 3B ORf(t^Tx)O*
or
ORf(r^ffRf)O**
ffff+ORft^***
ffff+ORfr^****

*With weighting not enabled, the t^Tx loop is executed once for each element in the rule list. The ^  denotes a check for pending interrupt requests.
**With weighting enabled, the t^Tx  loop is replaced by r^ffRf .
***Additional cycles caused by an interrupt when weighting is not enabled: ffff  is the exit sequence and ORft^  is the re-entry sequence.
**** Additional cycles caused by an interrupt when weighting is enabled: ffff  is the exit sequence and ORfr^  is the re-entry sequence.

ROL opr16a
ROL oprx0_xysppc
ROL oprx9,xysppc
ROL oprx16,xysppc
ROL [D,xysppc]
ROL [oprx16,xysppc]
ROLA
ROLB

Rotate left M

Rotate left A
Rotate left B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

75 hh ll
65 xb
65 xb ff
65 xb ee ff
65 xb
65 xb ee ff
45
55

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

ROR opr16a
ROR oprx0_xysppc
ROR oprx9,xysppc
ROR oprx16,xysppc
ROR [D,xysppc]
ROR [oprx16,xysppc]
RORA
RORB

Rotate right M

Rotate right A
Rotate right B

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

76 hh ll
66 xb
66 xb ff
66 xb ee ff
66 xb
66 xb ee ff
46
56

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

RTC Return from call; (MSP)⇒PPAGE
(SP)+1⇒SP;
(MSP:MSP+1)⇒PCH:PCL
(SP)+2⇒SP

INH 0A uUnfPPP

RTI Return from interrupt
(MSP)⇒CCR; (SP)+1⇒SP
(MSP:MSP+1)⇒B:A;(SP)+2⇒SP
(MSP:MSP+1)⇒XH:XL;(SP)+4⇒SP
(MSP:MSP+1)⇒PCH:PCL;(SP)+2⇒SP
(MSP:MSP+1)⇒YH:YL;(SP)+4⇒SP

INH 0B uUUUUPPP
or
uUUUUfVfPPP*

*RTI takes 11 cycles if an interrupt is pending.

RTS Return from subroutine
(MSP:MSP+1)⇒PCH:PCL;
(SP)+2⇒SP

INH 3D UfPPP

SBA Subtract B from A; (A)–(B)⇒A INH 18 16 OO

SBCA #opr8i
SBCA opr8a
SBCA opr16a
SBCA oprx0_xysppc
SBCA oprx9,xysppc
SBCA oprx16,xysppc
SBCA [D,xysppc]
SBCA [oprx16,xysppc]

Subtract with carry from A
(A)–(M)–C⇒A
or (A)–imm–C⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

82 ii
92 dd
B2 hh ll
A2 xb
A2 xb ff
A2 xb ee ff
A2 xb
A2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – – – – –

– – – – – – – –

– – ? – ? ? ∆ ?

– – ? – ? ? ∆ !

C b7 b0

– – – – ∆ ∆ ∆ ∆

Cb7b0

– – – – ∆ ∆ ∆ ∆

– – – – – – – –

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

– – – – – – – –

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆
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SBCB #opr8i
SBCB opr8a
SBCB opr16a
SBCB oprx0_xysppc
SBCB oprx9,xysppc
SBCB oprx16,xysppc
SBCB [D,xysppc]
SBCB [oprx16,xysppc]

Subtract with carry from B
(B)–(M)–C⇒B
or (B)–imm–C⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C2 ii
D2 dd
F2 hh ll
E2 xb
E2 xb ff
E2 xb ee ff
E2 xb
E2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

SECSame as ORCC #$01 Set C bit IMM 14 01 P

SEISame as ORCC #$10 Set I bit IMM 14 10 P

SEVSame as ORCC #$02 Set V bit IMM 14 02 P

SEX abc,dxyspSame as TFR r1, r2 Sign extend; 8-bit r1 to 16-bit r2
$00:(r1)⇒r2 if bit 7 of r1 is 0
$FF:(r1)⇒r2 if bit 7 of r1 is 1

INH B7 eb P

STAA opr8a
STAA opr16a
STAA oprx0_xysppc
STAA oprx9,xysppc
STAA oprx16,xysppc
STAA [D,xysppc]
STAA [oprx16,xysppc]

Store accumulator A
(A)⇒M

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5A dd
7A hh ll
6A xb
6A xb ff
6A xb ee ff
6A xb
6A xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw

STAB opr8a
STAB opr16a
STAB oprx0_xysppc
STAB oprx9,xysppc
STAB oprx16,xysppc
STAB [D,xysppc]
STAB [oprx16,xysppc]

Store accumulator B
(B)⇒M

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5B dd
7B hh ll
6B xb
6B xb ff
6B xb ee ff
6B xb
6B xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw

STD opr8a
STD opr16a
STD oprx0_xysppc
STD oprx9,xysppc
STD oprx16,xysppc
STD [D,xysppc]
STD [oprx16,xysppc]

Store D
(A:B)⇒M:M+1

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5C dd
7C hh ll
6C xb
6C xb ff
6C xb ee ff
6C xb
6C xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

STOP Stop processing; (SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
(SP)–2⇒SP; (YH:YL)⇒MSP:MSP+1
(SP)–2⇒SP; (XH:XL)⇒MSP:MSP+1
(SP)–2⇒SP; (B:A)⇒MSP:MSP+1
(SP)–1⇒SP; (CCR)⇒MSP
Stop all clocks

INH 18 3E OOSSSSsf (enter
stop mode)

fVfPPP  (exit stop
mode)

ff  (continue stop
mode)

OO (if stop mode
disabled by S=1)

STS opr8a
STS opr16a
STS oprx0_xysppc
STS oprx9,xysppc
STS oprx16,xysppc
STS [D,xysppc]
STS [oprx16,xysppc]

Store SP
(SPH:SPL)⇒M:M+1

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5F dd
7F hh ll
6F xb
6F xb ff
6F xb ee ff
6F xb
6F xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

STX opr8a
STX opr16a
STX oprx0_xysppc
STX oprx9,xysppc
STX oprx16,xysppc
STX [D,xysppc]
STX [oprx16,xysppc]

Store X
(XH:XL)⇒M:M+1

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5E dd
7E hh ll
6E xb
6E xb ff
6E xb ee ff
6E xb
6E xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

– – – – – – – 1

– – – 1 – – – –

– – – – – – 1 –

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –

– – – – – – – –

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ 0 –
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STY opr8a
STY opr16a
STY oprx0_xysppc
STY oprx9,xysppc
STY oprx16,xysppc
STY [D,xysppc]
STY [oprx16,xysppc]

Store Y
(YH:YL)⇒M:M+1

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5D dd
7D hh ll
6D xb
6D xb ff
6D xb ee ff
6D xb
6D xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

SUBA #opr8i
SUBA opr8a
SUBA opr16a
SUBA oprx0_xysppc
SUBA oprx9,xysppc
SUBA oprx16,xysppc
SUBA [D,xysppc]
SUBA [oprx16,xysppc]

Subtract from A
(A)–(M)⇒A
or (A)–imm⇒A

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

80 ii
90 dd
B0 hh ll
A0 xb
A0 xb ff
A0 xb ee ff
A0 xb
A0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

SUBB #opr8i
SUBB opr8a
SUBB opr16a
SUBB oprx0_xysppc
SUBB oprx9,xysppc
SUBB oprx16,xysppc
SUBB [D,xysppc]
SUBB [oprx16,xysppc]

Subtract from B
(B)–(M)⇒B
or (B)–imm⇒B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C0 ii
D0 dd
F0 hh ll
E0 xb
E0 xb ff
E0 xb ee ff
E0 xb
E0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

SUBD #opr16i
SUBD opr8a
SUBD opr16a
SUBD oprx0_xysppc
SUBD oprx9,xysppc
SUBD oprx16,xysppc
SUBD [D,xysppc]
SUBD [oprx16,xysppc]

Subtract from D
(A:B)–(M:M+1)⇒A:B
or (A:B)–imm⇒A:B

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

83 jj kk
93 dd
B3 hh ll
A3 xb
A3 xb ff
A3 xb ee ff
A3 xb
A3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

SWI Software interrupt; (SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
(SP)–2⇒SP; (YH:YL)⇒MSP:MSP+1
(SP)–2⇒SP; (XH:XL)⇒MSP:MSP+1
(SP)–2⇒SP; (B:A)⇒MSP:MSP+1
(SP)–1⇒SP; (CCR)⇒MSP;1⇒I
(SWI vector)⇒PC

INH 3F VSPSSPSsP*

*The CPU also uses VSPSSPSsP for hardware interrupts and unimplemented opcode traps.

TAB Transfer A to B; (A)⇒B INH 18 0E OO

TAP Transfer A to CCR; (A)⇒CCR
Assembled as TFR A, CCR

INH B7 02 P

TBA Transfer B to A; (B)⇒A INH 18 0F OO

TBEQ abdxysp,rel9 Test and branch if equal to 0
If (counter)=0, then (PC)+2+rel⇒PC

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

TBL oprx0_xysppc Table lookup and interpolate, 8-bit
(M)+[(B)×((M+1)–(M))]⇒A

IDX 18 3D xb ORfffP

TBNE abdxysp,rel9 Test and branch if not equal to 0
If (counter)≠0, then (PC)+2+rel⇒PC

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

TFR abcdxysp,abcdxysp Transfer from register to register
(r1)⇒r2r1 and r2 same size
$00:(r1)⇒r2r1=8-bit; r2=16-bit
(r1L)⇒r2r1=16-bit; r2=8-bit

INH B7 eb P

or

TPASame as TFR CCR ,A Transfer CCR to A; (CCR)⇒A INH B7 20 P

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – – ∆ ∆ 0 –

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – – ∆ ∆ ∆ ∆

– – – 1 – – – –

– – – – ∆ ∆ 0 –

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

– – – – ∆ ∆ 0 –

– – – – – – – –

– – – – ∆ ∆ – ∆

– – – – – – – –

– – – – – – – –

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

– – – – – – – –
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TRAP trapnum Trapunimplementedopcode;
(SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
(SP)–2⇒SP; (YH:YL)⇒MSP:MSP+1
(SP)–2⇒SP; (XH:XL)⇒MSP:MSP+1
(SP)–2⇒SP; (B:A)⇒MSP:MSP+1
(SP)–1⇒SP; (CCR)⇒MSP
1⇒I; (trap vector)⇒PC

INH 18 tn
tn = $30–$39
or
tn = $40–$FF

OVSPSSPSsP

TST opr16a
TST oprx0_xysppc
TST oprx9,xysppc
TST oprx16,xysppc
TST [D,xysppc]
TST [oprx16,xysppc]
TSTA
TSTB

Test M; (M)–0

Test A; (A)–0
Test B; (B)–0

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]
INH
INH

F7 hh ll
E7 xb
E7 xb ff
E7 xb ee ff
E7 xb
E7 xb ee ff
97
D7

rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
O
O

TSXSame as TFR SP,X Transfer SP to X; (SP)⇒X INH B7 75 P

TSYSame as TFR SP,Y Transfer SP to Y; (SP)⇒Y INH B7 76 P

TXSSame as TFR X,SP Transfer X to SP; (X)⇒SP INH B7 57 P

TYSSame as TFR Y,SP Transfer Y to SP; (Y)⇒SP INH B7 67 P

WAI Wait for interrupt; (SP)–2⇒SP
RTNH:RTNL⇒MSP:MSP+1
(SP)–2⇒SP; (YH:YL)⇒MSP:MSP+1
(SP)–2⇒SP; (XH:XL)⇒MSP:MSP+1
(SP)–2⇒SP; (B:A)⇒MSP:MSP+1
(SP)–1⇒SP; (CCR)⇒MSP

INH 3E OSSSSsf
(before interrupt)

fVfPPP
(after interrupt)

or

or

WAV Calculate weighted average; sum of
products (SOP) and sum of weights
(SOW)*

Special 18 3C Of(frr^ffff)O**
SSS+UUUrr^***

*Initialize B, X, and Y: B=number of elements; X points at first element in Si list; Y points at first element in Fi list. All Si and Fi elements are 8-bit values.
**The frr^ffff  sequence is the loop for one iteration of SOP and SOW accumulation. The ^  denotes a check for pending interrupt requests.
***Additional cycles caused by an interrupt: SSSis the exit sequence and UUUrr^ is the re-entry sequence. Intermediate values use six stack bytes.

wavr* Resume executing interrupted WAV Special 3C UUUrr^ffff(frr^
ffff)O**
SSS+UUUrr^***

*wavr is a pseudoinstruction that recovers intermediate results from the stack rather than initializing them to 0.
**The frr^ffff  sequence is the loop for one iteration of SOP and SOW recovery. The ^  denotes a check for pending interrupt requests.
***These are additional cycles caused by an interrupt: SSS is the exit sequence and UUUrr^  is the re-entry sequence.

XGDXSame as EXG D, X Exchange D with X; (D)⇔(X) INH B7 C5 P

XGDYSame as EXG D, Y Exchange D with Y; (D)⇔(Y) INH B7 C6 P

Source Form Operation Address
Mode

Machine
Coding (Hex) Access Detail S X H I N Z V C

– – – 1 – – – –

– – – – ∆ ∆ 0 0

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – 1 – – – –

– 1 – 1 – – – –

Fi
i 1=

B

∑ X⇒

SiFi
i 1=

B

∑ Y:D⇒

– – ? – ? ∆ ? ?

– – ? – ? ∆ ? ?

– – – – – – – –

– – – – – – – –
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5.4.1  Register and Memory Notation

Table 5-2  Register and Memory Notation

A or a Accumulator A

An Bit n of accumulator A

B or b Accumulator B

Bn Bit n of accumulator B

D or d Accumulator D

Dn Bit n of accumulator D

X or x Index register X

XH High byte of index register X

XL Low byte of index register X

Xn Bit n of index register X

Y or y Index register Y

YH High byte of index register Y

YL Low byte of index register Y

Yn Bit n of index register Y

SP or sp Stack pointer

SPn Bit n of stack pointer

PC or pc Program counter

PCH High byte of program counter

PCL Low byte of program counter

CCR or c Condition code register

M Address of 8-bit memory location

Mn Bit n of byte at memory location M

Rn Bit n of the result of an arithmetic or logical operation

In Bit n of the intermediate result of an arithmetic or logical operation

RTNH High byte of return address

RTNL Low byte of return address

( ) Contents of
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5.4.2  Source Form Notation

TheSource Form column of the summary inTable 5-1  gives essential information about assembler
source forms. For complete information about writing source files for a particular assembler, refer
documentation provided by the assembler vendor.

Everything in theSource Form column,except expressions in italic characters, is literal information
which must appear in the assembly source file exactly as shown. The initial 3- to 5-letter mnemon
always a literal expression. All commas, pound signs (#), parentheses, square brackets ( [ or ] ), plus signs
(+), minus signs (–), and the register designation (A, B, D), are literal characters.

The groups of italic characters shown inTable 5-3  represent variable information to be supplied by th
programmer. These groups can include any alphanumeric character or the underscore character, bu
include a space or comma. For example, the groupsxysppcandoprx0_xysppcare both valid, but the two
groupsoprx0 xysppc are not valid because there is a space between them.

Table 5-3  Source Form Notation

abc Register designator for A, B, or CCR

abcdxysp Register designator for A, B, CCR, D, X, Y, or SP

abd Register designator for A, B, or D

abdxysp Register designator for A, B, D, X, Y, or SP

dxysp Register designator for D, X, Y, or SP

msk8
8-bit mask value
Some assemblers require the # symbol before the mask value.

opr8i 8-bit immediate value

opr16i 16-bit immediate value

opr8a 8-bit address value used with direct address mode

opr16a 16-bit address value

oprx0_xysp Indexed addressing postbyte code:
oprx3,–xysp — Predecrement X , Y, or SP by 1–8
oprx3,+xysp — Preincrement X , Y, or SP by 1–8
oprx3,xysp– — Postdecrement X, Y, or SP by 1–8
oprx3,xysp+ — Postincrement X, Y, or SP by 1–8
oprx5,xysppc — 5-bit constant offset from X, Y, SP, or PC
abd,xysppc — Accumulator A, B, or D offset from X, Y, SP, or PC

oprx3 Any positive integer from 1 to 8 for pre/post increment/decrement

oprx5 Any integer from –16 to +15

oprx9 Any integer from –256 to +255

oprx16 Any integer from –32,768 to +65,535

page
8-bit value for PPAGE register
Some assemblers require the # symbol before this value.

rel8 Label of branch destination within –256 to +255 locations

rel9 Label of branch destination within –512 to +511 locations

rel16 Any label within the 64K byte memory space

trapnum Any 8-bit integer from $30 to $39 or from $40 to $FF

xysp Register designator for X or Y or SP

xysppc Register designator for X or Y or SP or PC
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5.4.3  Operation Notation

5.4.4  Address Mode Notation

Table 5-4  Operation Notation

+ Add

– Subtract

• AND

| OR

⊕ Exclusive OR

× Multiply

÷ Divide

: Concatenate

⇒ Transfer

⇔ Exchange

Table 5-5  Address Mode Notation

INH Inherent; no operands in instruction stream

IMM Immediate; operand immediate value in instruction stream

DIR Direct; operand is lower byte of address from $0000 to $00FF

EXT Operand is a 16-bit address

REL Two’s complement relative offset; for branch instructions

IDX Indexed (no extension bytes); includes:
5-bit constant offset from X, Y, SP or PC
Pre/post increment/decrement by 1–8
Accumulator A, B, or D offset

IDX1 9-bit signed offset from X, Y, SP, or PC; 1 extension byte

IDX2 16-bit signed offset from X, Y, SP, or PC; 2 extension bytes

[IDX2] Indexed-indirect; 16-bit offset from X, Y, SP, or PC

[D, IDX] Indexed-indirect; accumulator D offset from X, Y, SP, or PC
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n

5.4.5  Machine Code Notation

In theMachine Code (Hex)column of the summary inTable 5-1 , digits 0–9 and upper case letters A–F
represent hexadecimal values. Pairs of lower-case letters represent 8-bit values as shown inTable 5-6 .

5.4.6  Access Detail Notation

A single-letter code in theAccess Detailcolumn ofTable 5-1 represents a single CPU access cycle. A
upper-case letter indicates a 16-bit access.

Table 5-6  Machine Code Notation

dd 8-bit direct address from $0000 to $00FF; high byte is $00

ee High byte of a 16-bit constant offset for indexed addressing

eb Exchange/transfer postbyte

ff
Low eight bits of a 9-bit signed constant offset in indexed addressing, or low byte of a 16-bit
constant offset in indexed addressing

hh High byte of a 16-bit extended address

ii 8-bit immediate data value

jj High byte of a 16-bit immediate data value

kk Low byte of a 16-bit immediate data value

lb Loop primitive (DBNE) postbyte

ll Low byte of a 16-bit extended address

mm
8-bit immediate mask value for bit manipulation instructions; bits that are set indicate bits to be
affected

pg Program page or bank number used in CALL instruction

qq High byte of a 16-bit relative offset for long branches

tn Trap number from $30 to $39 or from $40 to $FF

rr
Signed relative offset $80 (–128) to $7F (+127) relative to the byte following the relative offset byte,
or low byte of a 16-bit relative offset for long branches

xb Indexed addressing postbyte

Table 5-7  Access Detail Notation

f Free cycle. During an f  cycle, the CPU does not use the bus. An f  cycle is always one cycle of the
system bus clock. An f cycle can be used by a queue controller or the background debug system to
perform a single-cycle access without disturbing the CPU.

g Read PPAGE register. A g cycle is used only in CALL instructions and is not visible on the external
bus. Since PPAGE is an internal 8-bit register, a g cycle is never stretched.

I Read indirect pointer. Indexed-indirect instructions use the 16-bit indirect pointer from memory to
address the instruction operand. An I  cycle is a 16-bit read that can be aligned or misaligned. An I
cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the
corresponding data is stored in external memory. There can be additional stretching when the
address space is assigned to a chip-select circuit programmed for slow memory. An I  cycle is also
stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle
misaligned access.
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i Read indirect PPAGE value. An i  cycle is used only in indexed-indirect CALL instructions. The 8-bit
PPAGE value for the CALL destination is fetched from an indirect memory location. An i  cycle is
stretched only when controlled by a chip-select circuit that is programmed for slow memory.

n Write PPAGE register. An n cycle is used only in CALL and RTC instructions to write the destination
value of the PPAGE register and is not visible on the external bus. Since the PPAGE register is an
internal 8-bit register, an n cycle is never stretched.

O Optional cycle. An Ocycle adjusts instruction alignment in the instruction queue. An Ocycle can be a
free cycle (f ) or a program word access cycle (P). When the first byte of an instruction with an odd
number of bytes is misaligned, the O cycle becomes a P cycle to maintain queue order. If the first
byte is aligned, the O cycle is an f  cycle.

The $18 prebyte for a page-two opcode is treated as a special one-byte instruction. If the prebyte is
misaligned, the O cycle at the beginning of the instruction becomes a P cycle to maintain queue
order. If the prebyte is aligned, the O cycle is an f  cycle. If the instruction has an odd number of
bytes, it has a second O cycle at the end. If the first O cycle is a P cycle (prebyte misaligned), the
second Ocycle is an f cycle. If the first Ocycle is an f cycle (prebyte aligned), the second Ocycle is
a P cycle.

An Ocycle that becomes a P cycle can be extended to two bus cycles if the MCU is operating with an
8-bit external data bus and the program is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
An O cycle that becomes an f  cycle is never stretched.

P Program word access. Program information is fetched as aligned 16-bit words. A P cycle is extended
to two bus cycles if the MCU is operating with an 8-bit external data bus and the program is stored
externally. There can be additional stretching when the address space is assigned to a chip-select
circuit programmed for slow memory.

r 8-bit data read. An r cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

R 16-bit data read. An R cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
An R cycle is also stretched if it corresponds to a misaligned access to a memory that is not
designed for single-cycle misaligned access.

s Stack 8-bit data. An s cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

S Stack 16-bit data. An S cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external memory. There can be additional stretching if the
address space is assigned to a chip-select circuit programmed for slow memory. An S cycle is also
stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle
misaligned access. The internal RAM is designed to allow single cycle misaligned word access.

w 8-bit data write. A w cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

W 16-bit data write. A W cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
A Wcycle is also stretched if it corresponds to a misaligned access to a memory that is not designed
for single-cycle misaligned access.

u Unstack 8-bit data. A W cycle is stretched only when controlled by a chip-select circuit programmed
for slow memory.

Table 5-7  Access Detail Notation (Continued)
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U Unstack 16-bit data. A U cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external memory. There can be additional stretching
when the address space is assigned to a chip-select circuit programmed for slow memory. A U cycle
is also stretched if it corresponds to a misaligned access to a memory that is not designed for
single-cycle misaligned access. The internal RAM is designed to allow single-cycle misaligned word
access.

V 16-bit vector fetch. Vectors are always aligned 16-bit words. A V cycle is extended to two bus cycles
if the MCU is operating with an 8-bit external data bus and the program is stored in external memory.
There can be additional stretching when the address space is assigned to a chip-select circuit
programmed for slow memory.

t 8-bit conditional read. A t cycle is either a data read cycle or a free cycle, depending on the data and
flow of the REVW instruction. A t  cycle is stretched only when controlled by a chip-select circuit
programmed for slow memory.

T 16-bit conditional read. A T cycle is either a data read cycle or a free cycle, depending on the data
and flow of the REV or REVW instruction. A T cycle is extended to two bus cycles if the MCU is
operating with an 8-bit external data bus and the corresponding data is stored in external memory.
There can be additional stretching when the address space is assigned to a chip-select circuit
programmed for slow memory. A T cycle is also stretched if it corresponds to a misaligned access to
a memory that is not designed for single-cycle misaligned access.

x 8-bit conditional write. An x  cycle is either a data write cycle or a free cycle, depending on the data
and flow of the REV or REVW instruction. An x  cycle is stretched only when controlled by a
chip-select circuit programmed for slow memory.

Special Notation for Branch Taken/Not Taken
PPP/P A short branch requires three cycles if taken, one cycle if not taken. Since the instruction consists of

a single word containing both an opcode and an 8-bit offset, the not-taken case is simple — the
queue advances, another program word fetch is made, and execution continues with the next
instruction. The taken case requires that the queue be refilled so that execution can continue at a
new address. First, the effective address of the destination is determined, then the CPU performs
three program word fetches from that address.

OPPP/OPO A long branch requires four cycles if taken, three cycles if not taken. An O cycle is required because
all long branches are page two opcodes and thus include the $18 prebyte. The prebyte is treated as
a one-byte instruction. If the prebyte is misaligned, the O cycle is a P cycle; if the prebyte is aligned,
the O cycle is an f  cycle. As a result, both the taken and not-taken cases use one O cycle for the
prebyte. In the not-taken case, the queue must advance so that execution can continue with the next
instruction, and another O cycle is required to maintain the queue. The taken case requires that the
queue be refilled so that execution can continue at a new address. First, the effective address of the
destination is determined, then the CPU performs three program word fetches from that address.

Table 5-7  Access Detail Notation (Continued)
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5.4.7  Condition Code State Notation

5.5  External Visibility Of Instruction Queue

The instruction queue buffers program information and increases instruction throughput. The que
consists of three 16-bit stages. Program information is always fetched in aligned 16-bit words. Norm
at least three bytes of program information are available to the CPU when instruction execution b

Program information is fetched and queued a few cycles before it is used by the CPU. In order to m
cycle-by-cycle CPU activity, it is necessary to externally reconstruct what is happening in the instru
queue.

Two external pins, IPIPE[1:0], provide time-multiplexed information about data movement in the q
and instruction execution. To complete the picture for system debugging, it is also necessary to in
program information and associated addresses in the reconstructed queue.

The instruction queue and cycle-by-cycle activity can be reconstructed in real time or from trace h
captured by a logic analyzer. However, neither scheme can be used to stop the CPU at a specific
instruction. By the time an operation is visible outside the system, the instruction has already beg
execution. A separate instruction tagging mechanism is provided for this purpose. A tag follows th
information in the queue as the queue is advanced. During debugging, the CPU enters active back
debug mode when a tagged instruction reaches the head of the queue, rather than executing the 
instruction. For more information about tagging, refer to14.4.8 Instruction Tagging.

5.5.1  Instruction Queue Status Signals

The IPIPE[1:0] signals carry time-multiplexed information about data movement and instruction
execution during normal operation. The signals are available on two multifunctional device pins. D
reset, the pins are mode-select inputs MODA and MODB. After reset, information on the pins doe
become valid until an instruction reaches stage two of the queue.

To reconstruct the queue, the information carried by the status signals must be captured external
general, data-movement and execution-start information are considered to be distinct two-bit value
the low bit on IPIPE0 and the high bit on IPIPE1. Data-movement information is available when E c
is high or on falling edges of the E clock; execution-start information is available when E clock is lo
on rising edges of the E clock, as shown inFigure 5-1 . Data-movement information refers to data on th

Table 5-8  Condition Code State Notation

– Not changed by operation

0 Cleared by operation

1 Set by operation

∆ Set or cleared by operation

⇓ May be cleared or remain set, but not set by operation

⇑ May be set or remain cleared, but not cleared by operation

? May be changed by operation but final state not defined

! Used for a special purpose
126



Core User Guide — S12CPU15UG V1.2

stage

with
bus. Execution-start information is delayed one bus cycle to guarantee the indicated opcode is in 
three.Table 5-9  summarizes the information encoded on the IPIPE[1:0] pins.

Figure 5-1  Queue Status Signal Timing

Data movement status is valid when the E clock is high and is represented by two states:

• No movement — There is no data shifting in the queue.

• Advance and load from data bus — The queue shifts up one stage with stage one being filled
the data on the read data bus.

Execution start status is valid when the E clock is low and is represented by four states:

• No start — Execution of the current instruction continues.

• Start interrupt — An interrupt sequence has begun.

NOTE: The start-interrupt state is indicated when an interrupt request or tagged
instruction alters program flow. SWI and TRAP instructions are part of normal
program flow and are indicated as start even or start odd depending on their
alignment. Since they are present in the queue, they can be tracked in an external
queue rebuild. An external event that interrupts program flow is indeterministic.
Program data is not present in the queue until after the vector jump.

• Start even instruction — The current opcode is in the high byte of stage three of the queue.

• Start odd instruction — The current opcode is in the low byte of stage three of the queue.

Table 5-9  IPIPE[1:0] Decoding when E Clock is High

Data Movement
(capture at E fall) Mnemonic Meaning

0:0 — No movement

CPU CLOCK

E CLOCK

DATA[15:0]

T2 T4 T2 T4T4 T2

EX EX EXDMDM

PIPE[1:0]

NONE SEV SODNONEALD

PROGRAM DATA OPERAND OR FREE CYCLE PROGRAM DATA

DM

ALD

STAGE THREE

STAGE TWO

STAGE ONE A

A B

B

C

C

AD
A

T
A

00 10 110010 10

ALD — Advance and load data
SEV — Start even instruction
SOD — Start odd instruction
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The execution-start status signals are delayed by one E clock cycle to allow a lagging program fe
queue advance. Therefore the execution-start status always refers to the data in stage three of th

The advance and load from bus signal can be used as a load-enable to capture the instruction word
data bus. This signal is effectively the queue advance signal inside the CPU. Program data is reg
into stage one on the rising edge of t4 when queue advance is asserted.

5.5.2  No Movement (0:0)

The 0:0 state at the falling edge of E indicates that there is no data movement in the instruction qu
during the current cycle. The 0:0 state at the rising edge of E indicates continuation of an instructi
interrupt sequence during the previous cycle.

5.5.3  ALD — Advance and Load from Data Bus (1:0)

The three-stage instruction queue is advanced by one word and stage one is refilled with a word of pr
information from the data bus. The CPU requested the information two bus cycles earlier but, due to
delays, the information was not available until the E cycle immediately prior to the ALD.

5.5.4  INT — Start Interrupt (0:1)

This state indicates program flow has changed to an interrupt sequence. Normally this cycle is a r
the interrupt vector. However, in systems that have interrupt vectors in external memory and an 8-b
bus, this cycle reads only the lower byte of the 16-bit interrupt vector.

5.5.5  SEV — Start Even Instruction (1:0)

This state indicates that the instruction is in the even (high) half of the word in stage three of the instru
queue. The queue treats the $18 prebyte of an instruction on page two of the opcode map as a sp

0:1 — Reserved

1:0 ALD Advance queue and load from bus

1:1 — Reserved

Table 5-10  IPIPE[1:0] Decoding when E Clock is Low

Execution Start
(capture at E rise) Mnemonic Meaning

0:0 — No start

0:1 INT Start interrupt sequence

1:0 SEV Start even instruction

1:1 SOD Start odd instruction

Table 5-9  IPIPE[1:0] Decoding when E Clock is High

Data Movement
(capture at E fall) Mnemonic Meaning
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one-byte, one-cycle instruction. However, interrupts are not recognized at the boundary between 
prebyte and the rest of the instruction.

5.5.6  SOD — Start Odd Instruction (1:1)

This state indicates that the instruction in the odd (low) half of the word in stage three of the instru
queue. The queue treats the $18 prebyte of an instruction on page two of the opcode map as a sp
one-byte, one-cycle instruction. However, interrupts are not recognized at the boundary between 
prebyte and the rest of the instruction.
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Section 6  Exception Processing

Exceptions are events that require a change in the sequence of instruction execution. This section de
the exceptions supported by the Core and their functionality.

6.1  Exception Processing Overview

The Core supports two basic types of exceptions; those from resets and those from interrupt requ
Regardless of the source, the first cycle in exception processing is a vector fetch cycle. The excep
processing flow is shown inFigure 6-1  below. Relevant points within the flow are detailed in the
paragraphs that follow.

During the vector fetch cycle, the CPU indicates to the system that it is requesting that the vector a
of the pending exception having the highest priority be driven onto the address bus. The CPU doe
provide this address.

The vector points to the address where the exception service routine begins. Exception vectors are
in a table at the top of the memory map ($FFB6–$FFFF). The CPU begins using the vector to fetc
instructions in the third cycle of the exception processing sequence.

After the vector fetch, the CPU selects one of the three processing paths based on the source of 
exception:

• Reset

• X bit maskable and I bit maskable interrupt request

• SWI and TRAP

1.0-V
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Figure 6-1  Exception Processing Flow

2.0-f No bus access

Set S, X, and I bits and clear all
other bits in programmer’s model

5.0-P Fetch program word

Finish filling instruction queue

4.1-S Push Y

3.0-P Fetch program word

Start filling instruction queue

4.0-P Fetch program word

Continue filling instruction queue

2.1-S Push return address

Address of next instruction that

3.1-P Fetch program word

Start filling instruction queue

5.1-S Push X

6.1-P Fetch program word

Continue filling instruction queue

7.1-S Push B:A

XIRQ interrupt?

8.1-s Push CCR (byte)

Set I bit

END

SWI or TRAP?

START

1.0-V Fetch vector

Reset?

would have been executed

No

Yes

2.2-S Push return address

Address of instruction after SWI
or unimplemented opcode

9.1-P Fetch program word

Finish filling instruction queue

8.2-s Push CCR (byte)

Set X and I bits

Yes

No

END

Yes

No
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6.1.1  Reset Processing

This cycle sets the S, X and I bits.

 through

These cycles are program word fetches that refill the instruction queue. Fetches start at the address
to by the reset vector. When the fetches are completed, reset processing ends, and the CPU starts e
the instruction at the head of the instruction queue.

6.1.2  Interrupt Processing

The SWI and TRAP interrupts have no mask or interrupt request and are always recognized. AnXIRQ
interrupt request is recognized any time after the X bit is cleared. An enabled I bit maskable interr
request is recognized any time after the I bit is cleared. The CPU responds to an interrupt after it com
the execution of its current instruction. Interrupt latency depends on the number of cycles required
complete the instruction.

After the vector fetch, the CPU calculates a return address. The return address depends on the ty
exception:

• When an X bit maskable or I bit maskable interrupt causes the exception, the return address
to the next instruction that would have been executed had processing not been interrupted.

• When an SWI opcode or TRAP causes the exception, the return address points to the next a
after the SWI opcode or to the next address after the unimplemented opcode.

 and

These are both S cycles (16-bit writes) that push the return address onto the stack.

This cycle is the first of three program word fetches to refill the instruction queue. Instructions are fet
from the address pointed to by the vector.

This cycle pushes Y onto the stack.

2.0-f

3.0-P 5.0-P

2.1-S 2.2-S

3.1-P

4.1-S

5.1-S
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This cycle pushes X onto the stack.

This cycle is the second of three program word fetches to refill the instruction queue. During this c
the contents of the A and B accumulators are concatenated in the order B:A, making register order
stack frame the same as that of the M68HC11, M6801, and the M6800.

This cycle pushes the 16-bit word containing B:A onto the stack.

 and

These are both s cycles (8-bit writes) that push the 8-bit CCR onto the stack and then update the 
mask bits:

• When anXIRQ interrupt causes the exception, both X and I are set to inhibit further interrupt
during exception processing.

• When any other interrupt causes the exception, the I bit is set to inhibit further I bit maskabl
interrupts during exception processing, but the X bit is not changed.

6.1-P

7.1-S

8.1-s 8.2-s
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This cycle is the third of three program word fetches to refill the instruction queue. It is the last cyc
exception processing. After this cycle the CPU begins the interrupt service routine by executing th
instruction at the head of the instruction queue.

At the end of the interrupt service routine, an RTI instruction restores the stacked registers, and th
returns to the return address. RTI is an 8-cycle instruction when no other interrupt is pending, and
11-cycle instruction when another interrupt is pending. In either case, the first five cycles are used t
the CCR, B:A, X, Y, and the return address from the stack.

If no other interrupt is pending at this point, three program words are fetched to refill the instruction q
from the area of the return address and processing proceeds from there.

If another interrupt is pending after registers are restored, a new vector is fetched, and the stack po
adjusted to point at the CCR value that was just recovered (SP = SP –  9). This makes it appear t
registers have been stacked again. After the SP is adjusted, three program words are fetched to r
instruction queue, starting at the address the vector points to. Processing then continues with exec
the instruction at the head of the queue.

6.2  Exception Vectors

Each exception has a 16-bit vector that points to the memory location where the routine that hand
exception is located. Vectors are stored in the upper 128 bytes of the standard 64K byte address m
are prioritized as shown inTable 6-1  below from highest (system reset) to lowest (lowest priority I
maskable interrupt).

The six highest vector addresses are used for resets and nonmaskable interrupt sources. The rem
vectors are used for maskable interrupts. All vectors must be programmed to point to the address
appropriate service routine.

Table 6-1  Exception Vector Map and Priority

Vector Address  Source

$FFFE–$FFFF System reset

$FFFC–$FFFD Crystal Monitor reset

$FFFA–$FFFB COP reset

$FFF8–$FFF9 Unimplemented opcode trap

$FFF6–$FFF7 Software interrupt instruction (SWI) or BDM vector request

$FFF4–$FFF5 XIRQ signal

$FFF2–$FFF3 IRQ signal

$FFF0–$FF00
Device-specific I bit maskable interrupt sources (priority in
descending order)

9.1-P
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6.3  Exception Types

As stated previously, the Core supports exceptions from resets within the system as well as interr
requests. Each of these exception types are discussed in the subsections that follow.

6.3.1  Resets

A block (or blocks) within the SoC design must evaluate any/all reset sources and request the prope
vector from the Core. The CPU then fetches a vector determined by the source of the reset, configu
CPU registers to their reset states and fills the instruction queue from the address pointed to by the

There are three reset sources supported by the Core:

• System reset

• Crystal Monitor reset

• COP Watchdog reset

The priority and vector addresses assigned to these reset sources are shown inTable 6-2  below. Please
note that the inclusion of Crystal Monitor and COP reset requests is based upon the two most comm
predominately used requests historically implemented in HC12 based systems. (It is assumed tha
systems will have a system reset). Each SoC integration of the Core will determine whether the s
contains both requests, one or the other or neither request. Each source is described in the subsect
follow.

6.3.1.1  System reset

All systems generally have a block or sub-block within the system that determines the validity and pr
of all possible sources of a system reset request. When a valid system reset request becomes ac
block or sub-block will request the appropriate reset vector from the Core. The Core will then
acknowledge the request and provide the vector.

6.3.1.2  Crystal Monitor Reset

A Crystal Monitor sub-block typically contains a mechanism to determine whether or not the system
frequency is above a predetermined limit. If the clock frequency falls below the limit when the Cry
Monitor is enabled, the sub-block will typically request the reset vector that is associated with this fun
from the Core.

Table 6-2  Reset Sources

Reset
Source

Exception
Priority

Vector
Address

System reset 1 $FFFE–$FFFF

Crystal Monitor block 2 $FFFC–$FFFD

Computer Operating Properly (COP) block 3 $FFFA–$FFFB
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6.3.1.3  COP Reset

A Computer Operating Properly (COP) sub-block helps protect against software failures. When the
is enabled, software might, for example, write a particular code sequence to a specific address in o
keep a watchdog timer from timing out. If software fails to execute the sequence properly, the sub-
will typically then request a reset vector from the Core.

6.3.2  Interrupts

The Core supports the following types of interrupt sources:

• nonmaskable interrupt requests

– Unimplemented Opcode Trap

– Software Interrupt instruction

– XIRQ pin interrupt request

• Maskable interrupt requests

– Optional highest priority maskable interrupt (defaults toIRQ pin)

– IRQ pin interrupt request

– System peripheral block I bit maskable interrupt requests

A block (or blocks) within the SoC design must evaluate the system peripheral block I bit maskab
interrupt sources and request the proper interrupt vector from the Core. All other interrupt request
handled within the Core. Once the CPU receives the request it then fetches the vector to the prop
interrupt service routine. The CPU will then calculate and stack a return address and the contents
CPU registers. Finally, it will set the I bit (and the X bit ifXIRQ is the source) and fill the instruction queue
from the address pointed to by the vector. The vector mapping for all interrupt sources is shown inTable
6-3 below with detailed descriptions given in the sub-sections that follow.

Interrupts can be classified according to their maskability. TRAP and SWI are nonmaskable. TheXIRQ
pin is masked at reset by the X bit, but once software clears the X bit, theXIRQ pin is nonmaskable until
another reset occurs. The remaining interrupt sources can be masked by the I bit. I bit maskable in

Table 6-3  Interrupt Sources

Interrupt
Source

Exception
Priority Mask Vector

Address

Unimplemented opcode trap (TRAP) 4 None $FFF8–$FFF9

Software interrupt instruction (SWI) 4 None $FFF6–$FFF7

Nonmaskable external interrupt pin (XIRQ pin) 5 X bit $FFF4–$FFF5

Highest priority I-Maskable interrupt (defaults to IRQ pin) 6 I bit $FFxx-$FFxx+1

Maskable external interrupt pin (IRQ pin) 6 or 7 I bit $FFF2–$FFF3

System peripheral block interrupt requests ≥ 8 I bit $FFF0–$FF00
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requests come from theIRQ pin and peripheral blocks within the system such as timers and serial p
These I bit maskable sources have default priorities that follow the address order of the interrupt ve
the higher the address, the higher the priority of the interrupt request. TheIRQ pin is initially assigned the
highest I bit maskable interrupt priority. The system can give one I bit maskable source priority over
I bit maskable sources configured at integration of the Core into the SoC design. The documentat
each system should provide more information.

6.3.2.1  Unimplemented Opcode Trap (TRAP)

Only 54 of the 256 positions on page 2 of the opcode map are used. Attempting to execute one of t
unused opcodes on page 2 causes a nonmaskable interrupt without an interrupt request. All 202 
opcodes share the same interrupt vector, $FFF8:$FFF9.

TRAP processing stacks the CCR and then sets the I bit to prevent other interrupts during the TR
service routine. An RTI instruction at the end of the service routine restores the I bit to its preinterrupt

The CPU uses the next address after an unimplemented page 2 opcode as a return address. This
from the M68HC11 illegal opcode interrupt, which uses the address of an illegal opcode as the re
address. The stacked return address can be used to calculate the address of the unimplemented op
software-controlled traps.

6.3.2.2  Software Interrupt Instruction (SWI)

Execution of the SWI instruction causes a nonmaskable interrupt without an interrupt request.

SWI processing stacks the CCR and then sets the I bit to prevent other interrupts during the SWI 
routine. An RTI instruction at the end of the service routine restores the I bit to its preinterrupt stat

NOTE: CPU processing of a TRAP or SWI cannot be interrupted. Also, TRAP and SWI are
mutually exclusive instructions with no relative priority.

6.3.2.3  Nonmaskable External Interrupt Request Pin ( XIRQ)

Driving theXIRQ pin low generates an external interrupt request, subject initially to masking by the X
Reset sets the X bit, maskingXIRQ interrupt requests. Software can unmaskXIRQ interrupt requests once
after reset by clearing the X bit with an instruction such as ANDCC #$BF. After the X bit has been cle
it cannot be set andXIRQ interrupt requests are nonmaskable until another reset occurs.

XIRQ interrupt request processing stacks the CCR and then sets both the X and I bits to prevent 
interrupts during theXIRQ service routine. An RTI instruction at the end of the service routine resto
the X and I bits to their preinterrupt states.

6.3.2.4  Maskable External Interrupt Request Pin ( IRQ)

Driving theIRQ pin low generates an external interrupt request, subject to masking by the I bit.IRQ
interrupt request processing stacks the CCR and then sets the I bit to prevent other interrupts dur
IRQ service routine. An RTI instruction at the end of the service routine restores the I bit to its preinte
state.
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The Interrupt sub-block of the Core (INT) also has a control bit to disconnect theIRQ input. Please see
Section 10  of this guide for a more detailed description.

6.3.2.5  System Peripheral Block Interrupt Requests

Some system peripheral blocks can generate interrupt requests that are subject to masking by the
Processing of an interrupt request from one of these sources stacks the CCR and then sets the I 
prevent other interrupts during the service routine. An RTI instruction at the end of the service rou
restores the I bit to its preinterrupt state.

Interrupt requests from a system peripheral block may also be subject to masking by interrupt enab
in control registers. In addition, there may be interrupt flags with register read-write sequences req
for flag clearing. The documentation for the system peripheral block should provide a detailed func
description.
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Section 7  Core Interface

This section provides a brief description of the Core interface to the rest of the SoC design. Detail
information on the Core interface, such as more complete descriptions of all signals and timing
information, is provided in theHCS12 V1.5 Core Integration Guide.

7.1  Core Interface Overview

The Core is designed to be integrated into a SoC design as a fully synthesizable block. The Core in
is shown inFigure 7-1  below with the interface signals grouped by function. All signals related to t
internal and I.P. bus interfacing appear on the right side of the Core block in the diagram. In addit
bus interfacing, the Core receives reset and clock inputs from the system and provides signals for
interacting with the CPU for vector request and acknowledge and for functional operation of the sto
wait modes. The Core interacts with the external blocks of the overall system through the port/pad
for Ports A, B, E (which include the physicalIRQ andXIRQ pins) and K and the BDM BKGD pin
interfaces. The memory configuration switches shown in the diagram are inputs to the Core block th
tied to a constant logic state at the time of integration into the SoC design to correctly define the o
memory configuration for proper Core operation within the system.
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Figure 7-1  Core Interface Signals

7.1.1  Signal Summary

A brief summary of the Core interface signals is given inTable 7-1 below. For detailed descriptions and
timing information please consult theHCS12 V1.5 Core Integration Guide.

Table 7-1  Core Interface Signal Definitions

Signal Name Type Functional Description

Internal Bus Interface Signals
core_ab_t2[19:0] O Core 16-bit Address Bus [19:0]

peri_rdb_L12[15:0] I 16-bit Read Data Bus data from Peripheral block

ram_rdb_L12[15:0] I 16-bit Read Data Bus data from on-chip RAM array

ee_rdb_L12[15:0] I 16-bit Read Data Bus data from on-chip EEPROM array

fee_rdb_L12[15:0] I
16-bit Read Data Bus data from on-chip Flash EEPROM or ROM
array

core_wdb_t4[15:0] O Core 16-bit Write Data Bus [15:0]

core_rw_t2 O Core Read/Write signal - active low Write
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core_sz8_t2 O
Core bus data size requested signal
0 - 16-bit access
1 - 8-bit access

core_exp_t2 O Expanded Mode selected signal

core_per_t2 O Peripheral Test Mode selected signal

core_smod_t2 O Special Mode selected signal

core_secure_t2 O Core secure mode signal

core_perisel_t2 O Core peripheral select to I.P. Bus Interface

core_ramregsel_t2 O On-chip RAM Register select from Core to memory and/or bus

core_ramarraysel_t2 O On-chip RAM Array select from Core to memory and /or bus

core_ramhal_t2 O On-chip RAM Array align signal from Core to memory and/or bus

core_eeregsel_t2 O On-chip EEPROM Register select from Core to memory and/or bus

core_eearraysel_t2 O On-chip EEPROM Array select from Core to memory and/or bus

core_feeregsel_t2 O
On-chip Flash EEPROM Register select from Core to memory and/or
bus

core_feearraysel_t2 O
On-chip Flash EEPROM Array select from Core to memory and/or
bus

ee_hold_t1 I On-chip EEPROM signal to Core to suspend CPU operation

fee_hold_t1 I On-chip Flash EEPROM signal to Core to suspend CPU operation

secreq I Security mode request from applicable memory

peri_ffxx_t3 I Interrupt Bus from I.P. Bus Interface

peri_rtifff0i_t3 I Real Time Interrupt signal

core_bdmact_t4 O Core BDM active signal for I.P. Bus Interface (freeze signal)

External Bus Interface Signals
core_paind[7:0] I Port A input data [7:0]

core_pado[7:0] O Port A data output [7:0]

core_paobe[7:0] O Port A output buffer enable [7:0]

core_paibe_t2 O Port A input buffer enable

core_papue_t2 O Port A pullup enable

core_padse_t2 O Port A drive strength enable

core_pbind[7:0] I Port B input data [7:0]

core_pbdo[7:0] O Port B data output [7:0]

core_pbobe[7:0] O Port B output buffer enable [7:0]

core_pbibe_t2 O Port B input buffer enable

core_pbpue_t2 O Port B pullup enable

core_pbdse_t2 O Port B drive strength enable

core_peind[7:0] I
Port E input data [7:0]
NOTE: PE1 is IRQ pin input; PE0 is XIRQ pin input.

core_pedo[7:0] O Port E data output [7:0]

core_peobe[7:0] O Port E output buffer enable [7:0]

core_peibe_t2 O Port E input buffer enable

core_pepue_t2 O Port E pullup enable

core_mdrste O Enable signal for EBI Mode pin pullups at the pad

core_pedse_t2 O Port E drive strength enable

Table 7-1  Core Interface Signal Definitions

Signal Name Type Functional Description
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core_pkind[7:0] I Port K input data [7:0]

core_pkdo[7:0] O Port K data output [7:0]

core_pkobe[7:0] O Port K output buffer enable [7:0]

core_pkibe_t2 O Port K input buffer enable

core_pkpue_t2 O Port K pullup enable

core_pkdse_t2 O Port K drive strength enable

Clock and Reset Signals
See Section 8  of this guide.

Vector Request/Acknowledge Signals
core_vector_fetch_t4 O Core CPU vector request

peri_rstv_request I System level reset vector request

peri_xmonv_request I System level Crystal Monitor reset vector request

peri_copv_request I System level COP Watchdog reset vector request

Stop and Wait Mode Control/Status Signals
See Section 8  of this guide.

Background Debug Mode (BDM) Interface Signals
bkgd_ind I BDM BKGD pin input data

core_bkgd_dout_t4 O Data output for BDM BKGD pin

core_bkgd_obe O BDM BKGD pin output buffer enable

core_bkgd_ibe_t2 O BDM BKGD pin input buffer enable

core_bkgdpue_t2 O BDM BKGD pin pullup enable

Memory Configuration Signals

reg_sw0 I

Register space size select switch to be tied to the appropriate logic
level at system integration:
0 - 1K byte register space aligned to lower address
1 - 2K byte register space.

pag_sw1 I
On-chip memory size select switch bit 1 to be tied to the appropriate
logic level at system integration.

pag_sw0 I
On-chip memory size select switch bit 0 to be tied to the appropriate
logic level at system integration.

ram_fmts I
On-chip RAM fast memory transfer select to be tied to the
appropriate logic level at system integration.

ram_sw2 I
On-chip RAM size select switch bit 2 to be tied to the appropriate
logic level at system integration.

ram_sw1 I
On-chip RAM size select switch bit 1 to be tied to the appropriate
logic level at system integration.

ram_sw0 I
On-chip RAM size select switch bit 0 to be tied to the appropriate
logic level at system integration.

eep_sw1 I
On-chip EEPROM size select switch bit 1 to be tied to the appropriate
logic level at system integration.

eep_sw0 I
On-chip EEPROM size select switch bit 0 to be tied to the appropriate
logic level at system integration.

rom_sw1 I
On-chip Flash EEPROM or ROM size select switch bit 1 to be tied to
the appropriate logic level at system integration.

rom_sw0 I
On-chip Flash EEPROM or ROM size select switch bit 0 to be tied to
the appropriate logic level at system integration.

Table 7-1  Core Interface Signal Definitions

Signal Name Type Functional Description
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7.2  Signal Descriptions

General descriptions of the Core interface signals are given in the subsections below. The clock, re
wait and stop mode signals are discussed inSection 8  of this guide. For detailed descriptions of these
signals including timing information please consult theHCS12 V1.5 Core Integration Guide.

7.2.1  Internal Bus Interface Signals

These descriptions apply to the Core signals that interface with the on-chip memories either direc
through the Core bus and with the system peripheral blocks through the I.P. Bus Interface.

7.2.1.1  Core 20-bit Address Bus (core_ab_t2[19:0])

This 20-bit wide Core output provides the Core Address Bus to the system memory and peripheral b

7.2.1.2  16-bit Read Data Bus from system peripheral blocks (peri_rdb_L12[15:0])

16-bit wide Read Data Bus input to the Core from the system peripherals via the I.P. Bus Interface

7.2.1.3  16-bit Read Data Bus from on-chip RAM (ram_rdb_L12[15:0])

16-bit wide Read Data Bus input to the Core from the on-chip RAM memory block.

7.2.1.4  16-bit Read Data Bus from on-chip EEPROM (ee_rdb_L12[15:0])

16-bit wide Read Data Bus input to the Core from the on-chip EEPROM memory block.

7.2.1.5  16-bit Read Data Bus from on-chip Flash EEPROM or ROM (fee_rdb_L12[15:0])

16-bit wide Read Data Bus input to the Core from the on-chip Flash EEPROM or ROM memory b

7.2.1.6  Core 16-bit Write Data Bus (core_wdb_t4[15:0])

This 16-bit wide Core output provides the Core Write Data Bus to the system memory and periph
blocks.

romon_exp_state
Reset state of the ROMON bit in the MISC Register to be tied to the
appropriate literal logic level at system integration (i.e. tied level is the
state out of reset and not inverted).

Scan Control Interface Signals
ipt_scan_mode I Scan mode select signal

Table 7-1  Core Interface Signal Definitions

Signal Name Type Functional Description
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7.2.1.7  Core Read/ Write signal (core_rw_t2)

This single bit Core output indicates the direction of bus access (read or write with write being active
by the Core.

7.2.1.8  Core bus data size request indicator (core_sz8_t2)

This single bit Core output indicates the size of data (8-bit or 16-bit when high or low, respectively) b
read/written by a Core bus access.

7.2.1.9  Core Expanded Mode indicator (core_exp_t2)

This single bit Core output indicates that the Core is in Expanded Mode (i.e. the Core has been conf
in one of the expanded modes via the MODE pins)

7.2.1.10  Core Peripheral Test Mode indicator (core_per_t2)

This single bit Core output indicates that the Core is in Peripheral Test Mode. In this mode, the cp
disabled and the direction of the bus interface is switched such that the on-chip peripherals can b
addressed directly. This mode is used for factory test only.

7.2.1.11  Core Special Mode indicator (core_smod_t2)

This single bit Core output indicates that the Core is in Special Mode (i.e. the Core has been configu
Special Mode via the MODE pins)

7.2.1.12  Core Secure Mode indicator (core_secure_t2)

This single bit Core output indicates that the Core is operating in secured mode. Please seeSection 15
of this guide for functional details.

7.2.1.13  Peripheral select signal (core_perisel_t2)

This single bit Core output indicates that the Core is accessing an address within the peripheral s
the system memory map.

7.2.1.14  On-Chip RAM register space select signal (core_ramregsel_t2)

This single bit Core output indicates that the Core is accessing an address within the on-chip RAM re
space of the system memory map.

7.2.1.15  On-Chip RAM array select signal (core_ramarraysel_t2)

This single bit Core output indicates that the Core is accessing an address within the on-chip RAM
space of the system memory map.
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7.2.1.16  On-Chip RAM array align signal (core_ramhal_t2)

This single bit Core output reflects the state of the RAMHAL bit in the INITRAM register within the
Module Mapping Control (MMC) sub-block of the Core. Please seeSection 11 of this guide for further
functional details.

7.2.1.17  On-Chip EEPROM register select signal (core_eeregsel_t2)

This single bit Core output indicates that the Core is accessing an address within the on-chip EEP
register space of the system memory map.

7.2.1.18  On-Chip EEPROM array select signal (core_eearraysel_t2)

This single bit Core output indicates that the Core is accessing an address within the on-chip EEP
array space of the system memory map.

7.2.1.19  On-Chip Flash EEPROM register select signal (core_feeregsel_t2)

This single bit Core output indicates that the Core is accessing an address within the on-chip Flas
EEPROM register space of the system memory map.

7.2.1.20  On-Chip Flash EEPROM array select signal (core_feearraysel_t2)

This single bit Core output indicates that the Core is accessing an address within the on-chip Flas
EEPROM array space of the system memory map.

7.2.1.21  On-Chip EEPROM hold signal to Core (ee_hold_t1)

This single bit input to the Core is used to suspend operation of the CPU when needed for functions
on-chip EEPROM memory block.

7.2.1.22  On-Chip Flash EEPROM hold signal to Core (fee_hold_t1)

This single bit input to the Core is used to suspend operation of the CPU when needed for functions
on-chip Flash EEPROM memory block.

7.2.1.23  Core Security Request (secreq)

This single bit input indicates to the Core that the system memory is in a secured state and that th
should operate in secured mode. Please seeSection 15  for functional details.

7.2.1.24  56-bit Interrupt request signals from peripheral block to Core (peri_ffxx_t3)

This 56-bit wide input to the Core provides the Core with the Interrupt request signals from all the sy
interrupt sources via the I.P. Bus Interface.
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7.2.1.25  System Real Time Interrupt request (peri_rtifff0i_t3)

This input signal indicates to the Core that the system is requesting the interrupt vector for a Real
Interrupt (RTI) from the Core.

7.2.1.26  Background Debug Mode active indicator (core_bdmact_t4)

This single bit output from the Core indicates that the Background Debug Mode (BDM) is active.

7.2.2  External Bus Interface Signals

These descriptions apply to the interface signals between the Core and the system External Bus In
pad logic. Please seeSection 12 of this guide for further functional details of the External Bus Interfac

7.2.2.1  Port A Input Data to Core (core_paind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad log
Port A.

7.2.2.2  Port A Output Data from Core (core_pado[7:0])

This 8-bit wide output from the Core provides the Port A data output to the system port/pad logic for
A.

7.2.2.3  Port A output buffer enable from Core (core_paobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the syste
port/pad logic for Port A.

7.2.2.4  Port A input buffer enable from Core (core_paibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad
for Port A.

7.2.2.5  Port A pullup enable from Core (core_papue_t2)

This single bit output from the Core indicates that the pullup devices within the system port/pad log
Port A should be enabled for all Port A pins.

7.2.2.6  Port A drive strength enable from Core (core_padse_t2)

This single bit output from the Core indicates whether all Port A pins will operate with full or reduc
drive strength.

7.2.2.7  Port B Input Data to Core (core_pbind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad log
Port B.
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7.2.2.8  Port B Output Data from Core (core_pbdo[7:0])

This 8-bit wide output from the Core provides the Port B data output to the system port/pad logic for
B.

7.2.2.9  Port B output buffer enable from Core (core_pbobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the syste
port/pad logic for Port B.

7.2.2.10  Port B input buffer enable from Core (core_pbibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad
for Port B.

7.2.2.11  Port B pullup enable from Core (core_pbpue_t2)

This single bit output from the Core indicates that the pullup devices within the system port/pad log
Port B should be enabled for all Port B pins.

7.2.2.12  Port B drive strength enable from Core (core_pbdse_t2)

This single bit output from the Core indicates whether all Port B pins will operate with full or reduced d
strength.

7.2.2.13  Port E Input Data to Core (core_peind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad log
Port E. When the system has an externalIRQ pin implemented, the input signal from theIRQ pin pad logic
must be tied to Port E Input Data Bit 1. Likewise, when the system has an externalXIRQ pin implemented,
the input signal from theXIRQ pin pad logic must be tied to Port E Input Data Bit 0. Both theIRQ and
XIRQ signals are active low (i.e. their asserted state is logic 0).

7.2.2.14  Port E Output Data from Core (core_pedo[7:0])

This 8-bit wide output from the Core provides the Port E data output to the system port/pad logic for P

7.2.2.15  Port E output buffer enable from Core (core_peobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the syste
port/pad logic for Port E.

7.2.2.16  Port E input buffer enable from Core (core_peibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad
for Port E.
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7.2.2.17  Port E pullup enable from Core (core_pepue_t2)

This single bit output from the Core indicates that the pullup devices within the system port/pad log
Port E should be enabled for all Port E pins except the MODA (PE5) and MODB (PE6) pins.

7.2.2.18  Port E MODE pin pullup enable from Core (core_mdrste)

This single bit output from the Core indicates that the pullup devices within the system port/pad log
the MODA (PE5) and MODB (PE6) pins within Port E should be enabled.

7.2.2.19  Port E drive strength enable from Core (core_pedse_t2)

This single bit output from the Core indicates whether all Port E pins will operate with full or reduced d
strength.

7.2.2.20  Port K Input Data to Core (core_pkind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad log
Port K.

7.2.2.21  Port K Output Data from Core (core_pkdo[7:0])

This 8-bit wide output from the Core provides the Port K data output to the system port/pad logic for
K.

7.2.2.22  Port K output buffer enable from Core (core_pkobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the syste
port/pad logic for Port K.

7.2.2.23  Port K input buffer enable from Core (core_pkibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad
for Port K.

7.2.2.24  Port K pullup enable from Core (core_pkpue_t2)

This single bit output from the Core indicates that the pullup devices within the system port/pad log
Port K should be enabled for all Port K pins.

7.2.2.25  Port K drive strength enable from Core (core_pkdse_t2)

This single bit output from the Core indicates whether all Port K pins will operate with full or reduc
drive strength.

7.2.3  Clock and Reset Signals

Please seeSection 8  of this guide.
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7.2.4  Vector Request/Acknowledge Signals

These descriptions apply to signals that provide for vector requesting to and corresponding
acknowledgment from the Core.

7.2.4.1  CPU vector fetch (core_vector_fetch_t4)

This Core output signal indicates that the CPU is executing a vector fetch as a result of a reset or in
sequence.

7.2.4.2  System level reset vector request (peri_rstv_request)

This input signal indicates to the Core that the system is requesting the external reset vector from th

7.2.4.3  System level Crystal Monitor reset vector request (peri_xmonv_request)

This input signal indicates to the Core that the system is requesting the Crystal Monitor reset vecto
the Core.

7.2.4.4  System level COP Watchdog reset vector request (peri_copv_request)

This input signal indicates to the Core that the system is requesting the COP Watchdog reset vecto
the Core.

7.2.5  Stop and Wait Mode Control/Status Signals

Please seeSection 8  of this guide.

7.2.6  Background Debug Mode (BDM) Interface Signals

These descriptions apply to the Core BDM sub-block interface with the system BKGD pad logic. P
seeSection 14  of this guide for further functional details of the BDM.

7.2.6.1  BKGD pin Input Data to Core (bkgd_ind)

This single bit input to the Core provides the Core with the input data from the system port/pad log
BDM BKGD pin.

7.2.6.2  BKGD pin Output Data from Core (core_bkgd_dout_t4)

This single bit output from the Core provides the BKGD pin data output to the system port/pad log
the BDM BKGD pin.

7.2.6.3  BKGD pin output buffer enable from Core (core_bkgd_obe)

This single bit output from the Core provides the output buffer enable signal to the system port/pad
for the BDM BKGD pin.
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7.2.6.4  BKGD pin input buffer enable from Core (core_bkgd_ibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad
for the BDM BKGD pin.

7.2.6.5  BKGD pin pullup enable from Core (core_bkgdpue_t2)

This single bit output from the Core indicates that the pullup device within the system port/pad log
the BKGD pin should be enabled for the BKGD pin.

7.2.7  Memory Configuration Signals

These input signals to the Core establish the system memory configuration. Each of these signals
tied off to the appropriate logic state at integration of the Core into the SoC design in order to con
the Core memory partitioning according to the needs of the system. Please consult theHCS12 V1.5 Core
Integration Guide for details on defining the states of these signals.

7.2.8  Scan Control Interface Signals

These descriptions apply to the Core Scan test control signals.

7.2.8.1  Scan mode enable(ipt_scan_mode)

This single bit input indicates to the Core that the system is in Scan test mode and all logic within the
that needs special conditions for Scan test mode will be handled appropriately.

7.3  Interface Operation

The subsections below give general descriptions of basic read and write operations of the Core. T
operations include interfacing with system peripheral registers, on-chip memory registers and arra
elements, internal Core registers and external bus interface. For more detailed descriptions and ti
information please consult theHCS12 V1.5 Core Integration Guide.

7.3.1  Read Operations

All read data coming into the Core is implemented by multiplexing the various input read data bus
(peri_rdb_L12[15:0], ram_rdb_L12[15:0], ee_rdb_L12[15:0]and fee_rdb_L12[15:0]) onto the main
internal Core read data bus. The active input read data bus is defined by the select signal that is a
during the Core read cycle. The subsections below briefly discuss each of peripheral, on-chip me
register and array element and internal core register reads. In each of the figures used in these subs
the read sequences are separated by write sequences to better illustrate the timing edges.

7.3.1.1  Peripheral Reads

The Core supports both 8-bit and 16-bit reads of peripheral registers. The timing relationship for a
8-bit read of a peripheral register is shown inFigure 7-2  and that of a basic 16-bit read inFigure 7-3 .
152



Core User Guide — S12CPU15UG V1.2

the
m

re is

ay
The Core clock (peri_clk24) provides the timing reference within the Core for all data transfers with 
peripherals. The peripheral clock (peri_clk34) is the timing reference for all peripherals within the syste
tied to the I.P. Bus.

Figure 7-2  Basic 8-bit Peripheral Read Timing

Figure 7-3  Basic 16-bit Peripheral Read Timing

7.3.1.2  Memory Reads

The timing relationship for a basic 8-bit read of a on-chip memory register or array byte by the Co
shown in below inFigure 7-4  and that of a basic 16-bit read inFigure 7-5 . In the diagrams, the
MEM_rdb_L12 signal represents any of the on-chip memory read data bus signals (ram_rdb_L12,
ee_rdb_L12 or fee_rdb_L12) andcore_MSEL_t2 represents any of the on-chip memory register or arr
selects (such ascore_ramregsel_t2 or core_ramarraysel_t2 for the RAM and likewise for the EEPROM
and Flash EEPROM).
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Figure 7-4  Basic 8-bit Memory Read Timing

Figure 7-5  Basic 16-bit Memory Read Timing

7.3.1.3  Internal Core Register Reads

The timing for basic 8-bit and 16-bit reads of internal Core registers are shown inFigure 7-6 andFigure
7-7, respectively.
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Figure 7-6  Basic 8-bit Core Register Read Timing

Figure 7-7  Basic 16-bit Core Register Read Timing

7.3.2  Write Operations

All write data exits the Core via the Core write data bus (core_wdb_t4[15:0]). The subsections below
briefly discuss each of peripheral, on-chip memory register and array element and internal core re
writes. In each of the figures used in these subsections, the write sequences are separated by rea
sequences to better illustrate the timing edges.

7.3.2.1  Peripheral Writes

The Core supports both 8-bit and 16-bit writes of peripheral registers. The timing relationship for a
8-bit write of a peripheral register is shown inFigure 7-8 and that of a basic 16-bit write inFigure 7-9 .
An example of the I.P. Bus read data bus timing is provided in the figures for further illustration purp
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Figure 7-8  Basic 8-bit Peripheral Write Timing

Figure 7-9  Basic 16-bit Peripheral Write Timing

7.3.2.2  Memory Writes

The timing relationship for a basic 8-bit write of a on-chip memory register or array byte by the Co
shown in below inFigure 7-10  and that of a basic 16-bit write inFigure 7-11 . As before, the
MEM_rdb_L12 signal represents any of the on-chip memory read data bus signals (ram_rdb_L12,
ee_rdb_L12 or fee_rdb_L12) andcore_MSEL_t2 represents any of the on-chip memory register or arr
selects (such ascore_ramregsel_t2 or core_ramarraysel_t2 for the RAM and likewise for the EEPROM
and Flash EEPROM).
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Figure 7-10  Basic 8-bit Memory Write Timing

Figure 7-11  Basic 16-bit Memory Write Timing

7.3.2.3  Internal Core Register Writes

The timing for basic 8-bit and 16-bit writes of internal Core registers are shown inFigure 7-12  and
Figure 7-13 , respectively.
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Figure 7-12  Basic 8-bit Core Register Write Timing

Figure 7-13  Basic 16-bit Core Register Write Timing

7.3.3  Multiplexed External Bus Interface

A timing diagram of the multiplexed external bus is shown in . Major bus signals are included in th
diagram. While both a data write and data read cycle are shown, only one would occur on a particul
cycle.Table 7-2 gives the preliminary timing characteristics for the signals illustrated in .
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Figure 7-14  General External Bus Timing
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Table 7-2  Multiplexed Expansion Bus Timing - Preliminary Targets

Num Characteristic 1 2 3 Symbol
16 MHz

Min Max

20 MHz

Min Max

25 MHz

Min Max
Unit

Frequency of operation (E-clock) fo D.C. 16.0 D.C. 20.0 D.C. 25.0 MHz

1 Cycle time tcyc 62 50 40 ns

2 Pulse width, E low PWEL 28 22 18 ns

3 Pulse width, E high4 PWEH 28 22 18 ns

5 Address delay time tAD 12 10 8 ns

6 n/a n/a ns

7 Address valid time to E rise (PWEL-TAD) tAV 16 12 10 ns

8 Muxed address hold time tMAH 2 2 1 ns

9 Address hold to data valid tAHDS 4 3 2 ns

10 Data hold to address tDHA 5 4 3 ns

11 Read data setup time tDSR 14 10 8 ns

12 Read data hold time tDHR 0 0 0 ns

13 Write data delay time tDDW 12 10 8 ns

14 Write data hold time tDHW 2 2 1 ns

15 Write data setup time4 (PWEH-tDDW) tDSW 16 12 10 ns

16 Read/write delay time tRWD 12 10 8 ns

17 Read/write valid time to E rise (PWEL-tRWD) tRWV 16 12 10 ns

18 Read/write hold time tRWH 2 2 1 ns

19 Low strobe delay time tLSD 12 10 8 ns

20 Low strobe valid time to E rise (PWEL-tLSD) tLSV 16 12 10 ns

21 Low strobe hold time tLSH 2 2 1 ns

22 Address access time4 (tcyc-tAD-tDSR) tACCA 36 30 24 ns

23 E high access time4 (PWEH-tDSR) tACCE 14 12 10 ns

26 Chip select delay time tCSD 22 18 15 ns

27 Chip select access time4 (tcyc-tCSD-tDSR) tACCS 26 22 17 ns

28 Chip select hold time tCSH 1 1 1 ns

29 Chip select negated time tCSN 12 10 8 ns
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7.3.4  General Internal Read Visibility Timing

Internal writes have the same timing as external writes. Internal read visibility is shown inFigure 7-15
andTable 7-3 shows the associated timing numbers.

Figure 7-15  General Internal Read Visibility Timing

NOTES:
1. Crystal input is required to be within 45% to 55% duty.
2. Reduced drive must be off to meet these timings.
3. Unequal loading of pins will affect relative timing numbers.
4. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.

Table 7-3  Expansion Bus Timing - Preliminary Targets

Num Characteristic 1 2 3 Symbol 16 MHz 20 MHz 25 MHz Unit

Min Max Min Max Min Max

Frequency of operation (E-clock) fo D.C. 16.0 D.C. 20.0 D.C. 25.0 MHz

1 Cycle time tcyc 62 50 40 ns

2 Pulse width, E low PWEL 28 22 18 ns

3 Pulse width, E high4 PWEH 28 22 18 ns

31RG IVIS read data set-up time - Registers 11 5 2 ns

31RM IVIS read data set-up time - RAM 11 5 2 ns

31EE
IVIS read data set-up time -
EEPROM

11 5 2 ns

31FL IVIS read data set-up time - FLASH5 6 0 0 ns

ECLK

ADDR

1
2 3

31
32

IVIS data

Muxed
addrdata

(read)
Addr/Data
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7.3.5  Detecting Access Type from External Signals

The external signalsLSTRB, R/W, and A0 indicate the type of bus access that is taking place. Acce
to the internal RAM are the only type of access that would produceLSTRB=A0=1 because the internal
RAM is specifically designed to allow misaligned 16-bit accesses in a single cycle. In these cases, th
for the address that was accessed is on the low half of the data bus and the data for address+1 is on
half of the data bus. This operation only occurs when internal visibility is on.

Table 7-4 shows the relationship between these signals and the type of access.

32 IVIS read data hold time (all) 2 2 1 ns

NOTES:
1. Crystal input is required to be within 45% to 55% duty.
2. Reduced drive must be off to meet these timings.
3. Unequal loading of pins will affect relative timing numbers.
4. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.
5. Timing is tighter than other memories due to larger array size.

Table 7-4  Access Type vs. Bus Control Pins

LSTRB A0 R/ W Type of Access

1 0 1 8-bit read of an even address

0 1 1 8-bit read of an odd address

1 0 0 8-bit write of an even address

0 1 0 8-bit write of an odd address

0 0 1 16-bit read of an even address

1 1 1
16-bit read of an odd address

(low/high data swapped)

0 0 0 16-bit write to an even address

1 1 0
16-bit write to an odd address

(low/high data swapped)

Table 7-3  Expansion Bus Timing - Preliminary Targets

Num Characteristic 1 2 3 Symbol 16 MHz 20 MHz 25 MHz Unit
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Section 8  Core Clock and Reset Connections

This section details the HCS12 V1.5 Core external clock connections. In addition, this section will dis
the reset timing needs of the Core since this is associated very closely with the external clocking
requirements.

8.1  Clocking Overview

The HCS12 V1.5 Core is implemented as a single clock source design with complete Mux-D scan
implementation. Since the Core is compatible with the feature set of the MHC12 microcontroller pro
family, many signal and timing requirements exist for the system clock and reset generation block
support these features. Many of these requirements are driven by the interaction of the Core with the
and reset generation block(s) in the system due to CPU wait and stop mode functionality and the v
time based reset and interrupt functions (such as Crystal Monitor and COP Watchdog resets and Re
Interrupt functions) available on the HCS12 family of products. A diagram of the Core interface sign
given inFigure 8-1  below.
163



Core User Guide — S12CPU15UG V1.2

ctions
use of
ell as
ections

long
Figure 8-1  Core Interface Signals

The Core interfaces with the system clock and reset generation block(s) in order to synchronize the a
of the HCS12 CPU with the rest of the system. Through the interface signals, the Core supports the
a system Phase-Locked Loop (PLL), Crystal Monitor, COP Watchdog and Real Time Interrupt as w
clocking options during CPU wait and stop modes. Each of these aspects are discussed in the subs
that follow.

8.1.1  Basic Clock Relationship

The basic system clock timing in shown inFigure 8-2  below. The system clock generation block is
required to provide the main Core clocks (peri_clk24, peri_clk2, and peri_clk4), the main peripheral clock
(peri_clk34) and the system clk23 (peri_clk23) to the Core (the Core usesperi_clk23to generate the ECLK
signal). The method of clock generation (i.e. crystal, PLL, etc.) is left up to the system integrator as
as the clocks provided meet the phase relationship shown in the figure.
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Figure 8-2  System Clock Timing Diagram

The remaining clock input to the Core,peri_phase_oscdX, is the same frequency as theperi_clk34 as
derived directly from the oscillator. When using the PLL for the system clocks, the BDM sub-block m
maintain a constant rate clock and cannot depend upon the use of the PLL generated clock. Beca
this, this signal operates at the same frequency asperi_clk34 prior to engaging the PLL (or as derived
directly from the oscillator). Once the PLL is engaged, this clock must maintain the pre-PLL frequen
order to keep the BDM synchronized.

8.1.2  Reset Relationship

The Core depends upon the use of two input signals,reset_pin_indandperi_reset_ta4, for controlling the
reset conditions of all logic within the Core. The active lowreset_pin_indsignal timing follows that of the
physical system reset pin indicating immediately when a system reset is requested (for example wh
RESET pin is pulled low externally). This signal is used as a load enable on the MODE pins of the M
sub-block to ensure that the Core mode of operation is known and set up immediately upon a syste
request. Theperi_reset_ta4 signal will generally be asserted (logic 1) asynchronously by the reset
generation block at the time that a system reset is requested. Further, the assumption is that this sig
stay asserted until such time that the clock generation block has determined that the clocks to the C
stable and that the Core should proceed with a system reset sequence.

8.1.3  Phase-Locked Loop Interface

The Core allows for the implementation of a on-chip Phase-Locked Loop (PLL) and interacts with
through theperi_pllsel_t3, peri_test_clk_enableandperi_test_clkinput signals. If a PLL is implemented,
the Core assumes it will operate on the peripheral clock (peri_clk34) and thus theperi_pllsel_t3 signal
must be asserted (logic 1) on the phase three rising edge of this clock when the PLL is first engag
to be negated (logic 0) when the PLL is disabled. Theperi_test_clk andperi_test_clk_enable signals are
provided in order to facilitate test features for the PLL. When theperi_test_clk_enable signal is asserted
(logic 1), the Core will register the signal on the phase four rising edge ofperi_clk24and will then output
the clock signal being input onperi_test_clkdirectly on Port E Bit 6 of the system. This test feature is on
valid in Special modes and setting of the PIPOE bit in the PEAR register overrides the clock outpu

T2 T3 T4 T1 T2

T3T4 T1T2

peri_clk24

peri_clk34

T2T3 T4T1peri_clk23

T3 T4
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8.1.4  HCS12 CPU Wait and Stop Modes

The Core inputsperi_cwai_t3andperi_syswai_t3indicate to the Core what the state of the system cloc
will be during CPU wait mode with the former reflecting the Core clock (peri_clk24) state and the latter
the state of all system clocks. These inputs typically come from the clock and reset generation block(
could either be hard-wired to a given logic value or reflect the state of software bits controlling the c
functionality. The Core assumes that the asserted (logic 1) state indicates that the clock(s) will cease
wait mode and that the negated (logic 0) state indicates that the clock(s) will run during wait mode

The Core will reflect the CPU mode through the state of thecore_wait_t24andcore_stop_t24signals. The
core_wait_t24 or core_stop_t24 signal will assert when the CPU executes a WAI or STOP instructio
respectively, and both will remain negated (logic 0) during normal operation. In the case of exit from e
wait or stop mode due to a valid interrupt, thecore_wakeup_tasignal will assert (logic 1) asynchronously
upon receiving the valid interrupt request. This signal will then negate (logic 0) asynchronously onc
interrupt source is negated (indicating that the interrupt has been serviced and is no longer being
requested).

8.2  Signal Summary

Each of the Core I/O signals that interface with the system clock and reset generation block(s) are
in Table 8-1  below with the signal type and a brief functional description for completeness.

Table 8-1  Core Clock and Reset Interface Signals

Signal Name Type Functional Description

Clock and Reset Signals
peri_reset_ta4 I System reset signal

reset_pin_ind I System level reset pin input data

peri_clk2 I System clock clk2 for Core

peri_clk4 I System clock clk4 for Core

peri_clk24 I System clock clk24 for Core

peri_clk34 I System clock clk34 for peripherals on I.P. Bus Interface

peri_clk23 I System clock clk23 used by Core to generate ECLK

peri_phase_oscdX I Oscillator Clock divided by ‘X’

peri_test_clk_enable I PLL test feature clock enable signal

peri_test_clk I PLL test feature clock signal

peri_pllsel_t3 I PLL selected signal

core_eclk_load O External clock load enable signal

core_neclk_t2 O External clock disable signal

Stop and Wait Mode Control/Status Signals
core_stop_t24 O Core CPU stop mode signal

core_wait_t24 O Core CPU wait mode signal

core_wakeup_ta O Core wakeup from stop or wait mode due to interrupt

peri_cwai_t3 I
Core wait signal: controls whether clk24 runs during CPU wait mode. 0 -
clk24 runs during wait, 1 - clk24 ceases during wait.

peri_syswai_t3 I
System level wait signal: controls whether system clocks run during CPU
wait mode. 0 - all clocks run during wait, 1 - no clocks run during wait.
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8.3  Detailed Clock and Reset Signal Descriptions

General descriptions of the Core clock and reset interface signals are given in the subsections below
included are the stop and wait mode signals due to the necessary interaction with the clock and re
requirements. For detailed descriptions of these signals including timing information please consu
HCS12 V1.5 Core Integration Guide.

8.3.1  Clock and Reset Signals

These descriptions apply to system level clock and reset signals needed by the Core.

8.3.1.1  System Reset signal (peri_reset_ta4)

This single bit asynchronous input to the Core indicates the system reset condition.

8.3.1.2  System level reset input data (reset_pin_ind)

This active-low single bit input is used within the Core as a load enable for the MODE pin logic on
E of the system.

8.3.1.3  System level clock for the Core (peri_clk2)

This clock input is one of the main clocks for the Core.

8.3.1.4  System level clock for the Core (peri_clk4)

This clock input is one of the main clocks for the Core.

8.3.1.5  System level clock for the Core (peri_clk24)

This clock input is one of the main clocks for the Core.

8.3.1.6  System level clock for peripheral blocks (peri_clk34)

This clock input is the main clock source for all peripheral blocks integrated in the system and acc
by the Core through the I.P. Bus Interface.

8.3.1.7  System ECLK clock (peri_clk23)

This clock input is the main clock source used by the Core to generate the system ECLK.

8.3.1.8  Divided Down System Oscillator Clock (peri_phase_oscdX)

This clock input to the Core is used within the Core by the Background Debug Mode sub-block to
the BDM synchronized.
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8.3.1.9  System Test Clock enable (peri_test_clk_enable)

This single bit input to the Core indicates that the phase-locked loop (PLL) test clock should be outp
the system Port E bit 6 pin when the PIPOE bit is zero.

8.3.1.10  System Test Clock (peri_test_clk)

This clock input to the Core is the PLL test clock.

8.3.1.11  System clock source select signal (peri_pllsel_t3)

This single bit input to the Core indicates whether clocks within the system are derived from the crys
PLL.

8.3.1.12  ECLK load enable signal (core_eclk_load)

This single bit output from the Core is the load enable signal for the system external clock, ECLK.

8.3.1.13  ECLK disable signal (core_neclk_t2)

This single bit output from the Core is the disable signal for the system external clock, ECLK.

8.3.2  Stop and Wait Mode Control/Status Signals

These descriptions apply to signals that provide for controlling some of the functionality and statu
indication of CPU stop and wait modes.

8.3.2.1  CPU stop mode indicator (core_stop_t24)

This Core output signal indicates whether the CPU is in stop mode.

8.3.2.2  CPU wait mode indicator (core_wait_t24)

This Core output signal indicates whether the CPU is in wait mode.

8.3.2.3  Core wakeup indicator for wait and stop mode (core_wakeup_ta)

This asynchronous Core output signal indicates that the CPU has received an interrupt request and
to resume normal operation.

8.3.2.4  Core wait signal from system clock generation block (peri_cwai_t3)

This Core input signal indicates to the CPU whether the main Core clock,peri_clk24, will run during CPU
wait mode.

8.3.2.5  System level wait signal (peri_syswai_t3)

This Core input signal indicates to the Core whether all system clocks will run during CPU wait mo
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Section 9  Core Power Connections

This section details the HCS12 V1.5 Core power connections.

9.1  Power Overview

The HCS12 V1.5 Core operates from a single power and a single ground connection.

9.1.1  Power and Ground Summary

The Core requires a single power (typically termed VDD) and a single ground (typically termed VS
connection that is implicit when integrating into a synthesized design. There are no signals at the 
interface for power and ground.
169



Core User Guide — S12CPU15UG V1.2
170



Core User Guide — S12CPU15UG V1.2

licable
ts, a
nd
ests are

or

e

he
Section 10  Interrupt (INT)

This section describes the functionality of the Interrupt (INT) sub-block of the Core.

10.1  Overview

The Interrupt sub-block decodes the priority of all system exception requests and provides the app
vector for processing the exception. The INT supports I-bit maskable and X-bit maskable interrup
nonmaskable Unimplemented Opcode Trap, a nonmaskable software interrupt (SWI) or Backgrou
Debug Mode request, and three system reset vector requests. All interrupt related exception requ
handled by the Interrupt.

10.1.1  Features

• Provides 2 to 122 I bit maskable interrupt vectors ($FF00-$FFF2)

• Provides 1 X bit maskable interrupt vector ($FFF4)

• Provides a nonmaskable Unimplemented Opcode Trap (TRAP) vector ($FFF8)

• Provides a nonmaskable software interrupt (SWI) or Background Debug Mode request vect
($FFF6)

• Provides 3 system reset vectors ($FFFA-$FFFE)

• Determines the appropriate vector and drives it onto the address bus at the appropriate tim

• Signals the CPU that interrupts are pending

• Provides control registers which allow testing of interrupts

• Provides additional input signals which prevents requests for servicing I and X interrupts

• Wakes the system from stop or wait mode when an appropriate interrupt occurs or wheneverXIRQ
is active, even ifXIRQ is masked

• Provides asynchronous path for all I and X interrupts, ($FF00–$FFF4)

• (Optional) Selects and stores the highest priority I interrupt based on the value written into t
HPRIO register
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10.1.2  Block Diagram

A block diagram of the Interrupt sub-block is shown inFigure 10-1  below.

Figure 10-1  Interrupt Block Diagram

10.2  Interface Signals

All interfacing with the Interrupt sub-block is done within the Core. The Interrupt does however rec
direct input from the Multiplexed External Bus Interface (MEBI) sub-block of the Core for theIRQ and
XIRQ pin data.

HPRIO (OPTIONAL)

INT

PRIORITY DECODER

VECTOR REQUEST
ADDRESS

INTERRUPT

INTERRUPTS

RESET FLAGS

WRITE DATA BUS

H
PR

IO
 V

EC
TO

R

XMASK

IMASK

QUALIFIED

INTERRUPT INPUT REGISTERS

INTERRUPTS

AND CONTROL REGISTERS

HIGHEST PRIORITY
I-INTERRUPT

PENDING

VECTOR

READ DATA BUS

WAKEUP
172



Core User Guide — S12CPU15UG V1.2

 the

errupt
10.3  Registers

A summary of the registers associated with the Interrupt sub-block is shown inFigure 10-2  below.
Detailed descriptions of the registers and associated bits are given in the subsections that follow.

Figure 10-2  Interrupt Register Summary

10.3.1  Interrupt Test Control Register

Read: see individual bit descriptions
Write: see individual bit descriptions

WRTINT - Write to the Interrupt Test Registers

Read: anytime

Write: only in special modes and with I bit mask and X bit mask set.
1 = Disconnect the interrupt inputs from the priority decoder and use the values written into

ITEST registers instead.
0 = Disables writes to the test registers; reads of the test registers will return the state of the int

inputs.

NOTE: Any interrupts which are pending at the time that WRTINT is set will remain until
they are overwritten.

ADR3 - ADR0 - Test register select bits

Address Name Bit 7 6 5 4 3 2 1 Bit 0

$0015 ITCR
read 0 0 0

WRTINT ADR3 ADR2 ADR1 ADR0
write

$0016 ITEST
read

INTE INTC INTA INT8 INT6 INT4 INT2 INT0
write

$001F HPRIO
read

PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1
0

write

= Unimplemented X = Indeterminate

Address:$0015

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0
WRTINT ADR3 ADR2 ADR1 ADR0

Write:

Reset: 0 0 0 0 1 1 1 1

Figure 10-3  Interrupt Test Control Register (ITCR)
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Read: anytime

Write: anytime

These bits determine which test register is selected on a read or write. The hexadecimal value w
here will be the same as the upper nibble of the lower byte of the vector selects. That is, an “F” w
into ADR3 - ADR0 will select vectors $FFFE - $FFF0 while a “7” written to ADR3 - ADR0 will selec
vectors $FF7E - $FF70.

10.3.2  Interrupt Test Registers

Read: Only in special modes. Reads will return either the state of the interrupt inputs of the
Interrupt sub-block (WRTINT = 0) or the values written into the TEST registers (WRTINT
= 1). Reads will always return zeroes in normal modes.

Write: Only in special modes and with WRTINT = 1 and CCR I mask = 1.

INTE - INT0 - Interrupt TEST bits

These registers are used in special modes for testing the interrupt logic and priority independent
system configuration. Each bit is used to force a specific interrupt vector by writing it to a logic
state. Bits are named with INTE through INT0 to indicate vectors $FFxE through $FFx0. Thes
can be written only in special modes and only with the WRTINT bit set (logic one) in the Interrupt T
Control Register (ITCR). In addition, I interrupts must be masked using the I bit in the CCR. In
state, the interrupt input lines to the Interrupt sub-block will be disconnected and interrupt reques
be generated only by this register. These bits can also be read in special modes to view that an in
requested by a system block (such as a peripheral block) has reached the INT module.

There is a test register implemented for every 8 interrupts in the overall system. All of the test reg
share the same address and are individually selected using the value stored in the ADR3 - ADR0
the Interrupt Test Control Register (ITCR).

NOTE: When ADR3-ADR0 have the value of $F, only bits 2-0 in the ITEST register will be
accessible. That is, vectors higher than $FFF4 cannot be tested using the test
registers and bits 7-3 will always read as a logic zero. If ADR3-ADR0 point to an
unimplemented test register, writes will have no effect and reads will always return
a logic zero value.

Address:$0016

Bit 7 6 5 4 3 2 1 Bit 0

Read:
INTE INTC INTA INT8 INT6 INT4 INT2 INT0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-4 Interrupt TEST Registers (ITEST)
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10.3.3  Highest Priority I Interrupt (Optional)

Read: anytime
Write: only if I mask in CCR = 1

PSEL7 - PSEL1 - Highest priority I interrupt select bits

The state of these bits determines which I bit maskable interrupt will be promoted to highest p
(of the I bit maskable interrupts). To promote an interrupt, the user writes the least significant by
the associated interrupt vector address to this register. If an unimplemented vector address or
bit masked vector address (value higher than $F2) is written, IRQ ($FFF2) will be the default hig
priority interrupt.

10.4  Operation

The Interrupt sub-block processes all exception requests made by the CPU. These exceptions inc
interrupt vector requests and reset vector requests. Each of these exception types and their overall
level is discussed in the subsections below.

10.4.1  Interrupt Exception Requests

As shown inFigure 10-1 above, the INT mainly contains a register block to provide interrupt status
control, an optional Highest Priority I Interrupt (HPRIO) block and a priority decoder to evaluate whe
pending interrupts are valid and assess their priority.

10.4.1.1  Interrupt Registers

The INT registers are accessible only in special modes of operation and function as described in10.3.1
and10.3.2 previously.

10.4.1.2  Highest Priority I bit Maskable Interrupt

When the optional HPRIO block is implemented, the user is allowed to promote a single I bit mas
interrupt to be the highest priority I interrupt. The HPRIO evaluates all interrupt exception request
passes the HPRIO vector to the priority decoder if the highest priority I interrupt is active.

Address:$001F

Bit 7 6 5 4 3 2 1 Bit 0

Read:
PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1

0

Write:

Reset: 1 1 1 1 0 0 1 0

Figure 10-5 Highest Priority I Interrupt Register (HPRIO)
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10.4.1.3  Interrupt Priority Decoder

The priority decoder evaluates all interrupts pending and determines their validity and priority. Whe
CPU requests an interrupt vector, the decoder will provide the vector for the highest priority interru
request. Because the vector is not supplied until the CPU requests it, it is possible that a higher p
interrupt request could override the original exception that caused the CPU to request the vector. 
case, the CPU will receive the highest priority vector and the system will process this exception inste
the original request.

NOTE: Care must be taken to ensure that all exception requests remain active until the
system begins execution of the applicable service routine; otherwise, the exception
request may not get processed.

If for any reason the interrupt source is unknown (e.g. an interrupt request becomes inactive after
interrupt has been recognized but prior to the vector request), the vector address will default to that
last valid interrupt that existed during the particular interrupt sequence. If the CPU requests an int
vector when there has never been a pending interrupt request, the INT will provide the Software Int
(SWI) vector address.

10.4.2  Reset Exception Requests

The INT supports three system reset exception request types: normal system reset or power-on-r
request, Crystal Monitor reset request and COP Watchdog reset request. The type of reset excep
request must be decoded by the system and the proper request made to the Core. The INT will then
the service routine address for the type of reset requested.

10.4.3  Exception Priority

The priority (from highest to lowest) and address of all exception vectors issued by the INT upon re
by the CPU is shown inTable 10-1  below.

Table 10-1  Exception Vector Map and Priority

Vector Address  Source

$FFFE–$FFFF System reset

$FFFC–$FFFD Crystal Monitor reset

$FFFA–$FFFB COP reset

$FFF8–$FFF9 Unimplemented opcode trap

$FFF6–$FFF7 Software interrupt instruction (SWI) or BDM vector request

$FFF4–$FFF5 XIRQ signal

$FFF2–$FFF3 IRQ signal

$FFF0–$FF00
Device-specific I bit maskable interrupt sources (priority in
descending order)
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10.5  Modes of Operation

The functionality of the INT sub-block in various modes of operation is discussed in the subsection
follow.

10.5.1  Normal Operation

The INT operates the same in all normal modes of operation.

10.5.2  Special Operation

Interrupts may be tested in special modes through the use of the interrupt test registers as describ
10.3.1 and10.3.2 previously.

10.5.3  Emulation Modes

The INT operates the same in emulation modes as in normal modes.

10.6  Low-Power Options

The INT does not contain any user-controlled options for reducing power consumption. The operat
the INT in low-power modes is discussed in the following subsections.

10.6.1  Run Mode

The INT does not contain any options for reducing power in run mode.

10.6.2  Wait Mode

Clocks to the INT can be shut off during system wait mode and the asynchronous interrupt path w
used to generate the wakeup signal upon recognition of a valid interrupt or anyXIRQ request.

10.6.3  Stop Mode

Clocks to the INT can be shut off during system stop mode and the asynchronous interrupt path w
used to generate the wakeup signal upon recognition of a valid interrupt or anyXIRQ request.

10.7  Motorola Internal Information

The INT does not contain any functionality that is considered to be for Motorola internal use only.
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Section 11  Module Mapping Control (MMC)

This section describes the functionality of the Module Mapping Control (MMC) sub-block of the Co

11.1  Overview

The Module Mapping Control (MMC) sub-block of the Core performs all mapping and select opera
for the on-chip and external memory blocks. The MMC also handles mapping functions for the sy
peripheral blocks and provides a global peripheral select to be decoded by the Motorola I.P. Bus wh
Core is addressing a portion of the peripheral register map space. All bus-related data flow and
multiplexing for the Core is handled within the MMC as well. Finally, the MMC contains logic to
determine the state of system security.

11.1.1  Features

• Registers for mapping of address space for on-chip RAM, EEPROM, and Flash EEPROM (
ROM) memory blocks and associated registers

• Memory mapping control and selection based upon address decode and system operating 

• Core Address Bus control

• Core Data Bus control and multiplexing

• Core Security state decoding

• Emulation Chip Select signal generation (ECS)

• External Chip Select signal generation (XCS)

• Internal memory expansion

• Miscellaneous system control functions via the MISC register

• Reserved registers for test purposes

• Configurable system memory options defined at integration of Core into the System-on-a-C
(SOC).
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11.1.2  Block Diagram

The block diagram of the MMC is shown inFigure 11-1  below.

Figure 11-1  Module Mapping Control Block Diagram

11.2  Interface Signals

All interfacing with the MMC sub-block is done within the Core.

MMC
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CPU Write Data bus

CPU Address bus

CPU Control

Stop, Wait

ADDRESS DECODE

CPU Read Data bus

EBI Alternate Address bus

EBI Alternate Write data bus

EBI Alternate Read data bus

SECURITY

INTERNAL MEMORY
EXPANSION

Clocks, Reset

Read & Write Enables

 Alternate Address bus (BDM)

Alternate Write data bus (BDM)

 Alternate Read data bus (BDM)

 Core select (s)

 Port K Interface

 memory space select(s)

 peripheral select

BUS CONTROL

secure

bdm_unsecure

mmc_secure
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11.3  Registers

A summary of the registers associated with the MMC sub-block is shown inFigure 11-2 below. Detailed
descriptions of the registers and bits are given in the subsections that follow.

Figure 11-2  Module Mapping Control Register Summary

Address Name Bit 7 6 5 4 3 2 1 Bit 0

$0010 INITRM
read

RAM15 RAM14 RAM13 RAM12 RAM11
0 0

RAMHAL
write

$0011 INITRG
read 0

REG14 REG13 REG12 REG11
0 0 0

write

$0012 INITEE
read

EE15 EE14 EE13 EE12 EE11
0 0

EEON
write

$0013 MISC
read 0 0 0 0

EXSTR1 EXSTR0 ROMHM ROMON
write

$0014 Reserved
read Bit 7 6 5 4 3 2 1 Bit 0
write

$0017 Reserved
read Bit 7 6 5 4 3 2 1 Bit 0
write

$001C MEMSIZ0
read reg_sw0 0 eep_sw1 eep_sw0 0 ram_sw2 ram_sw1 ram_sw0
write

$001D MEMSIZ1
read rom_sw1 rom_sw0 0 0 0 0 pag_sw1 pag_sw0
write

$0030 PPAGE
read 0 0

PIX5 PIX4 PIX3 PIX2 PIX1 PIX0
write

$0031 Reserved
read 0 0 0 0 0 0 0 0
write

= Unimplemented X = Indeterminate
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11.3.1  Initialization of Internal RAM Position Register (INITRM)

Read: Anytime
Write: Once in Normal and Emulation Modes, anytime in Special Modes

NOTE: Writes to this register take one cycle to go into effect.

This register initializes the position of the internal RAM within the on-chip system memory map.

RAM15 - RAM11 - Internal RAM Map Position

These bits determine the upper five bits of the base address for the system’s internal RAM arr

RAMHAL - RAM High-align

RAMHAL specifies the alignment of the internal RAM array.
0 = Aligns the RAM to the lowest address ($0000) of the mappable space
1 = Aligns the RAM to the higher address ($FFFF) of the mappable space

11.3.2  Initialization of Internal Registers Position Register (INITRG)

Read: Anytime
Write: Once in Normal and Emulation modes and anytime in Special modes

Address: Base + $10

Bit 7 6 5 4 3 2 1 Bit 0

Read:
RAM15 RAM14 RAM13 RAM12 RAM11

0 0 RAM-
HALWrite:

Reset: 0 0 0 0 1 0 0 1

= Unimplemented

Figure 11-3  INITRM Register

Address: Base + $11

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0
REG14 REG13 REG12 REG11

0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 11-4  INITRG Register
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This register initializes the position of the internal registers within the on-chip system memory map
registers occupy either a 1K byte or 2K byte space and can be mapped to any 2K byte space within t
32K bytes of the system’s address space.

REG14 - REG11 - Internal Register Map Position

These four bits in combination with the leading zero supplied by bit 7 of INITRG determine the u
five bits of the base address for the system’s internal registers (i.e. the minimum base address is
and the maximum is $7FFF).

11.3.3  Initialization of Internal EEPROM Position Register (INITEE)

Read: Anytime
Write: Once in Normal and Emulation modes with the exception of the EEON bit which can be

written anytime and write anytime in Special modes

NOTE: Writes to this register take one cycle to go into effect.

This register initializes the position of the internal EEPROM within the on-chip system memory ma

EE15 - EE11 - Internal EEPROM map position

These bits determine the upper five bits of the base address for the system’s internal EEPROM

Address: Base + $12

Bit 7 6 5 4 3 2 1 Bit 0

Read:
EE15 EE14 EE13 EE12 EE11

0 0
EEON

Write:

Reset: 0 0 0 0 0 0 0 1

= Unimplemented

Figure 11-5 INITEE Register
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11.3.4  Miscellaneous System Control Register (MISC)

Read: Anytime
Write: As stated in each bit description below

NOTE:Writes to this register take one cycle to go into effect

This register initializes miscellaneous control functions.

EXSTR1,0 - External Access Stretch Bits 1 & 0
Write: Once in Normal and Emulation modes and anytime in Special modes

This two bit field determines the amount of clock stretch on accesses to the external address sp
shown inTable 11-1  below. In Single Chip and Peripheral modes these bits have no meaning 
effect.

ROMHM - Flash EEPROM or ROM only in second half of memory map
Write: Once in Normal and Emulation modes and anytime in Special modes

Address: Base + $13

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 0
EXSTR1 EXSTR0 ROMHM ROMON

Write:

Expanded
Reset:

0 0 0 0 1 1 0 1

NOTES:
1. The reset state of this bit is determined at the chip integration level.

Peripheral
or Single

Chip Reset
0 0 0 0 1 1 0 1

= Unimplemented

Figure 11-6 Miscellaneous System Control Register (MISC)

Table 11-1  External Stretch Bit Definition

Stretch bit EXSTR1 Stretch bit EXSTR0 Number of E Clocks Stretched

0 0 0

0 1 1

1 0 2

1 1 3
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1 = Disables direct access to the Flash EEPROM or ROM in the lower half of the memory m
These physical locations of the Flash EEPROM or ROM can still be accessed through t
Program Page window.

0 = The fixed page(s) of Flash EEPROM or ROM in the lower half of the memory map can b
accessed.

ROMON - Enable Flash EEPROM or ROM
Write: Once in Normal and Emulation modes and anytime in Special modes

This bit is used to enable the Flash EEPROM or ROM memory in the memory map.
1 = Enables the Flash EEPROM or ROM in the memory map.
0 = Disables the Flash EEPROM or ROM from the memory map.

11.3.5  Reserved Test Register Zero (MTST0)

Read: Anytime

Write: No effect - this register location is used for internal test purposes.

11.3.6  Reserved Test Register One (MTST1)

Read: Anytime

Write: No effect - this register location is used for internal test purposes.

Address: Base + $17

Read: 0 0 0 0 0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 11-7 Reserved Test Register Zero (MTST0)

Address: Base + $14

Read: 0 0 0 0 0 0 0 0

Write:

Reset: 0 0 0 1 0 0 0 0

= Unimplemented

Figure 11-8 Reserved Test Register One (MTST1)
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11.3.7  Memory Size Register Zero (MEMSIZ0)

Read: Anytime
Write: Writes have no effect

The MEMSIZ0 register reflects the state of the register, EEPROM and RAM memory space configur
switches at the Core boundary which are configured at system integration. This register allows re
visibility to the state of these switches.

reg_sw0 - Allocated System Register Space
1 = Allocated system register space size is 2K byte
0 = Allocated system register space size is 1K byte

eep_sw1:eep_sw0 - Allocated System EEPROM Memory Space

The allocated system EEPROM memory space size is as given inTable 11-2  below.

ram_sw2:ram_sw0 - Allocated System RAM Memory Space

The allocated system RAM memory space size is as given inTable 11-3  below.

Address: Base + $1C

Read: reg_sw0 0 eep_sw1 eep_sw0 0 ram_sw2 ram_sw1 ram_sw0

Write:

Reset: - - - - - - - -

= Unimplemented

Figure 11-9 Memory Size Register Zero

Table 11-2  Allocated EEPROM Memory Space

eep_sw1:eep_sw0 Allocated EEPROM Space
00 0K byte

01 2K byte

10 4K byte

11 8K byte

Table 11-3  Allocated RAM Memory Space

ram_sw2:ram_sw0 Allocated RAM Space RAM mappable region INITRM bits used
000 2k Byte 2k Byte RAM15-RAM11

001 4k Byte 4k Byte RAM15-RAM12

010 6k Byte 8k Byte1 RAM15-RAM13

011 8k Byte 8k Byte RAM15-RAM13

100 10k Byte 16k Byte1 RAM15-RAM14
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NOTE: As stated, the bits in this register provide read visibility to the system physical
memory space allocations defined at system integration. The actual array size for
any given type of memory block may differ from the allocated size. Please refer to
the chip-level documentation for actual sizes.

11.3.8  Memory Size Register One (MEMSIZ1)

Read: Anytime
Write: Writes have no effect

The MEMSIZ1 register reflects the state of the Flash EEPROM or ROM physical memory space a
paging switches at the Core boundary which are configured at system integration. This register allow
visibility to the state of these switches.

rom_sw1:rom_sw0 - Allocated System Flash EEPROM or ROM Physical Memory Space

The allocated system Flash EEPROM or ROM physical memory space is as given inTable 11-4
below.

1 The ROMHM software bit in the MISC register determines the accessibility of the Flash EEPROM/ROM memory space.
Please refer to 11.3.4 for a detailed functional description of the ROMHM bit.

101 12k Byte 16k Byte1 RAM15-RAM14

110 14k Byte 16k Byte1 RAM15-RAM14

111 16k Byte 16k Byte RAM15-RAM14

NOTES:
1. Alignment of the Allocated RAM space within the RAM mappable region is dependent on the value of

RAMHAL.

Address: Base + $1D

Read: rom_sw1 rom-sw0 0 0 0 0 pag_sw1 pag_sw0

Write:

Reset: - - - - - - - -

= Unimplemented

Figure 11-10 Memory Size Register One

Table 11-4  Allocated Flash EEPROM/ROM Physical Memory Space

rom_sw1:rom_sw0 Allocated Flash
or ROM Space

00 0K byte

01 16K byte

10 48K byte1

11 64K byte1

Table 11-3  Allocated RAM Memory Space

ram_sw2:ram_sw0 Allocated RAM Space RAM mappable region INITRM bits used
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pag_sw1:pag_sw0 - Allocated Off-Chip Flash EEPROM or ROM Memory Space

The allocated off-chip Flash EEPROM or ROM memory space size is as given inTable 11-5 below.

NOTE: As stated, the bits in this register provide read visibility to the system memory space
and on-chip/off-chip partitioning allocations defined at system integration. The
actual array size for any given type of memory block may differ from the allocated
size. Please refer to the chip-level documentation for actual sizes.

11.3.9  Program Page Index Register (PPAGE)

Read: Anytime
Write: Anytime

The HCS12 Core architecture limits the physical address space available to 64K bytes. The Program
Index Register allows for integrating up to 1M byte of Flash EEPROM or ROM into the system by u
the six page index bits to page 16K byte blocks into the Program Page Window located from $800
$BFFF as defined inTable 11-6  below. CALL and RTC instructions have a special single wire
mechanism to read and write this register without using the address bus.

NOTE: Normal writes to this register take one cycle to go into effect. Writes to this register
using the special single wire mechanism of the CALL and RTC instructions will be
complete before the end of the associated instruction.

PIX5 - PIX0 - Program Page Index Bits 5-0

These six page index bits are used to select which of the 64 Flash EEPROM or ROM array page
be accessed in the Program Page Window as shown inTable 11-6 .

Table 11-5  Allocated Off-Chip Memory Options

pag_sw1:pag_sw0 Off-Chip Space On-Chip Space
00 876K byte 128K byte

01 768K byte 256K byte

10 512K byte 512K byte

11 0K byte 1M byte

Address: Base + $30

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0
PIX5 PIX4 PIX3 PIX2 PIX1 PIX0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 11-11  Program Page Index Register (PPAGE)
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11.4  Operation

The MMC sub-block performs four basic functions of the Core operation: bus control, address dec
and select signal generation, memory expansion and security decoding for the system. Each aspe
described in the subsections following.

11.4.1  Bus Control

The MMC controls the address bus and data buses that interface the Core with the rest of the syste
includes the multiplexing of the input data buses to the Core onto the main CPU read data bus and
of data flow from the CPU to the output address and data buses of the Core. In addition, the MMC ha
all CPU read data bus swapping operations.

11.4.2  Address Decoding

As data flows on the Core address bus, the MMC decodes the address information, determines whe
internal Core register or firmware space, the peripheral space or a memory register or array space i
addressed and generates the correct select signal. This decoding operation also interprets the mo
operation of the system and the state of the mapping control registers in order to generate the prope
The MMC also generates two external chip select signals, Emulation Chip Select (ECS) and External Chip
Select (XCS).

Table 11-6  Program Page Index Register Bits

PIX5 PIX4 PIX3 PIX2 PIX1 PIX0 Program Space Selected

0 0 0 0 0 0 16K page 0

0 0 0 0 0 1 16K page 1

0 0 0 0 1 0 16K page 2

0 0 0 0 1 1 16K page 3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 1 1 1 0 0 16K page 60

1 1 1 1 0 1 16K page 61

1 1 1 1 1 0 16K page 62

1 1 1 1 1 1 16K page 63
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11.4.2.1  Select Priority and Mode Considerations

Although internal resources such as control registers and on-chip memory have default addresses, e
be relocated by changing the default values in control registers. Normally, I/O addresses, control reg
vector spaces, expansion windows, and on-chip memory are mapped so that their address range
overlap. The MMC will make only one select signal active at any given time. This activation is based
the priority outlined inTable 11-7  below. If two or more blocks share the same address space, only
select signal for the block with the highest priority will become active. An example of this is if the regis
and the RAM are mapped to the same space, the registers will have priority over the RAM and the p
of RAM mapped in this shared space will not be accessible. The expansion windows have the low
priority. This means that registers, vectors, and on-chip memory are always visible to a program rega
of the values in the page select registers.

In expanded modes, all address space not used by internal resources is by default external memor
The data registers and data directions registers for Ports A and B are removed from the on-chip m
map and become external accesses. If the EME bit in the MODE register (see12.3.8) is set, the data and
data direction registers for Port E are also removed from the on-chip memory map and become e
accesses.

In Special Peripheral mode, the first 16 registers associated with bus expansion are removed from
on-chip memory map (PORTA, PORTB, DDRA, DDRB, PORTE, DDRE, PEAR, MODE, PUCR,
RDRIV and the EBI reserved registers).

In emulation modes, if the EMK bit in the MODE register (see12.3.8) is set, the data and data direction
registers for Port K are removed from the on-chip memory map and become external accesses.

11.4.2.2  Emulation Chip Select Signal

When the EMK bit in the MODE register (see12.3.8) is set, Port K bit 7 is used as an active-low emulatio
chip select signal,ECS. This signal is active when the system is in Emulation mode, the EMK bit is 
and the Flash EEPROM or ROM space is being addressed subject to the conditions outlined in11.4.3.2
below. When the EMK bit is clear, this pin is used for general purpose I/O.

11.4.2.3  External Chip Select Signal

When the EMK bit in the MODE register (see12.3.8) is set, Port K bit 6 is used as an active-low extern
chip select signal,XCS. This signal is active only when theECS signal described above is not active an
when the system is addressing the external address space. Accesses to unimplemented locations w

Table 11-7  Select Signal Priority

Priority Address Space
Highest BDM (internal to Core) firmware or register space

... Internal register space

... RAM memory block

... EEPROM memory block

... On-chip Flash EEPROM or ROM

Lowest Remaining external space
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register space or to locations that are removed from the map (i.e. Ports A and B in Expanded mode
not cause this signal to become active. When the EMK bit is clear, this pin is used for general purpo

11.4.3  Memory Expansion

The HCS12 Core architecture limits the physical address space available to 64K bytes. The Program
Index Register allows for integrating up to 1M byte of Flash EEPROM or ROM into the system by u
the six page index bits to page 16K byte blocks into the Program Page Window located from $800
$BFFF in the physical memory space. The paged memory space can consist of solely on-chip mem
a combination of on-chip and off-chip memory. This partitioning is configured at system integratio
through the use of the paging configuration switches (pag_sw1:pag_sw0) at the Core boundary. The
options available to the integrator are as given inTable 11-8  below (this table matchesTable 11-5  but
is repeated here for easy reference).

Based upon the system configuration, the Program Page Window will consider its access to be ei
internal or external as defined inTable 11-9  below.

NOTE: The partitioning as defined inTable 11-9  above applies only to the allocated
memory space and the actual memory sizes implemented in the system may differ.
Please refer to the chip-level documentation for actual sizes.

The PPAGE register holds the page select value for the Program Page WIndow. The value of the P
register can be manipulated by normal read and write instructions as well as the CALL and RTC
instructions.

Table 11-8  Allocated Off-Chip Memory Options

pag_sw1:pag_sw0 Off-Chip Space On-Chip Space
00 876K byte 128K byte

01 768K byte 256K byte

10 512K byte 512K byte

11 0K byte 1M byte

Table 11-9  External/Internal Page Window Access

pag_sw1:pag_sw0 Partitioning PIX5:0 Value Page Window Access

00
876K off-Chip,
128K on-Chip

$00 - $37 external

$38 - $3F internal

01
768K off-chip,
256K on-chip

$00 - $2F external

$30 - $3F internal

10
512K off-chip,
512K on-chip

$00 - $1F external

$20 - $3F internal

11
0K off-chip,
1M on-chip

n/a external

$00 - $3F internal
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Control registers, vector spaces and a portion of on-chip memory are located in unpaged portions
64K byte physical address space. The stack and I/O addresses should also be in unpaged memory
them accessible from any page.

The starting address of a service routine must be located in unpaged memory because the 16-bit ex
vectors cannot point to addresses in paged memory. However, a service routine can call other routin
are in paged memory. The upper 16K byte block of memory space ($C000-$FFFF) is unpaged. It
recommended that all reset and interrupt vectors point to locations in this area.

11.4.3.1  CALL and Return from Call Instructions

CALL and RTC are uninterruptable instructions that automate page switching in the program expa
window. CALL is similar to a JSR instruction, but the subroutine that is called can be located anyw
in the normal 64K byte address space or on any page of program expansion memory. CALL calculat
stacks a return address, stacks the current PPAGE value, and writes a new instruction-supplied v
PPAGE. The PPAGE value controls which of the 64 possible pages is visible through the 16K byt
expansion window in the 64K byte memory map. Execution then begins at the address of the call
subroutine.

During the execution of a CALL instruction, the CPU:

• Writes the old PPAGE value into an internal temporary register and writes the new
instruction-supplied PPAGE value into the PPAGE register.

• Calculates the address of the next instruction after the CALL instruction (the return address
pushes this 16-bit value onto the stack.

• Pushes the old PPAGE value onto the stack.

• Calculates the effective address of the subroutine, refills the queue, and begins execution at th
address on the selected page of the expansion window.

This sequence is uninterruptable; there is no need to inhibit interrupts during CALL execution. A C
can be performed from any address in memory to any other address.

The PPAGE value supplied by the instruction is part of the effective address. For all addressing m
variations except indexed-indirect modes, the new page value is provided by an immediate operand
instruction. In indexed-indirect variations of CALL, a pointer specifies memory locations where the
page value and the address of the called subroutine are stored. Using indirect addressing for both t
page value and the address within the page allows values calculated at run time rather than imme
values that must be known at the time of assembly.

The RTC instruction terminates subroutines invoked by a CALL instruction. RTC unstacks the PP
value and the return address and refills the queue. Execution resumes with the next instruction af
CALL.

During the execution of an RTC instruction, the CPU:

• Pulls the old PPAGE value from the stack

• Pulls the 16-bit return address from the stack and loads it into the PC

• Writes the old PPAGE value into the PPAGE register
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• Refills the queue and resumes execution at the return address

This sequence is uninterruptable; an RTC can be executed from anywhere in memory, even from
different page of extended memory in the expansion window.

The CALL and RTC instructions behave like JSR and RTS, except they use more execution cycle
Therefore, routinely substituting CALL/RTC for JSR/RTS is not recommended. JSR and RTS can be
to access subroutines that are on the same page in expanded memory. However, a subroutine in e
memory that can be called from other pages must be terminated with an RTC. And the RTC unsta
PPAGE value. So any access to the subroutine, even from the same page, must use a CALL instruc
that the correct PPAGE value is in the stack.

11.4.3.2  Extended Address (XAB19:14) and ECS Signal Functionality

If the EMK bit in the MODE register is set (see12.3.8) the PIX5:0 values will be output on XAB19:14
respectively (Port K bits 5:0) when the system is addressing within the physical Program Page W
address space ($8000 - $BFFF) and is in an expanded mode. When addressing anywhere else w
physical address space (outside of the paging space), the XAB19:14 signals will be assigned a co
value based upon the physical address space selected. In addition, the active-low emulation chip
signal,ECS, will likewise function based upon the assigned memory allocation. In the cases of 48K
and 64K byte allocated physical Flash/ROM space, the operation of theECS signal will additionally
depend upon the state of the ROMHM bit (see11.3.4) in the MISC register.Table 11-10 , Table 11-11 ,
Table 11-12  andTable 11-13  below summarize the functionality of these signals based upon the
allocated memory configuration. Again, this signal information is only available externally when the E
bit is set and the system is in an expanded mode.

Table 11-10  0K Byte Physical Flash/ROM Allocated

Address Space Page Window Access ROMHM ECS XAB19:14
$0000 - $3FFF n/a n/a 1 $3D

$4000 - $7FFF n/a n/a 1 $3E

$8000 - $BFFF n/a n/a 0 PIX5:0

$C000 - $FFFF n/a n/a 0 $3F

Table 11-11  16K Byte Physical Flash/ROM Allocated

Address Space Page Window Access ROMHM ECS XAB19:14
$0000 - $3FFF n/a n/a 1 $3D

$4000 - $7FFF n/a n/a 1 $3E

$8000 - $BFFF n/a n/a 1 PIX5:0

$C000 - $FFFF n/a n/a 0 $3F

Table 11-12  48K Byte Physical Flash/ROM Allocated

Address Space Page Window Access ROMHM ECS XAB19:14
$0000 - $3FFF n/a n/a 1 $3D

$4000 - $7FFF n/a
0 0

$3E
1 1
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A graphical example of a memory paging for a system configured as 1M byte on-chip Flash/ROM
64K allocated physical space is given inFigure 11-12  below for illustration.

$8000 - $BFFF
external

n/a
1

PIX5:0
internal 0

$C000 - $FFFF n/a n/a 0 $3F

Table 11-13  64K Byte Physical Flash/ROM Allocated

Address Space Page Window Access ROMHM ECS XAB19:14

$0000 - $3FFF n/a
0 0

$3D
1 1

$4000 - $7FFF n/a
0 0

$3E
1 1

$8000 - $BFFF
external n/a 1

PIX5:0
internal n/a 0

$C000 - $FFFF n/a n/a 0 $3F

Table 11-12  48K Byte Physical Flash/ROM Allocated

Address Space Page Window Access ROMHM ECS XAB19:14
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Figure 11-12  Memory Paging Example: 1M Byte On-Chip Flash/ROM, 64K Allocation

* These 16K FLASH/ROM pages accessi-
ble from $0000 to $7FFF if selected by the
ROMHM bit in the MISC register.

NORMAL
SINGLE CHIP

VECTORS

One 16K FLASH/ROM Page accessible at a time (selected by PPAGE = 0 to 63)

$0000

$8000

$FF00

$FFFF

16K FLASH
(Unpaged)

$4000

$C000

16K FLASH
(Unpaged)*

16K FLASH
(Paged)

59

62

63

60 61 62 630 1 2 3

61

16K FLASH
(Unpaged)*
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11.5  Motorola Internal Information

The subsection aspects of the MMC that are considered to be for Motorola internal use only.

11.5.1  Test Registers

There are two test registers for the MMC, MTST[1:0]. These registers are used for internal test pur
to gain visibility into the module select logic.

In all modes, if the FLAGSE bit in MTST1 is set, accesses to internal registers or memory will caus
associated flag to assert. For example, an access into the RAM array will cause the MT01 bit (Bit
MTST0 - RAM Array bit) to set. These registers can be read in any mode. If the FLAGSE bit is set, rea
the register will cause it to be cleared. A write will have no effect in all modes.

11.5.1.1  Mapping Test Register 0 (MTST0)

Read: Anytime
Write: No effect

MT0 7-0 - Mapping Test 0

The individual bits are assigned as follows:

MT07 - Core*
MT06 - Peripheral
MT05 - EE Array
MT04 - EE Register
MT03 - Flash Array
MT02 - Flash Register
MT01 - RAM Array
MT00 - RAM Register

* This flag bit will not get set when you are accessing any of the MTST registers

Address: Base + $14

Read: MT07 MT06 MT05 MT04 MT03 MT02 MT01 MT00

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 11-13 Mapping Test Register Zero (MTST0)
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11.5.1.2  Mapping Test Register 1 (MTST1)

Read: Anytime
Write: See individual bit descriptions

MT17 - Unimplemented (reads back zero)

MT16 - Mapping Test Register 1 Bit 6 (PNORME).

Normally, the system will enter peripheral mode and be in a special mode. Setting this bit will pu
system into normal peripheral mode. This is so that testing of register normal mode read/write
conditions can be performed while in peripheral mode.

Normal, Special & Emulation: Write never.

Peripheral: Write anytime.
1 = The system operates in normal peripheral mode.
0 = The system operates in special peripheral mode.

MT15 — Mapping Test Register 1 Bit 5 (FLAGSE).

This bit is used to enable the select signal flag function of the MTST registers. When asserted
MTST registers that have an associated block select signal flag bit will act as flag registers, whe
access to the block causes the flag bit to assert. When unasserted, the MTST registers will no
flag bits.

Normal & Emulation: Write never.

Special: Write anytime.
1 = The MTST registers act as flag bits for the block select signals.
0 = The MTST registers do not act as flag bits for the block select signals.

MT14 - Mapping Test Register 3 Bit 4 (BKGDPUE)

This bit used to enable/disable the pull-up on the BKGD pin.

Normal & Emulation: Write never

Special: Write anytime
1 = The pull-up on the BKGD pin is enabled.
0 = The pull-up on the BKGD pin is disabled.

MT 13-10 — Mapping Test Register 1 Bits 3:0

Address: Base + $17

Read: MT17 MT16 MT15 MT14 MT13 MT12 MT11 MT10

Write: PNORME FLAGSE BKGDPUE

Reset: 0 0 0 1 0 0 0 0

= Unimplemented

Figure 11-14 Mapping Test Register One (MTST1)
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11.5.2  MMC Bus Control

This subsection discusses aspects of the bus control/multiplexing performed by the MMC.

11.5.2.1  Address Bus

The MMC multiplexes the EBI Alternate Address Bus, BDM Alternate Address Bus, and the CPU
Address Bus to form the main address bus for the Core. The EBI Alternate Address Bus is the addre
source in peripheral mode. The BDM Alternate Address Bus is the address bus source whenever th
is driving the bus. The CPU Address Bus is the address bus source whenever the CPU has a valid a
the BDM is not driving the bus and the system is not operating in peripheral mode.

11.5.2.2  Write Data Bus

The CPU Write Data bus, EBI Alternate Write Data bus or BDM Alternate Write Data bus supply da
the master bus. The CPU Write Data bus is the write data source unless the cycle is a BDM access
system is operating in peripheral mode. The BDM Alternate Write Data bus is the write data source
when the BDM is driving the bus. The EBI Alternate Write Data bus is the write data source in periph
mode.

11.5.2.3  Read Data Bus

The MMC provides the control to split 16-bit accesses into two cycle operations, when needed. The
is paused during the second cycle of the two cycle access. For reads, the MMC takes care of swapp
holding the read data bus so that the CPU will receive the data on the correct location of its read da

An access may also take two cycles when the Interrupt or BDM is driving the address bus, if the s
is in a narrow mode and the 16-bit access is to external memory space. In these cases, AB[0] will be
high during the second cycle.

The MMC will also force those accesses that would normally be two cycle operations into a single
operation based upon the Wide Bus Enable signal. This signal will assert when performing a 16-bit a
in narrow mode to those locations that are removed from the memory map, as summarized byTable 11-14.

Table 11-14  Wide Bus Enable Signal Generation

Address
Register
Names

Conditions mmc_widebuse_t2

$0000 -
$0003

PORTA
PORTB
DDRA
DDRB

initrg[4:0] == mmc_ab_t2[15:11] & ebi_emul_t2 &
ebi_narrow_t2

1

$0008 -
$0009

PORTE
DDRE

initrg[4:0] == mmc_ab_t2[15:11] & ebi_emul_t2 &
ebi_narrow_t2 & ebi_eme_t2

1

$000A -
$000D

PEAR
MODE
PUCR
RDRIV

initrg[4:0] == mmc_ab_t2[15:11] & ebi_emul_t2 &
ebi_narrow_t2

1
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Table 11-15summarizes the different access types, where the data is on the internal or external rea
bus and where the CPU is expecting the data. The source of the CPU’s read data bus for external a
is the ebi_extrdb and for internal accesses is the rdb_t2.

IMS refers to the Internal Memory Select signal (1 = Internal, 0 = External). FMTS refers to the Fa
Memory Transfer Select signal, which asserts anytime an access is made to the RAM except for t
byte of the array.

$0032 -
$0033

PORTK
DDRK

initrg[4:0] == mmc_ab_t2[15:11] & ebi_emul_t2 &
ebi_narrow_t2 & ebi_emk_t2

1

All Others - - 0

Table 11-15  Read Data Bus Swapping

MODE

W
id

e 
B

us
 E

na
bl

e

IM
S

F
M

T
S

S
Z

8

A
B

[0
]

CYCLES
Read Data Bus

(Internal or External)
-> CPU Read Data Bus

Single Chip

X 1 X 0 0 1
rdbh -> core_rdbh
rdbl -> core_rdbl

X 1 0 0 1 2
1. rdbl -> core_rdbh
2. rdbh -> core_rdbl

X 1 X 1 0 1 rdbh -> core_rdbl

X 1 X 1 1 1 rdbl -> core_rdbl

X 1 1 0 1 1
rdbl -> core_rdbh
rdbh -> core_rdbl

Normal
Expanded

Narrow

X 0 X 0 0 2
1. extrdbh -> core_rdbh
2. extrdbl -> core_rdbl

X 0 X 0 1 2
1. extrdbl -> core_rdbh
2. extrdbh -> core_rdbl

X 0 X 1 0 1 extrdbh -> core_rdbl

X 0 X 1 1 1 extrdbl -> core_rdbl

X 1 X 0 0 1
rdbh -> core_rdbh
rdbl -> core_rdbl

X 1 0 0 1 2
1. rdbl -> core_rdbh
2. rdbh -> core_rdbl

X 1 X 1 0 1 rdbh -> core_rdbl

X 1 X 1 1 1 rdbl -> core_rdbl

X 1 1 0 1 1
rdbl -> core_rdbh
rdbh -> core_rdbl
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Expanded

Narrow

0 0 X 0 0 2
1. extrdbh -> core_rdbh
2. extrdbl -> core_rdbl

X 0 X 0 1 2
1. extrdbl -> core_rdbh
2. extrdbh -> core_rdbl

1 0 X 0 0 1
 extrdbh -> core_rdbh
extrdbl -> core_rdbl

X 0 X 1 0 1 extrdbh -> core_rdbl

X 0 X 1 1 1 extrdbl -> core_rdbl

X 1 X 0 0 1
rdbh -> core_rdbh
rdbl -> core_rdbl

X 1 0 0 1 2
1. rdbl -> core_rdbh
2. rdbh -> core_rdbl

X 1 X 1 0 1 rdbh -> core_rdbl

X 1 X 1 1 1 rdbl -> core_rdbl

X 1 1 0 1 1
rdbl -> core_rdbh
rdbh -> core_rdbl

Expanded
Wide

X X X 0 0 1
(ext)rdbh -> core_rdbh
(ext)rdbl -> core_rdbl

X X 0 0 1 2
1. (ext)rdbl -> core_rdbh
2. (ext)rdbh -> core_rdbl

X X X 1 0 1 (ext)rdbh -> core_rdbl

X X X 1 1 1 (ext)rdbl -> core_rdbl

X X 1 0 1 1
(ext)rdbl -> core_rdbh
(ext)rdbh -> core_rdbl

Table 11-15  Read Data Bus Swapping

MODE

W
id

e 
B

us
 E

na
bl

e

IM
S

F
M

T
S

S
Z

8

A
B

[0
]

CYCLES
Read Data Bus

(Internal or External)
-> CPU Read Data Bus
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Section 12  Multiplexed External Bus Interface (MEBI)

This section describes the functionality of the Multiplexed External Bus Interface (MEBI) sub-bloc
the Core.

12.1  Overview

The MEBI sub-block of the Core serves to provide access and/or visibility to internal Core data
manipulation operations including timing reference information at the external boundary of the Co
and/or system. Depending upon the system operating mode and the state of bits within the control re
of the MEBI, the internal 16-bit read and write data operations will be represented in 8-bit or 16-bi
accesses externally. Using control information from other blocks within the system, the MEBI will
determine the appropriate type of data access to be generated.

12.1.1  Features

• External bus controller with four 8-bit ports (A,B, E and K)

• Data and data direction registers for ports A, B E and K when used as general purpose I/O

• Control register to enable/disable alternate functions on Port E and Port K

• Mode control register

• Control register to enable/disable pullups on Ports A, B, E and K

• Control register to enable/disable reduced output drive on Ports A, B, E and K

• Control register to configure external clock behavior

• Control register to configureIRQ pin operation

• Logic to capture and synchronize external interrupt pin inputs
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 Core

EBI
E and
12.1.2  Block Diagram

The block diagram of the MEBI sub-block is shown inFigure 12-1  below.

Figure 12-1  MEBI Block Diagram

In the figure, the signals on the right hand side represent pins that are accessible externally to the
and/or system.

12.2  Interface Signals

Much of the interfacing with the MEBI sub-block is done within the Core; however, many of the M
signals pass through the Core boundary and interface with the system port/pad logic for Ports A, B,
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K. The Core interface signals associated with the MEBI are shown inTable 12-1 below. The functional
descriptions of the signals are provided below for completeness.

12.2.1  MEBI Signal Descriptions

These descriptions apply to the MEBI signals that pass through the Core boundary and interface w
system External Bus Interface port/pad logic.

12.2.1.1  Port A Input Data to Core (core_paind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad log
Port A.

12.2.1.2  Port A Output Data from Core (core_pado[7:0])

This 8-bit wide output from the Core provides the Port A data output to the system port/pad logic for
A.

Table 12-1 MEBI Interface Signal Definitions

Signal Name Type Functional Description

External Bus Interface Signals
core_paind[7:0] I Port A input data [7:0]

core_pado[7:0] O Port A data output [7:0]

core_paobe[7:0] O Port A output buffer enable [7:0]

core_paibe_t2 O Port A input buffer enable

core_papue_t2 O Port A pullup enable

core_padse_t2 O Port A drive strength enable

core_pbind[7:0] I Port B input data [7:0]

core_pbdo[7:0] O Port B data output [7:0]

core_pbobe[7:0] O Port B output buffer enable [7:0]

core_pbibe_t2 O Port B input buffer enable

core_pbpue_t2 O Port B pullup enable

core_pbdse_t2 O Port B drive strength enable

core_peind[7:0] I
Port E input data [7:0]
NOTE: PE1 is IRQ pin input; PE0 is XIRQ pin input.

core_pedo[7:0] O Port E data output [7:0]

core_peobe[7:0] O Port E output buffer enable [7:0]

core_peibe_t2 O Port E input buffer enable

core_pepue_t2 O Port E pullup enable

core_mdrste O Enable signal for EBI Mode pin pullups at the pad

core_pedse_t2 O Port E drive strength enable

core_pkind[7:0] I Port K input data [7:0]

core_pkdo[7:0] O Port K data output [7:0]

core_pkobe[7:0] O Port K output buffer enable [7:0]

core_pkibe_t2 O Port K input buffer enable

core_pkpue_t2 O Port K pullup enable

core_pkdse_t2 O Port K drive strength enable
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12.2.1.3  Port A output buffer enable from Core (core_paobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the syste
port/pad logic for Port A.

12.2.1.4  Port A input buffer enable from Core (core_paibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad
for Port A.

12.2.1.5  Port A pullup enable from Core (core_papue_t2)

This single bit output from the Core indicates that the pullup devices within the system port/pad log
Port A should be enabled for all Port A pins.

12.2.1.6  Port A drive strength enable from Core (core_padse_t2)

This single bit output from the Core indicates whether all Port A pins will operate with full or reduc
drive strength.

12.2.1.7  Port B Input Data to Core (core_pbind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad log
Port B.

12.2.1.8  Port B Output Data from Core (core_pbdo[7:0])

This 8-bit wide output from the Core provides the Port B data output to the system port/pad logic for
B.

12.2.1.9  Port B output buffer enable from Core (core_pbobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the syste
port/pad logic for Port B.

12.2.1.10  Port B input buffer enable from Core (core_pbibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad
for Port B.

12.2.1.11  Port B pullup enable from Core (core_pbpue_t2)

When asserted (logic 1), this single bit output from the Core indicates that the pullup devices with
system port/pad logic for Port B should be enabled for all Port B pins.

12.2.1.12  Port B drive strength enable from Core (core_pbdse_t2)

This single bit output from the Core indicates whether all Port B pins will operate with full or reduced d
strength.
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12.2.1.13  Port E Input Data to Core (core_peind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad log
Port E. When the system has an externalIRQ pin implemented, the input signal from theIRQ pin pad logic
must be tied to Port E Input Data Bit 1. Likewise, when the system has an externalXIRQ pin implemented,
the input signal from theXIRQ pin pad logic must be tied to Port E Input Data Bit 0. Both theIRQ and
XIRQ signals are active low (i.e. their asserted state is logic 0).

12.2.1.14  Port E Output Data from Core (core_pedo[7:0])

This 8-bit wide output from the Core provides the Port E data output to the system port/pad logic for P

12.2.1.15  Port E output buffer enable from Core (core_peobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the syste
port/pad logic for Port E.

12.2.1.16  Port E input buffer enable from Core (core_peibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad
for Port E.

12.2.1.17  Port E pullup enable from Core (core_pepue_t2)

This single bit output from the Core indicates whether or not the pullup devices within the system por
logic for Port E should be enabled for all Port E pins except the MODA (PE5) and MODB (PE6) p

12.2.1.18  Port E MODE pin pullup enable from Core (core_mdrste)

This single bit output from the Core indicates that the pullup devices within the system port/pad log
the MODA (PE5) and MODB (PE6) pins within Port E should be enabled.

12.2.1.19  Port E drive strength enable from Core (core_pedse_t2)

This single bit output from the Core indicates whether all Port E pins will operate with full or reduced d
strength.

12.2.1.20  Port K Input Data to Core (core_pkind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad log
Port K.

12.2.1.21  Port K Output Data from Core (core_pkdo[7:0])

This 8-bit wide output from the Core provides the Port K data output to the system port/pad logic for
K.
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12.2.1.22  Port K output buffer enable from Core (core_pkobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the syste
port/pad logic for Port K.

12.2.1.23  Port K input buffer enable from Core (core_pkibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad
for Port K.

12.2.1.24  Port K pullup enable from Core (core_pkpue_t2)

This single bit output from the Core indicates that the pullup devices within the system port/pad log
Port K should be enabled for all Port K pins.

12.2.1.25  Port K drive strength enable from Core (core_pkdse_t2)

This single bit output from the Core indicates whether all Port K pins will operate with full or reduc
drive strength.
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12.3  Registers

A summary of the registers associated with the MEBI sub-block is shown inFigure 12-2 below. Detailed
descriptions of the registers and bits are given in the subsections that follow.

Figure 12-2  MEBI Register Map Summary

Address Name Bit 7 6 5 4 3 2 1 Bit 0

$0000 PORTA
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$0001 PORTB
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$0002 DDRA
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$0003 DDRB
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$0004 Reserved
read 0 0 0 0 0 0 0 0
write

$0005 Reserved
read 0 0 0 0 0 0 0 0
write

$0006 Reserved
read 0 0 0 0 0 0 0 0
write

$0007 Reserved
read 0 0 0 0 0 0 0 0
write

$0008 PORTE
read

Bit 7 6 5 4 3 2
1 Bit 0

write

$0009 DDRE
read

Bit 7 6 5 4 3 2
0 0

write

$000A PEAR
read

NOACCE
0

PIPOE NECLK LSTRE RDWE
0 0

write

$000B MODE
read

MODC MODB MODA
0

IVIS
0

EMK EME
write

$000C PUCR
read

PUPKE
0 0

PUPEE
0 0

PUPBE PUPAE
write

$000D RDRIV
read

RDPK
0 0

RDPE
0 0

RDPB RDPA
write

$000E EBICTL
read 0 0 0 0 0 0 0

ESTR
write

$000F Reserved
read 0 0 0 0 0 0 0 0
write

$001E IRQCR
read

IRQE IRQEN
0 0 0 0 0 0

write

$0032 PORTK
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$0033 DDRK
read

Bit 7 6 5 4 3 2 1 Bit 0
write

 = Unimplemented X = Indeterminate
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12.3.1  Port A Data Register (PORTA)

Read: anytime when register is in the map
Write: anytime when register is in the map
Port A bits 7 through 0 are associated with address lines A15 through A8 respectively and data

lines D15/D7 through D8/D0 respectively. When this port is not used for external
addresses such as in single-chip mode, these pins can be used as general purpose I/O.
Data Direction Register A (DDRA) determines the primary direction of each pin. DDRA
also determines the source of data for a read of PORTA.

This register is not in the on-chip memory map in expanded and peripheral modes.

CAUTION:

To ensure that you read the value present on the PORTA pins, always wait at least one cycle after w
to the DDRA register before reading from the PORTA register.

Address: Base + $___0

BIT 7 6 5 4 3 2 1 BIT 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: - - - - - - - -

Single Chip: PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

Exp Wide, Emul. Nar
with IVIS & Periph:

AB/
DB15

AB/
DB14

AB/
DB13

AB/
DB12

AB/
DB11

AB/
DB10

AB/
DB9

AB/
DB8

Expanded Narrow:
AB15 &
DB15/
DB7

AB14 &
DB14/
DB6

AB13 &
DB13/
DB5

AB12 &
DB12/
DB4

AB11 &
DB11/
DB3

AB10 &
DB10/
DB2

AB9 &
DB9/
DB1

AB8 &
DB8/
DB0

Figure 12-3 Port A Data Register (PORTA)
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12.3.2  Data Direction Register A (DDRA)

Read: anytime when register is in the map
Write: anytime when register is in the map

This register controls the data direction for Port A. When Port A is operating as a general purpose I/O
DDRA determines the primary direction for each Port A pin. A “1” causes the associated port pin to b
output and a “0” causes the associated pin to be a high-impedance input. The value in a DDR bit 
affects the source of data for reads of the corresponding PORTA register. If the DDR bit is zero (inpu
buffered pin input state is read. If the DDR bit is one (output) the associated port data register bit 
read.

This register is not in the on-chip map in expanded and peripheral modes. It is reset to $00 so the
does not override the three-state control signals.

DDRA7-0 — Data Direction Port A
1 = Configure the corresponding I/O pin as an output
0 = Configure the corresponding I/O pin as an input

Address: Base + $___2

BIT 7 6 5 4 3 2 1 BIT 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 12-4 Data Direction Register A (DDRA)
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12.3.3  Port B Data Register (PORTB)

Read: anytime when register is in the map

Write: anytime when register is in the map Port B bits 7 through 0 are associated with address lin
through A0 respectively and data lines D7 through D0 respectively. When this port is not used for ex
addresses, such as in single-chip mode, these pins can be used as general purpose I/O. Data Dir
Register B (DDRB) determines the primary direction of each pin. DDRB also determines the sour
data for a read of PORTB.

This register is not in the on-chip map in expanded and peripheral modes

CAUTION:
To ensure that you read the value present on the PORTB pins, always wait at least one cycle
after writing to the DDRB register before reading from the PORTB register.

12.3.4  Data Direction Register B (DDRB)

Read: anytime when register is in the map
Write: anytime when register is in the map

Address: Base + $___1

BIT 7 6 5 4 3 2 1 BIT 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: - - - - - - - -

Single Chip: PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

Exp Wide, Emul. Nar
with IVIS & Periph:

AB/DB7 AB/DB6 AB/DB5 AB/DB4 AB/DB3 AB/DB2 AB/DB1 AB/DB0

Expanded Narrow: AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0

Figure 12-5  Port B Data Register (PORTB)

Address: Base + $___3

BIT 7 6 5 4 3 2 1 BIT 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 12-6  Data Direction Register B (DDRB)
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This register controls the data direction for Port B. When Port B is operating as a general purpose I/O
DDRB determines the primary direction for each Port B pin. A “1” causes the associated port pin to
output and a “0” causes the associated pin to be a high-impedance input. The value in a DDR bit 
affects the source of data for reads of the corresponding PORTB register. If the DDR bit is zero (inpu
buffered pin input state is read. If the DDR bit is one (output) the associated port data register bit 
read.

This register is not in the on-chip map in expanded and peripheral modes. It is reset to $00 so the
does not override the three-state control signals.

DDRB7-0 — Data Direction Port B
1 = Configure the corresponding I/O pin as an output
0 = Configure the corresponding I/O pin as an input

12.3.5  Port E Data Register (PORTE)

Read: anytime when register is in the map
Write: anytime when register is in the map

Port E is associated with external bus control signals and interrupt inputs. These include mode se
(MODB/IPIPE1, MODA/IPIPE0), E clock, size (LSTRB/TAGLO), read / write (R/W), IRQ, andXIRQ.
When not used for one of these specific functions, Port E pins 7-2 can be used as general purpose
pins 1-0 can be used as general purpose input. The Port E Assignment Register (PEAR) selects the f
of each pin and DDRE determines whether each pin is an input or output when it is configured to 
general purpose I/O. DDRE also determines the source of data for a read of PORTE.

Some of these pins have software selectable pullups (PE7, ECLK,LSTRB, R/W, IRQ andXIRQ). A single
control bit enables the pullups for all of these pins when they are configured as inputs

This register is not in the on-chip map in peripheral mode or in expanded modes when the EME b

Address: Base + $___8

BIT 7 6 5 4 3 2 1 BIT 0

Read:
Bit 7 6 5 4 3 2

Bit 1 Bit 0

Write:

Reset: - - - - - - - -

Alt. Pin Function: NOACC

MODBor
IPIPE1

or
CLKTO

MODAor
IPIPE0

ECLK
LSTRB
or TAG-

LO
R/W IRQ XIRQ

= Unimplemented

Figure 12-7  Port E Data Register (PORTE)
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CAUTION:
It is unwise to write PORTE and DDRE as a word access. If you are changing Port E pins from
being inputs to outputs, the data may have extra transitions during the write. It is best to initialize
PORTE before enabling as outputs.

CAUTION:
To ensure that you read the value present on the PORTE pins, always wait at least one cycle
after writing to the DDRE register before reading from the PORTE register

12.3.6  Data Direction Register E (DDRE)

Read: anytime when register is in the map
Write: anytime when register is in the map

Data Direction Register E is associated with Port E. For bits in Port E that are configured as gene
purpose I/O lines, DDRE determines the primary direction of each of these pins. A “1” causes the
associated bit to be an output and a “0” causes the associated bit to be an input. Port E bit 1 (ass
with IRQ) and bit 0 (associated withXIRQ) cannot be configured as outputs. Port E, bits 1 and 0, can
read regardless of whether the alternate interrupt function is enabled. The value in a DDR bit also a
the source of data for reads of the corresponding PORTE register. If the DDR bit is zero (input) th
buffered pin input state is read. If the DDR bit is one (output) the associated port data register bit 
read.

This register is not in the on-chip map in peripheral mode. It is also not in the map in expanded m
while the EME control bit is set.

DDRE7-2 — Data Direction Port E
1 = Configure the corresponding I/O pin as an output
0 = Configure the corresponding I/O pin as an input

CAUTION:
It is unwise to write PORTE and DDRE as a word access. If you are changing Port E pins from
inputs to outputs, the data may have extra transitions during the write. It is best to initialize
PORTE before enabling as outputs.

Address: Base + $___9

BIT 7 6 5 4 3 2 1 BIT 0

Read:
Bit 7 6 5 4 3 Bit 2

0 0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 12-8  Data Direction Register E (DDRE)
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12.3.7  Port E Assignment Register (PEAR)

Read: anytime (provided this register is in the map).

Write: each bit has specific write conditions. Please refer to the descriptions of each bit on the foll
pages.Port E serves as general purpose I/O or as system and bus control signals. The PEAR registe
to choose between the general purpose I/O function and the alternate control functions. When an al
control function is selected, the associated DDRE bits are overridden.

The reset condition of this register depends on the mode of operation because bus control signals
needed immediately after reset in some modes. In normal single chip mode, no external bus control
are needed so all of Port E is configured for general purpose I/O. In normal expanded modes, onl
clock is configured for its alternate bus control function and the other bits of Port E are configured
general purpose I/O. As the reset vector is located in external memory, the E clock is required for
access. R/W is only needed by the system when there are external writable resources. If the norma
expanded system needs any other bus control signals, PEAR would need to be written before any
that needed the additional signals. In special test and emulation modes, IPIPE1, IPIPE0, E,LSTRB and
R/W are configured out of reset as bus control signals

Address: Base + $___A

BIT 7 6 5 4 3 2 1 BIT 0

Read: NOACC
E

0
PIPOE NECLK LSTRE RDWE

0 0

Write:

Reset: 0 0 0 0 0 0 0 0
Special
Single
Chip

Reset: 0 0 1 0 1 1 0 0
Special

Test

Reset: 0 0 0 0 0 0 0 0 Peripheral

Reset: 1 0 1 0 1 1 0 0
Emulation
Exp Nar

Reset: 1 0 1 0 1 1 0 0
Emulation
Exp Wide

Reset: 0 0 0 1 0 0 0 0
Normal
Single
Chip

Reset: 0 0 0 0 0 0 0 0
Normal
Exp Nar

Reset: 0 0 0 0 0 0 0 0
Normal

Exp Wide

= Unimplemented

Figure 12-9  Port E Assignment Register (PEAR)
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This register is not in the on-chip map in emulation and peripheral modes.

NOACCE - CPU No Access Output Enable

Normal: write once

Emulation: write never

Special: write anytime
1 = The associated pin (Port E bit 7) is output and indicates whether the cycle is a CPU free
0 = The associated pin (Port E bit 7) is general purpose I/O.

This bit has no effect in single chip or peripheral modes.

PIPOE - Pipe Status Signal Output Enable

Normal: write once

Emulation: write never

Special: write anytime.
1 = The associated pins (Port E bits 6:5) are outputs and indicate the state of the instruction
0 = The associated pins (Port E bits 6:5) are general purpose I/O.

This bit has no effect in single chip or peripheral modes.

NECLK - No External E Clock

Normal and Special: write anytime

Emulation: write never
1 = The associated pin (Port E bit-4) is a general purpose I/O pin.
0 = The associated pin (Port E bit-4) is the external E clock pin. External E clock is free-runni

ESTR=0

External E clock is available as an output in all modes.

LSTRE - Low Strobe (LSTRB) Enable

Normal: write once

Emulation: write never

Special: write anytime.
1 = The associated pin (Port E bit-3) is configured as theLSTRB bus control output. If BDM

tagging is enabled,TAGLO is multiplexed in on the rising edge of ECLK andLSTRB is driven
out on the falling edge of ECLK.

0 = The associated pin (Port E bit-3) is a general purpose I/O pin.

This bit has no effect in single chip, peripheral or normal expanded narrow modes.

NOTE: LSTRB is used during external writes. After reset in normal expanded mode,LSTRB
is disabled to provide an extra I/O pin. IfLSTRB is needed, it should be enabled
before any external writes. External reads do not normally needLSTRB because all
16 data bits can be driven even if the system only needs 8 bits of data.

RDWE - Read / Write Enable

Normal: write once
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Emulation: write never

Special: write anytime
1 = The associated pin (Port E bit-2) is configured as the R/W pin
0 = The associated pin (Port E bit-2) is a general purpose I/O pin.

This bit has no effect in single chip or peripheral modes.

NOTE: R/W is used for external writes. After reset in normal expanded mode, R/W is
disabled to provide an extra I/O pin. If R/W is needed it should be enabled before
any external writes.

12.3.8  MODE Register (MODE)

Read: anytime (provided this register is in the map).
Write: each bit has specific write conditions. Please refer to the descriptions of each bit on the

following pages.

The MODE register is used to establish the operating mode and other miscellaneous functions (i.e. i
visibility and emulation of Port E and K).

Address: Base + $___B

BIT 7 6 5 4 3 2 1 BIT 0

Read:
MODC MODB MODA

0
IVIS

0
EMK EME

Write:

Reset: 0 0 0 0 0 0 0 0
Special

Single chip

Reset: 0 0 1 0 1 0 1 1
Emulation
Exp Nar

Reset: 0 1 0 0 1 0 0 0
Special

Test

Reset: 0 1 1 0 1 0 1 1
Emulation
Exp Wide

Reset: 1 0 0 0 0 0 0 0
Normal
Single
Chip

Reset: 1 0 1 0 0 0 0 0
Normal
Exp Nar

Reset: 1 1 0 0 0 0 0 0 Peripheral

Reset: 1 1 1 0 0 0 0 0
Normal

Exp Wide

= Unimplemented

Figure 12-10  MODE Register (MODE)
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In peripheral modes, this register is not accessible but it is reset as shown to configure system fea
Changes to bits in the MODE register are delayed one cycle after the write.

This register is not in the on-chip map in emulation and peripheral modes.

MODC, MODB, MODA - Mode Select bits

These bits indicate the current operating mode.

If MODA=1, then MODC, MODB, MODA are write never.

If MODC=MODA=0, then MODC, MODB, MODA are write anytime except that you cannot chan
to or from peripheral mode

If MODC=1, MODB=0 and MODA=0, then MODC is write never, and MODB, MODA are write
once, except that you cannot change to peripheral, special test, special single chip, or emulation

Table 12-2  MODC, MODB, MODA Write Capability 1

NOTES:

1. No writes to the MOD bits are allowed while operating in a SECURE mode. For more details refer to the security
specification document.

MODC MODB MODA Mode MODx Write Capability

0 0 0 Special Single Chip MODC, B, A write anytime but not to 1102

2. If you are in a special single chip or special test mode and you write to this register, changing to normal single chip
mode, then one allowed write to this register remains. If you write to normal expanded or emulation mode, then no
writes remain.

0 0 1 Emulation Narrow no write

0 1 0 Special Test MODC, B, A write anytime but not to 1102

0 1 1 Emulation Wide no write

1 0 0 Normal Single Chip
MODC write never, MODB, A write once but not

to 110

1 0 1 Normal Expanded Narrow no write

1 1 0 Special Peripheral no write

1 1 1 Normal Expanded Wide no write

Table 12-3  Mode Select and State of Mode Bits

Input
BKGD
& bit

MODC

Input
& bit

MODB

Input
& bit

MODA
Mode Description

0 0 0
Special Single Chip, BDM allowed and ACTIVE. BDM is “allowed” in all other

modes but a serial command is required to make BDM “active”.

0 0 1 Emulation Expanded Narrow, BDM allowed
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IVIS - Internal Visibility (for both read and write accesses)

This bit determines whether internal accesses generate a bus cycle that is visible on the exter

Normal: write once

Emulation: write never

Special: write anytime
1 = Internal bus operations are visible on external bus.
0 = No visibility of internal bus operations on external bus.

Reference Section12.4.9 for mode availability of this bit.

EMK - Emulate Port K

Normal: write once

Emulation: write never

Special: write anytime
1 = If in any expanded mode, PORTK and DDRK are removed from the memory map.
0 = PORTK and DDRK are in the memory map so Port K can be used for general purpose 

In single-chip modes, PORTK and DDRK are always in the map regardless of the state of this

In peripheral modes, PORTK and DDRK are never in the map regardless of the state of this b

EME - Emulate Port E

Normal and Emulation: write never

Special: write anytime
1 = If in any expanded mode or special peripheral mode, PORTE and DDRE are removed fro

memory map. Removing the registers from the map allows the user to emulate the functi
these registers externally.

0 = PORTE and DDRE are in the memory map so Port E can be used for general purpose 

In single-chip modes, PORTE and DDRE are always in the map regardless of the state of this

0 1 0 Special Test (Expanded Wide), BDM allowed

0 1 1 Emulation Expanded Wide, BDM allowed

1 0 0 Normal Single Chip, BDM allowed

1 0 1 Normal Expanded Narrow, BDM allowed

1 1 0
Peripheral; BDM allowed but bus operations would cause bus conflicts (must

not be used)

1 1 1 Normal Expanded Wide, BDM allowed

Table 12-3  Mode Select and State of Mode Bits

Input
BKGD
& bit

MODC

Input
& bit

MODB

Input
& bit

MODA
Mode Description
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12.3.9  Pullup Control Register (PUCR)

Read: anytime (provided this register is in the map).
Write: anytime (provided this register is in the map).

This register is used to select pullup resistors for the pins associated with the core ports. Pullups 
assigned on a per-port basis and apply to any pin in the corresponding port that is currently configu
an input.

This register is not in the on-chip map in emulation and peripheral modes.

NOTE:These bits have no effect when the associated pin(s) are outputs. (The pullups are inac

PUPKE - Pullup Port K Enable
1 = Enable pullup devices for Port K input pins.
0 = Port K pullups are disabled.

PUPEE - Pullup Port E Enable
1 = Enable pullup devices for Port E input pins bits 7, 4-0.
0 = Port E pullups on bit 7, 4-0 are disabled.

PUPBE - Pullup Port B Enable
1 = Enable pullup devices for all Port B input pins.
0 = Port B pullups are disabled.

PUPAE - Pullup Port A Enable
1 = Enable pullup devices for all Port A input pins.
0 = Port A pullups are disabled.

Address: Base + $___C

BIT 7 6 5 4 3 2 1 BIT 0

Read:
PUPKE

0 0
PUPEE

0 0
PUPBE PUPAE

Write:

Reset:1

NOTES:
1. The reset state of this register may be controlled by an instantiation parameter as described in the

HCS12 V1.5 Core Integration Guide. The default value of this parameter is shown. Please refer to the spe-
cific device User’s Guide to determine the actual reset state of this register.

1 0 0 1 0 0 0 0

= Unimplemented

Figure 12-11  Pullup Control Register (PUCR)
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12.3.10  Reduced Drive Register (RDRIV)

Read: anytime (provided this register is in the map)
Write: anytime (provided this register is in the map)

This register is used to select reduced drive for the pins associated with the core ports. This gives re
power consumption and reduced RFI with a slight increase in transition time (depending on loading)
feature would be used on ports which have a light loading. The reduced drive function is independ
which function is being used on a particular port.

This register is not in the on-chip map in emulation and peripheral modes.

RDPK - Reduced Drive of Port K
1 = All Port K output pins have reduced drive enabled.
0 = All Port K output pins have full drive enabled.

RDPE - Reduced Drive of Port E
1 = All Port E output pins have reduced drive enabled.
0 = All Port E output pins have full drive enabled.

RDPB - Reduced Drive of Port B
1 = All Port B output pins have reduced drive enabled.
0 = All Port B output pins have full drive enabled.

RDPA - Reduced Drive of Ports A
1 = All Port A output pins have reduced drive enabled.
0 = All Port A output pins have full drive enabled.

Address: Base + $___D

BIT 7 6 5 4 3 2 1 BIT 0

Read:
RDPK

0 0
RDPE

0 0
RDPB RDPA

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 12-12  Reduced Drive Register (RDRIV)
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12.3.11 External Bus Interface Control Register (EBICTL)

Read: anytime (provided this register is in the map)
Write: refer to individual bit descriptions below

The EBICTL register is used to control miscellaneous functions (i.e. stretching of external E clock

This register is not in the on-chip map in peripheral mode.

ESTR - E clock Stretches

This control bit determines whether the E clock behaves as a simple free-running clock or as a
control signal that is active only for external bus cycles.

Normal and Emulation: write once

Special: write anytime
1 = E stretches high during stretch cycles and low during non-visible internal accesses.
0 = E never stretches (always free running).

This bit has no effect in single chip modes.

12.3.12  IRQ Control Register (IRQCR)

Read: see individual bit descriptions below
Write: see individual bit descriptions below

Address: Base + $___E

BIT 7 6 5 4 3 2 1 BIT 0

Read: 0 0 0 0 0 0 0
ESTR

Write:

Reset: 0 0 0 0 0 0 0 0
Peripher-

al

Reset: 0 0 0 0 0 0 0 1
All other
modes

= Unimplemented

Figure 12-13  External Bus Interface Control Register (EBICTL)

Address Base + $__1E

Bit 7 6 5 4 3 2 1 Bit 0

Read:
IRQE IRQEN

0 0 0 0 0 0

Write:

Reset: 0 1 0 0 0 0 0 0

Figure 12-14  IRQ Control Register (IRQCR)
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IRQE - IRQ select edge sensitive only

Special: read or write anytime

Normal: read anytime, write once

Emulation: read anytime, write never
1 = IRQ configured to respond only to falling edges. Falling edges on the IRQ pin will be dete

anytime IRQE = 1 and will be cleared only upon a reset or the servicing of the IRQ inter
(i.e. vector = $FFF2).

0 = IRQ configured for low level recognition

IRQEN - External IRQ enable

Normal, emulation, and special modes: read or write anytime
1 = External IRQ pin is connected to interrupt logic.
0 = External IRQ pin is disconnected from interrupt logic

NOTE: In this state the edge detect latch is disabled.
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12.3.13  Reserved Registers .

12.3.14  Port K Data Register (PORTK) .

Read: anytime
Write: anytime

This port is associated with the internal memory expansion emulation pins. When the port is not en
to emulate the internal memory expansion, the port pins are used as general-purpose I/O. When P
operating as a general purpose I/O port, DDRK determines the primary direction for each Port K p
“1” causes the associated port pin to be an output and a “0” causes the associated pin to be a

Address: Base + $___4 thru $___7

BIT 7 6 5 4 3 2 1 BIT 0

Read: 0 0 0 0 0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

Address: Base + $___F

Read: 0 0 0 0 0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 12-15  Reserved Registers

These register locations are not used (reserved). All unused registers and b
this block return logic zeros when read. Writes to these registers have no ef

These registers are not in the on-chip map in peripheral mode.

Address: Base + $32

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Alt. pin
function

ECS XCS XAB19 XAB18 XAB17 XAB16 XAB15 XAB14

Reset: - - - - - - - -

= Unimplemented

Figure 12-16  Port K Data Register (PORTK)
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high-impedance input. The value in a DDR bit also affects the source of data for reads of the correspo
PORTK register. If the DDR bit is zero (input) the buffered pin input is read. If the DDR bit is one (outp
the output of the port data register is read.This register is not in the map in peripheral or expanded
while the EMK control bit in MODE register is set.

When inputs, these pins can be selected to be high impedance or pulled up, based upon the state
PUPKE bit in the PUCR register.

Bit 7- Port K bit 7.

This bit is used as an emulation chip select signal for the emulation of the internal memory expan
or as general purpose I/O, depending upon the state of the EMK bit in the MODE register. While
bit is used as a chip select, the external bit will return to its de-asserted state (vdd) for approxi
1/4 cycle just after the negative edge of ECLK, unless the external access is stretched and EC
free-running (ESTR bit in EBICTL = 0). See the HCS12v1.5 MMC spec for additional details on w
this signal will be active.

Bit 6 — Port K bit 6.

This bit is used as an external chip select signal for most external accesses that are not selectedECS
(see the MMC spec for more details), depending upon the state the of the EMK bit in the MOD
register. While this bit is used as a chip select, the external pin will return to its de-asserted state
for approximately 1/4 cycle just after the negative edge of ECLK, unless the external access is
stretched and ECLK is free-running (ESTR bit in EBICTL = 0).

Bit 5 - Bit 0 — Port K bits 5 - 0.

These six bits are used to determine which Flash/ROM or external memory array page is bein
accessed. They can be viewed as expanded addresses XAB19 - XAB14 of the 20-bit address
access up to1M byte internal Flash/ROM or external memory array. Alternatively, these bits ca
used for general purpose I/O depending upon the state of the EMK bit in the MODE register.

12.3.15  Port K Data Direction Register (DDRK)

Read: anytime.
Write: anytime.

Address: Base + $33

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 Bit 6 5 4 3 2 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 12-17  Port K Data Direction Register (DDRK)
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This register determines the primary direction for each port K pin configured as general-purpose I/O
register is not in the map in peripheral or expanded modes while the EMK control bit in MODE reg
is set.

DDRK 7-0 - The Data Direction Port K.
1 = Associated pin is an output
0 = Associated pin is a high-impedance input

CAUTION:
It is unwise to write PORTK and DDRK as a word access. If you are changing Port K pins from
inputs to outputs, the data may have extra transitions during the write. It is best to initialize
PORTK before enabling as outputs.

CAUTION:
To ensure that you read the correct value from the PORTK pins, always wait at least one cycle
after writing to the DDRK register before reading from the PORTK register.

12.4  Operation

There are four main sub-blocks within the MEBI: external bus control, external data bus interface, co
and registers.

12.4.1  External Bus Control

The external bus control generates the miscellaneous control functions (pipe signals, ECLK,LSTRB and
R/W) that will be sent external on Port E, bits 6-2. It also generates the external addresses.

12.4.2  External Data Bus Interface

The external data bus interface block manages data transfers from/to the external pins to/from the i
read and write data buses. This block selectively couples 8-bit or 16-bit data to the internal data b
implement a variety of data transfers including 8-bit, 16-bit, 16-bit swapped and 8-bit external to 1
internal accesses. Modes, addresses, chip selects, etc. affect the type of accesses performed dur
bus cycle.

12.4.3  Control

The control block generates the register read/write control signals and miscellaneous port control s

12.4.4  Registers

The register block includes the fourteen 8-bit registers and five reserved register locations associate
the MEBI sub-block.
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12.4.5  External System Pin Functional Descriptions

In typical SoC implementations, the MEBI sub-block of the Core interfaces directly with external sys
pins.Table 12-4  below outlines the pin names and functions and gives a brief description of their
operation.

Table 12-4 External System Pins Associated With MEBI

Pin Name Pin Functions Description

PA7/A15/D15/D7
thru

PA0/A8/D8/D0

PA7 - PA0 General purpose I/O pins, see PORTA and DDRA registers.

A15 - A8
High-order address lines multiplexed during ECLK low. Outputs except in special

peripheral mode where they are inputs from an external tester system.

D15 - D8
High-order bidirectional data lines multiplexed during ECLK high in expanded

wide modes, peripheral mode & visible internal accesses (IVIS=1) in emulation
expanded narrow mode. Direction of data transfer is generally indicated by R/W.

D15/D7 thru
D8/D0

Alternate high-order and low-order bytes of the bidirectional data lines
multiplexed during ECLK high in expanded narrow modes and narrow accesses
in wide modes. Direction of data transfer is generally indicated by R/W.

PB7/A7/D7
thru

PB0/A0/D0

PB7 - PB0 General purpose I/O pins, see PORTB and DDRB registers.

A7 - A0
Low-order address lines multiplexed during ECLK low. Outputs except in special

peripheral mode where they are inputs from an external tester system.

D7 - D0

Low-order bidirectional data lines multiplexed during ECLK high in expanded
wide modes, peripheral mode & visible internal accesses (with IVIS=1) in
emulation expanded narrow mode. Direction of data transfer is generally
indicated by R/W.

PE7/
NOACC

PE7 General purpose I/O pin, see PORTE and DDRE registers.

NOACC
CPU No Access output. Indicates whether the current cycle is a free cycle. Only

available in expanded modes.

PE6/IPIPE1/
MODB/CLKTO

MODB
At the rising edge of RESET, the state of this pin is registered into the MODB bit

to set the mode.

PE6 General purpose I/O pin, see PORTE and DDRE registers.

IPIPE1 Instruction pipe status bit 1, enabled by PIPOE bit in PEAR.

CLKTO
System Clock Test Output. Only available in special modes. PIPOE=1 overrides

this function. The enable for this function is in the clock module.

PE5/IPIPE0/
MODA

MODA
At the rising edge on RESET, the state of this pin is registered into the MODA bit

to set the mode.

PE5 General purpose I/O pin, see PORTE and DDRE registers.

IPIPE0 Instruction pipe status bit 0, enabled by PIPOE bit in PEAR.

PE4/ECLK

PE4 General purpose I/O pin, see PORTE and DDRE registers.

ECLK

Bus timing reference clock, can operate as a free-running clock at the system
clock rate or to produce one low-high clock per visible access, with the high
period stretched for slow accesses. ECLK is controlled by the NECLK bit in
PEAR, the IVIS bit in MODE and the ESTR bit in EBICTL.
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12.4.6  Detecting Access Type from External Signals

The external signalsLSTRB, R/W, and AB0 indicate the type of bus access that is taking place. Acces
to the internal RAM module are the only type of access that would produceLSTRB=AB0=1, because the
internal RAM is specifically designed to allow misaligned 16-bit accesses in a single cycle. In these

PE3/LSTRB/
TAGLO

PE3 General purpose I/O pin, see PORTE and DDRE registers.

LSTRB Low strobe bar, 0 indicates valid data on D7-D0.

SZ8
In peripheral mode, this pin is an input indicating the size of the data transfer

(0=16-bit; 1=8-bit).

TAGLO
In expanded wide mode or emulation narrow modes, when instruction tagging is

on and low strobe is enabled, a 0 at the falling edge of E tags the low half of the
instruction word being read into the instruction queue.

PE2/R/W

PE2 General purpose I/O pin, see PORTE and DDRE registers.

R/W
Read/write, indicates the direction of internal data transfers. This is an output

except in peripheral mode where it is an input.

PE1/IRQ
PE1 General purpose input-only pin, can be read even if IRQ enabled.

IRQ Maskable interrupt request, can be level sensitive or edge sensitive.

PE0/XIRQ
PE0 General purpose input-only pin.

XIRQ Non-maskable interrupt input.

PK7/ECS
PK7 General purpose I/O pin, see PORTK and DDRK registers.

ECS emulation chip select

PK6/XCS
PK6 General purpose I/O pin, see PORTK and DDRK registers.

XCS external data chip select

PK5/X19 thru
PK0/X14

PK5 - PK0 General purpose I/O pins, see PORTK and DDRK registers.

X19 - X14 Memory expansion addresses

BKGD/MODC/
TAGHI

MODC
At the rising edge on RESET, the state of this pin is registered into the MODC bit

to set the mode. (This pin always has an internal pullup.)

BKGD
Pseudo-open-drain communication pin for the single-wire background debug

mode. There is an internal pullup resistor on this pin.

TAGHI
When instruction tagging is on, a 0 at the falling edge of E tags the high half of the

instruction word being read into the instruction queue.

Table 12-4 External System Pins Associated With MEBI

Pin Name Pin Functions Description
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the data for the address that was accessed is on the low half of the data bus and the data for add
on the high half of the data bus.

12.4.7  Stretched Bus Cycles

In order to allow fast internal bus cycles to coexist in a system with slower external memory resource
HCS12 supports the concept of stretched bus cycles (module timing reference clocks for timers an
rate generators are not affected by this stretching). Control bits in the MISC register in the MMC sub-
of the Core specify the amount of stretch (0, 1, 2, or 3 periods of the internal bus-rate clock). Whil
stretching, the CPU state machines are all held in their current state. At this point in the CPU bus 
write data would already be driven onto the data bus so the length of time write data is valid is ext
in the case of a stretched bus cycle Read data would not be captured by the system until the E clock
edge. In the case of a stretched bus cycle, read data is not required until the specified setup time be
falling edge of the stretched E clock. The external address, chip selects, and R/W signals remain 
during the period of stretching (throughout the stretched E high time)

12.4.8  Modes of Operation

The MEBI sub-block controls the mode of the Core operation through the use of the BKGD, MODB
MODA external system pins which are captured into the MODC, MODB and MODA controls bits,
respectively, at the rising edge of the systemRESET pin. The setup and hold times associated with the
pins are given inTable 12-6  below.

Table 12-5  Access Type vs. Bus Control Pins

LSTRB AB0 R/ W Type of Access

1 0 1 8-bit read of an even address

0 1 1 8-bit read of an odd address

1 0 0 8-bit write of an even address

0 1 0 8-bit write of an odd address

0 0 1 16-bit read of an even address

1 1 1
16-bit read of an odd address
(low/high data swapped)

0 0 0 16-bit write to an even address

1 1 0
16-bit write to an odd address
(low/high data swapped)

Table 12-6  Mode Pin Setup and Hold Timing

Characteristic Timing

Mode programming setup time (time before reset is detected high that mode pins
must hold their state to guarantee the proper state is entered)

2 bus clock
cycles
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The four 8-bit Ports (A, B, E and K) associated with the MEBI sub-block can serve as general purpos
pins or alternatively as the address, data and control signals for a multiplexed expansion bus. Addre
data are multiplexed on Ports A and B. The control pin functions are dependent on the operating mo
the control registers PEAR and MODE. The initial state of bits in the PEAR and MODE registers are
established during reset to configure various aspects of the expansion bus. After the system is ru
application software can access the PEAR and MODE registers to modify the expansion bus configu

Some aspects of Port E are not mode dependent. Bit 1 of Port E is a general purpose input or theIRQ
interrupt input.IRQ can be enabled by bits in the CPU condition code register but it is inhibited at res
this pin is initially configured as a simple input with a pullup. Bit-0 of Port E is a general purpose inpu
theXIRQ interrupt input.XIRQ also can be enabled by bits in the CPU condition code register but i
inhibited at reset so this pin is initially configured as a simple input with a pullup. The ESTR bit in 
EBICTL register is set to one by reset in any user mode. This assures that the reset vector can be
even if it is located in an external slow memory device. The PE6/MODB/IPIPE1 and PE5/MODA/IPI
pins act as high-impedance mode select inputs during reset.

The following subsections discuss the default bus setup and describe which aspects of the bus ca
changed after reset on a per mode basis.

12.4.8.1  Special Single Chip Mode

When the system is reset in this mode, the background debug mode is enabled and “active”. The
does not fetch the reset vector and execute application code as it would in other modes. Instead, th
background mode is in control of CPU execution and BDM firmware is waiting for additional seria
commands through the BKGD pin. When a serial command instructs the system to return to norm
execution, the system will be configured as described below unless the reset states of internal co
registers have been changed through background commands after the system was reset.

There is no external expansion bus after reset in this mode. Ports A and B are initially simple bidirec
I/O pins that are configured as high-impedance inputs with internal pullups enabled; however, writi
the mode select bits in the MODE register (which is allowed in special modes) can change this after
All of the Port E pins (except PE4/ECLK) are initially configured as general purpose high-impedan
inputs with pullups enabled. PE4/ECLK is configured as the E clock output in this mode.

The pins associated with Port E bits 6, 5, 3, and 2 cannot be configured for their alternate functions IP
IPIPE0,LSTRB, and R/W, respectively, while the system is in single chip modes.The associated con
bits PIPOE, LSTRE and RDWE are reset to zero. Writing the opposite value into these bits in this
does not change the operation of the associated Port E pins.

Port E, bit 4 can be configured for a free-running E clock output by clearing NECLK=0. Typically, 
only use for an E clock output while the system is in single chip modes would be to get a constan
clock for use in the external application system.

Mode programming hold (time after reset is detected high that mode pins must hold
their state to guarantee the proper state is entered)

0 ns

Table 12-6  Mode Pin Setup and Hold Timing

Characteristic Timing
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12.4.8.2  Emulation Expanded Narrow Mode

Expanded narrow modes are intended to allow connection of single 8-bit external memory device
lower cost systems that do not need the performance of a full 16-bit external data bus. Accesses to i
resources that have been mapped external (i.e. PORTA, PORTB, DDRA, DDRB, PORTE, DDRE, P
PUCR, RDRIV) will be accessed with a 16-bit data bus on Ports A and B. Accesses of 16-bit exte
words to addresses which are normally mapped external will be broken into two separate 8-bit ac
using Port A as an 8-bit data bus. Internal operations continue to use full 16-bit data paths. They ar
visible externally as 16-bit information if IVIS=1.

Ports A and B are configured as multiplexed address and data output ports. During external acce
address A15, data D15 and D7 are associated with PA7, address A0 is associated with PB0 and 
and D0 are associated with PA0. During internal visible accesses and accesses to internal resour
have been mapped external, address A15 and data D15 is associated with PA7 and address A0 a
D0 is associated with PB0.

The bus control related pins in Port E (PE7/NOACC, PE6/MODB/IPIPE1, PE5/MODA/IPIPE0,
PE4/ECLK, PE3/LSTRB/TAGLO, and PE2/R/W) are all configured to serve their bus control output
functions rather than general purpose I/O. Notice that writes to the bus control enable bits in the P
register in emulation mode are restricted.

The main difference between emulation modes and normal modes is that some of the bus control
system control signals cannot be written in emulation modes.

12.4.8.3  Peripheral Mode

This mode is intended for Motorola factory testing of the system. In this mode, the CPU is inactive a
external (tester) bus master drives address, data and bus control signals in through Ports A, B an
effect, the whole system acts as if it was a peripheral under control of an external CPU. This allows
testing of on-chip memory and peripherals than previous testing methods. Since the mode control r
is not accessible in peripheral mode, the only way to change to another mode is to reset the system
different operating mode.

12.4.8.4  Emulation Expanded Wide Mode

In expanded wide modes, Ports A and B are configured as a 16-bit multiplexed address and data b
Port E provides bus control and status signals. These signals allow external memory and peripheral
to be interfaced to the system. These signals can also be used by a logic analyzer to monitor the p
of application programs.

The bus control related pins in Port E (PE7/NOACC, PE6/MODB/IPIPE1, PE5/MODA/IPIPE0,
PE4/ECLK, PE3/LSTRB/TAGLO, and PE2/R/W) are all configured to serve their bus control output
functions rather than general purpose I/O. Notice that writes to the bus control enable bits in the P
register in emulation mode are restricted.

The main difference between emulation modes and normal modes is that some of the bus control
system control signals cannot be written in emulation modes.
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12.4.8.5  Normal Single Chip Mode

There is no external expansion bus in this mode. All pins of Ports A, B and K are configured as ge
purpose I/O pins. Port E bits 1 and 0 are available as general purpose input only pins with internal p
and the other remaining pins are bidirectional I/O pins that are initially configured as high-impedan
inputs with internal pullups enabled.

The pins associated with Port E bits 6, 5, 3, and 2 cannot be configured for their alternate functions IP
IPIPE0,LSTRB, and R/W while the system is in single chip modes. The associated control bits PIP
LSTRE, and RDWE, respectively, are reset to zero. Writing the opposite state into them in this mode
not change the operation of the associated Port E pins.

In normal single chip mode, the MODE register is writable one time. This allows a user program to ch
the bus mode to narrow or wide expanded mode and/or turn on visibility of internal accesses.

Port E, bit 4 can be configured for a free-running E clock output by clearing NECLK=0. Typically, 
only use for an E clock output while the system is in single chip modes would be to get a constan
clock for use in the external application system.

12.4.8.6  Normal Expanded Narrow Mode

This mode is used for lower cost production systems that use 8-bit wide external EPROMs or RAMs.
systems take extra bus cycles to access 16-bit locations but this may be preferred over the extra 
additional external memory devices.

Ports A and B are configured as a 16-bit address bus and Port A is multiplexed with data. Internal vis
is not available in this mode because the internal cycles would need to be split into two 8-bit cycle

Since the PEAR register can only be written one time in this mode, use care to set all bits to the d
states during the single allowed write.

The PE3/LSTRB pin is always a general purpose I/O pin in normal expanded narrow mode. Althou
is possible to write the LSTRE bit in PEAR to “1” in this mode, the state of LSTRE is overridden and
E bit 3 cannot be reconfigured as theLSTRB output.

It is possible to enable the pipe status signals on Port E bits 6 and 5 by setting the PIPOE bit in PEA
it would be unusual to do so in this mode.LSTRB would also be needed to fully understand system
activity. Development systems where pipe status signals are monitored would typically use specia
mode or occasionally emulation expanded narrow mode.

The PE4/ECLK pin is initially configured as ECLK output with stretch. The E clock output function
depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in the MODE register
the ESTR bit in the EBICTL register. In normal expanded narrow mode, the E clock is available fo
in external select decode logic or as a constant speed clock for use in the external application sys

The PE2/R/W pin is initially configured as a general purpose input with a pullup but this pin can be
reconfigured as the R/W bus control signal by writing “1” to the RDWE bit in PEAR. If the expanded
narrow system includes external devices that can be written such as RAM, the RDWE bit would n
be set before any attempt to write to an external location. If there are no writable resources in the ex
system, PE2 can be left as a general purpose I/O pin.
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12.4.8.7  Special Test Mode

In expanded wide modes, Ports A and B are configured as a 16-bit multiplexed address and data b
Port E provides bus control and status signals. In special test mode, the write protection of many 
bits is lifted so that they can be thoroughly tested without needing to go through reset.

12.4.8.8  Normal Expanded Wide Mode

In expanded wide modes, Ports A and B are configured as a 16-bit multiplexed address and data b
Port E bit 4 is configured as the E clock output signal. These signals allow external memory and perip
devices to be interfaced to the system.

Port E pins other than PE4/ECLK are configured as general purpose I/O pins (initially high-imped
inputs with internal pullup resistors enabled). Control bits PIPOE, NECLK, LSTRE, and RDWE in 
PEAR register can be used to configure Port E pins to act as bus control outputs instead of general p
I/O pins.

It is possible to enable the pipe status signals on Port E bits 6 and 5 by setting the PIPOE bit in PEA
it would be unusual to do so in this mode. Development systems where pipe status signals are mo
would typically use the emulation variation of this mode.

The Port E bit 2 pin can be reconfigured as the R/W bus control signal by writing “1” to the RDWE bit in
PEAR. If the expanded system includes external devices that can be written, such as RAM, the RDW
would need to be set before any attempt to write to an external location. If there are no writable reso
in the external system, PE2 can be left as a general purpose I/O pin.

The Port E bit 3 pin can be reconfigured as theLSTRB bus control signal by writing “1” to the LSTRE bit
in PEAR. The default condition of this pin is a general purpose input because theLSTRB function is not
needed in all expanded wide applications.

The Port E bit 4 pin is initially configured as ECLK output with stretch. The E clock output function
depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in the MODE register
the ESTR bit in the EBICTL register. The E clock is available for use in external select decode logic
a constant speed clock for use in the external application system.

12.4.9  Internal Visibility

Internal visibility is available when the system is operating in expanded wide modes, special test mo
emulation narrow mode. It is not available in single-chip, peripheral or normal expanded narrow m
Internal visibility is enabled by setting the IVIS bit in the MODE register.

If an internal access is made while E, R/W, andLSTRB are configured as bus control outputs and intern
visibility is off (IVIS=0), E will remain low for the cycle, R/W will remain high, and address, data and th
LSTRB pins will remain at their previous state.

When internal visibility is enabled (IVIS=1), certain internal cycles will be blocked from going exte
to prevent possible corruption of external devices. Specifically, during cycles when the BDM is sele
R/W will remain high, data will maintain its previous state, and address andLSTRB pins will be updated
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with the internal value. During CPU no access cycles when the BDM is not driving, R/W will remain high,
and address, data and theLSTRB pins will remain at their previous state.

12.4.10  Secure Mode

When the system is operating in a secure mode, internal visibility is not available (i.e. IVIS=1 has 
effect). Also, the IPIPE signals will not be visible, regardless of operating mode. IPIPE1-IPIPE0 w
display zeroes if they are enabled. In addition, the MOD bits in the MODE control register cannot 
written.

12.5  Low-Power Options

The MEBI does not contain any user-controlled options for reducing power consumption. The ope
of the MEBI in low-power modes is discussed in the following subsections.

12.5.1  Run Mode

The MEBI does not contain any options for reducing power in run mode; however, the external addr
are conditioned with expanded mode to reduce power in single chip modes.

12.5.2  Wait Mode

The MEBI does not contain any options for reducing power in wait mode.

12.5.3  Stop Mode

The MEBI will cease to function during execution of a CPU STOP instruction.

12.6  Motorola Internal Information

This subsection details information about the MEBI sub-block that is for Motorola use only and sh
not be published in any form outside of Motorola.

12.6.1  Peripheral Mode Operation

The only way to enter peripheral mode is via reset with the pins configured as shown inTable 12-7. The
only way to exit peripheral mode is to change the mode pin configuration and pull reset. It is not pos
to enter/exit peripheral mode by writing the MODx bits in the MODE register.

Table 12-7  Peripheral Mode Pin Configuration

MODC (BKGD) MODB (PE6) MODA (PE5)

1 1 0
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Peripheral mode is a special mode immediately out of reset. It may be changed to a normal mode
writing the PNORME bit in the MTST1 register of the MMC sub-block to ‘1’.

In peripheral mode, the direction of the address and data buses is reversed compared to other mo
operation. Address, R/W and SZ8 all come from the external test system and drive the bus interface
of Ports A, B and E of the system. The data bus is configured to pass data directly through Ports A
to the internal data bus. Accesses are all initiated by the external test system.

The burden of deciding which port to access for 8-bit data or swapped data is the responsibility of
external test system. The MEBI does not modify peripheral mode accesses in any way. Misaligned
accesses are not allowed to blocks that require two cycles to complete such as system periphera
Misaligned 16-bit accesses are allowed to blocks that can handle fast transfers such as a RAM m
block.

12.6.2  Special Test Clock

When theperi_test_clk_enablesignal at the Core interface is asserted in special modes, theperi_test_clk
signal will be driven out on Port E, bit 6 when PIPOE=0.
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Section 13  Breakpoint (BKP)

This section describes the functionality of the Breakpoint (BKP) sub-block of the Core.

13.1  Overview

The Breakpoint sub-block of the Core provides for hardware breakpoints that are used to debug so
on the CPU by comparing actual address and data values to predetermined data in setup register
successful comparison will place the CPU in Background Debug Mode or initiate a software interr
(SWI).

The Breakpoint sub-block contains two modes of operation:

• Dual Address Mode, where a match on either of two addresses will cause the system to en
Background Debug Mode or initiate a Software Interrupt (SWI).

• Full Breakpoint Mode, where a match on address and data will cause the system to enter
Background Debug Mode or initiate a Software Interrupt (SWI).

There are two types of breakpoints, forced and tagged. Forced breakpoints occur at the next instr
boundary if a match occurs and tagged breakpoints allow for breaking just before a specific instru
executes. Tagged breakpoints will only occur on addresses. Tagging on data is not allowed; howe
this occurs nothing will happen within the BKP.

The BKP allows breaking within a 256 byte address range and/or within expanded memory. It allo
matching of the data as well as the address and to match 8-bit or 16-bit data. Forced breakpoints can
on a read or a write cycle.

13.1.1  Features

• Full or Dual Breakpoint Mode

– Compare on address and data (Full)

– Compare on either of two addresses (Dual)

• BDM or SWI Breakpoint

– Enter BDM on breakpoint (BDM)

– Execute SWI on breakpoint (SWI)

• Tagged or Forced Breakpoint

– Break just before a specific instruction will begin execution (TAG)

– Break on the first instruction boundary after a match occurs (Force)

• Single, Range or Page address compares

– Compare on address (Single)

– Compare on address 256 byte (Range)
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– Compare on any 16K Page (Page)

• Compare address on read or write on forced breakpoints

• High and/or low byte data compares

13.1.2  Block Diagram

A block diagram of the Breakpoint sub-block is shown inFigure 13-1  below. The Breakpoint contains
three main sub-blocks: the Register Block, the Compare Block and the Control Block. The Register
consists of the eight registers that make up the Breakpoint register space. The Compare Block pe
all required address and data signal comparisons. The Control Block generates the signals for the C
the tag high, tag low, force SWI and force BDM functions. In addition, it generates the register rea
write signals and the comparator block enable signals.

NOTE:There is a two cycle latency for address compares for forces, a two cycle latency for write
compares, and a three cycle latency for read data compares.
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Figure 13-1  Breakpoint Block Diagram
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13.2  Interface Signals

All interfacing with the Breakpoint sub-block is done within the Core.

13.3  Registers

A summary of the registers associated with the Breakpoint sub-block is shown inFigure 13-2  below.
Detailed descriptions of the registers and bits are given in the subsections that follow.

Figure 13-2  Breakpoint Register Summary

13.3.1  Breakpoint Control Register 0 (BKPCT0)

Read: anytime
Write: anytime

Address Name Bit 7 6 5 4 3 2 1 Bit 0

$0028 BKPCT0
read

BKEN BKFULL BKBDM BKTAG
0 0 0 0

write

$0029 BKPCT1
read

BK0MBH BK0MBL BK1MBH BK1MBL BK0RWE BK0RW BK1RWE BK1RW
write

$002A BKP0X
read 0 0

BK0V5 BK0V4 BK0V3 BK0V2 BK0V1 BK0V0
write

$002B BKP0H
read

Bit 15 14 13 12 11 10 9 Bit 8
write

$002C BKP0L
read

Bit 7 6 5 4 3 2 1 Bit 0
write

$002D BKP1X
read 0 0

BK1V5 BK1V4 BK1V3 BK1V2 BK1V1 BK1V0
write

$002E BKP1H
read

Bit 15 14 13 12 11 10 9 Bit 8
write

$002F BKP1L
read

Bit 7 6 5 4 3 2 1 Bit 0
write

= Unimplemented X = Indeterminate
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This register is used to set the breakpoint modes.

BKEN - Breakpoint Enable

This bit enables the module
0 = Breakpoint module off
1 = Breakpoint module on

BKFULL - Full Breakpoint Mode Enable

This bit controls whether the breakpoint module is in Dual Mode or Full Mode
0 = Dual Address Mode enabled
1 = Full Breakpoint Mode enabled

BKBDM - Breakpoint Background Debug Mode Enable

This bit determines if the breakpoint causes the system to enter Background Debug Mode(BD
initiate a Software Interrupt (SWI)

0 = Go to Software Interrupt on a compare
1 = Go to BDM on a compare

BKTAG — Breakpoint on Tag

This bit controls whether the breakpoint will cause a break on the next instruction boundary (forc
on a match that will be an executable opcode (tagged). Non-executed opcodes cannot cause 
breakpoint

0 = On match, break at the next instruction boundary (force)
1 = On match, break if the match is an instruction that will be executed (tagged)

13.3.2  Breakpoint Control Register 1 (BKPCT1)

Read: anytime
Write: anytime

Address $0028

Bit 7 6 5 4 3 2 1 Bit 0

Read:
BKEN BKFULL BKBDM BKTAG

0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Figure 13-3  Breakpoint Control Register 0 (BKPCT0)
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This register is used to configure the functionality of the Breakpoint sub-block within the Core.

BK0MBH:BK0MBL - Breakpoint Mask High Byte and Low Byte for First Address

In Dual or Full Mode, these bits may be used to mask (disable) the comparison of the high and
bytes of the first address breakpoint. The functionality is as given inTable 13-1  below

The x:0 case is for a Full Address Compare. When a program page is selected, the full address co
will be based on bits for a 20-bit compare. The registers used for the compare are
{BKP0X[5:0],BKP0H[5:0],BKP0L[7:0]}. When a program page is not selected, the full address
compare will be based on bits for a 16-bit compare. The registers used for the compare are
{BKP0H[7:0],BKP0L[7:0]}.

The 1:0 case is not sensible because it would ignore the high order address and compare the lo
and expansion addresses. Logic forces this case to compare all address lines (effectively ignor
BK0MBH control bit).

The 1:1 case is useful for triggering a breakpoint on any access to a particular expansion page
only makes sense if a program page is being accessed so that the breakpoint trigger will occur
BKP0X compares.

BK1MBH:BK1MBL - Breakpoint Mask High Byte and Low Byte of Data (Second Address)

Address $0029

Bit 7 6 5 4 3 2 1 Bit 0

Read:
BK0MBH BK0MBL BK1MBH BK1MBL

BK0RW
E

BK0RW
BK1RW

E
BK1RW

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 13-4  Breakpoint Control Register 1 (BKPCT1)

Table 13-1  Breakpoint Mask Bits for First Address

BK0MBH:BK0MBL Address Compare BKP0X BKP0H BKP0L

x:0 Full Address Compare Yes1

NOTES:

1. If page is selected.

Yes Yes

0:1 256 byte Address Range Yes(1) Yes No

1:1 16K byte Address Range Yes(1) No No
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In Dual Mode, these bits may be used to mask (disable) the comparison of the high and/or low
of the second address breakpoint. The functionality is as given inTable 13-2  below.

The x:0 case is for a Full Address Compare. When a program page is selected, the full address co
will be based on bits for a 20-bit compare. The registers used for the compare are
{BKP1X[5:0],BKP1H[5:0],BKP1L[7:0]}. When a program page is not selected, the full address
compare will be based on bits for a 16-bit compare. The registers used for the compare are
{BKP1H[7:0],BKP1L[7:0]}.

The 1:0 case is not sensible because it would ignore the high order address and compare the lo
and expansion addresses. Logic forces this case to compare all address lines (effectively ignor
BK1MBH control bit).

The 1:1 case is useful for triggering a breakpoint on any access to a particular expansion page
only makes sense if a program page is being accessed so that the breakpoint trigger will occur
BKP1X compares.

In Full Mode, these bits may be used to mask (disable) the comparison of the high and/or low by
the data breakpoint. The functionality is as given inTable 13-3  below.

BK0RWE - R/W Compare Enable

Table 13-2  Breakpoint Mask Bits for Second Address (Dual Mode)

BK1MBH:BK1MBL Address Compare BKP1X BKP1H BKP1L

x:0 Full Address Compare Yes1

NOTES:

1. If page is selected.

Yes Yes

0:1 256 byte Address Range Yes(1) Yes No

1:1 16K byte Address Range Yes(1) No No

Table 13-3  Breakpoint Mask Bits for Data Breakpoints (Full Mode)

BK1MBH:BK1MBL Data Compare BKP1X BKP1H BKP1L

0:0
High and Low Byte

Compare No1

NOTES:

1. Expansion addresses for breakpoint 1 are not available in this mode.

Yes Yes

0:1 High Byte No(1) Yes No

1:0 Low Byte No(1) No Yes

1:1 No Compare No(1) No No
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Enables the comparison of the R/W signal for first address breakpoint. This bit is not useful in tagg
breakpoints.

0 = R/W is not used in the comparisons
1 = R/W is used in comparisons

BK0RW - R/W Compare Value

When BK0RWE=1, this bit determines the type of bus cycle to match on first address breakpo
When BK0RWE=0, this bit has no effect.

0 = Write cycle will be matched
1 = Read cycle will be matched

BK1RWE - R/W Compare Enable

In Dual Mode, this bit enables the comparison of the R/W signal to further specify what causes a matc
for the second address breakpoint. This bit is not useful on tagged breakpoints or in Full Mode a
therefore a don’t care.

0 = R/W is not used in comparisons
1 = R/W is used in comparisons

BK1RW — R/W Compare Value

When BK1RWE=1, this bit determines the type of bus cycle to match on the second address
breakpoint.When BK1RWE=0, this bit has no effect.

0 = Write cycle will be matched
1 = Read cycle will be matched

13.3.3  Breakpoint First Address Expansion Register (BKP0X)

Read: anytime
Write: anytime

This register contains the data to be matched against expansion address lines for the first addres
breakpoint when a page is selected.

BK0V[5:0] - Value of first breakpoint address to be matched in memory expansion space.

Address $002A

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0
BK0V5 BK0V4 BK0V3 BK0V2 BK0V1 BK0V0

Write:

Re-
set:

0 0 0 0 0 0 0 0

= Reserved or unimplemented

Figure 13-5  Breakpoint First Address Expansion Register (BKP0X)
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13.3.4  Breakpoint First Address High Byte Register (BKP0H)

Read: anytime
Write: anytime

This register is used to set the breakpoint when compared against the high byte of the address.

13.3.5  Breakpoint First Address Low Byte Register (BKP0L)

Read: anytime
Write: anytime

This register is used to set the breakpoint when compared against the low byte of the address.

13.3.6  Breakpoint Second Address Expansion Register (BKP1X)

Read: anytime
Write: anytime

Address $002B

Bit 7 6 5 4 3 2 1 Bit 0

Read
: Bit 15 14 13 12 11 10 9 Bit 8

Write:

Re-
set:

0 0 0 0 0 0 0 0

Figure 13-6 Breakpoint First Address High Byte Register (BKP0H)

Address $002C

Bit 7 6 5 4 3 2 1 Bit 0

Read
: Bit 7 6 5 4 3 2 1 Bit 0

Write:

Re-
set:

0 0 0 0 0 0 0 0

Figure 13-7  Breakpoint First Address Low Byte Register (BKP0L)
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In Dual Mode, this register contains the data to be matched against expansion address lines for the
address breakpoint when a page is selected. In Full Mode, this register is not used.

BK1V[5:0] - Value of first breakpoint address to be matched in memory expansion space.

13.3.7  Breakpoint Data (Second Address) High Byte Register (BKP1H)

Read: anytime
Write: anytime

In Dual Mode, this register is used to compare against the high order address lines. In Full Mode,
register is used to compare against the high order data lines.

13.3.8  Breakpoint Data (Second Address) Low Byte Register (BKP1L)

Read: anytime
Write: anytime

Address $002D

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0
BK1V5 BK1V4 BK1V3 BK1V2 BK1V1 BK1V0

Write:

Re-
set:

0 0 0 0 0 0 0 0

= Reserved or unimplemented

Figure 13-8 Breakpoint Second Address Expansion Register (BKP1X)

Address $002E

Bit 7 6 5 4 3 2 1 Bit 0

Read
: Bit 15 14 13 12 11 10 9 Bit 8

Write:

Re-
set:

0 0 0 0 0 0 0 0

Figure 13-9  Breakpoint Data High Byte Register (BKP1H)
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In Dual Mode, this register is used to compare against the low order address lines. In Full Mode, t
register is used to compare against the low order data lines.

13.4  Operation

The Breakpoint sub-block supports two modes of operation: Dual Address Mode and Full Breakpo
Mode. Within each of these modes, forced or tagged breakpoint types can be used. Forced break
occur at the next instruction boundary if a match occurs and tagged breakpoints allow for breakin
before a specific instruction executes. The action taken upon a successful match can be to either p
CPU in Background Debug Mode or to initiate a software interrupt.

13.4.1  Modes of Operation

The Breakpoint can operate in Dual Address Mode or Full Breakpoint Mode. Each of these mode
discussed in the subsections below.

13.4.1.1  Dual Address Mode

When Dual Address Mode is enabled, two address breakpoints can be set. Each breakpoint can ca
system to enter Background Debug Mode or to initiate a software interrupt based upon the state o
BKBDM bit in the BKPCT0 Register being logic one or logic zero, respectively. BDM requests hav
higher priority than SWI requests. No data breakpoints are allowed in this mode.

The BKTAG bit in the BKPCT0 register selects whether the breakpoint mode is force or tag. The
BKxMBH:L bits in the BKPCT1 register select whether or not the breakpoint is matched exactly or
range breakpoint. They also select whether the address is matched on the high byte, low byte, both
and/or memory expansion. The BKxRW and BKxRWE bits in the BKPCT1 register select whether
type of bus cycle to match is a read, write, or both when performing forced breakpoints.

13.4.1.2  Full Breakpoint Mode

Full Breakpoint Mode requires a match on address and data for a breakpoint to occur. Upon a suc
match, the system will enter Background Debug Mode or initiate a software interrupt based upon the
of the BKBDM bit in the BKPCT0 Register being logic one or logic zero, respectively. BDM reques
have a higher priority than SWI requests. R/W matches are also allowed in this mode.

Ad-
dress

$002F

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 13-10  Breakpoint Data Low Byte Register (BKP1L)
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The BKTAG bit in the BKPCT0 register selects whether the breakpoint mode is forced or tagged. 
BKTAG bit is set in BKPCT0, then only address is matched, and data is ignored. The BK0MBH:L bi
the BKPCT1 register select whether or not the breakpoint is matched exactly, is a range breakpoin
in page space. The BK1MBH:L bits in the BKPCT1 register select whether the data is matched on th
byte, low byte, or both bytes. The BK0RW and BK0RWE bits in the BKPCT1 register select whethe
type of bus cycle to match is a read or a write when performing forced breakpoints. BK1RW and
BK1RWE bits in the BKPCT1 register are not used in Full Breakpoint Mode.

13.4.2  Breakpoint Priority

Breakpoint operation is first determined by the state of BDM. If BDM is already active, meaning the C
is executing out of BDM firmware, Breakpoints are not allowed. In addition, while in BDM trace mo
tagging into BDM is not allowed. If BDM is not active, the Breakpoint will give priority to BDM reques
over SWI requests. This condition applies to both forced and tagged breakpoints.

In all cases, BDM related breakpoints will have priority over those generated by the Breakpoint sub-b
This priority includes breakpoints enabled by theTAGLO andTAGHI external pins of the system that
interface with the BDM directly and whose signal information passes through and is used by the
Breakpoint sub-block.

NOTE: BDM should not be entered from a breakpoint unless the ENABLE bit is set in the
BDM. Even if the ENABLE bit in the BDM is negated, the CPU actually executes
the BDM firmware code. It checks the ENABLE and returns if enable is not set. If
the BDM is not serviced by the monitor then the breakpoint would be re-asserted
when the BDM returns to normal CPU flow.

There is no hardware to enforce restriction of breakpoint operation if the BDM is
not enabled.

13.5  Motorola Internal Information

The Breakpoint sub-block does not contain any information that is considered to be for Motorola use
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Section 14  Background Debug Mode (BDM)

This section describes the functionality of the Background Debug Mode (BDM) sub-block of the C

14.1  Overview

The Background Debug Mode (BDM) sub-block is a single-wire, background debug system implem
in on-chip hardware for minimal CPU intervention. All interfacing with the BDM is done via the BKG
pin.

14.1.1  Features

• Single-wire communication with host development system

• Active out of reset in special single-chip mode

• Nine hardware commands using free cycles, if available, for minimal CPU intervention

• Hardware commands not requiring active BDM

• 15 firmware commands execute from the standard BDM firmware lookup table

• Instruction tagging capability

• Software control of BDM operation during wait mode

• Software selectable clocks

• BDM disabled when secure feature is enabled
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14.1.2  Block Diagram

The block diagram of the BDM is shown inFigure 14-1  below.

Figure 14-1  BDM Block Diagram

14.2  Interface Signals

A single-wire interface pin is used to communicate with the BDM system. Two additional pins are 
for instruction tagging. These pins are part of the Multiplexed External Bus Interface (MEBI) sub-b
and all interfacing between the MEBI and BDM is done within the Core interface boundary. The
functional descriptions of the pins are provided below for completeness.

• BKGD — Background interface pin

• TAGHI — High byte instruction tagging pin

• TAGLO — Low byte instruction tagging pin

BKGD andTAGHI share the same pin.TAGLO andLSTRB share the same pin.

14.2.1  Background Interface Pin (BKGD)

Debugging control logic communicates with external devices serially via the single-wire backgrou
interface pin (BKGD). During reset, this pin is a mode select input which selects between normal 
special modes of operation. After reset, this pin becomes the dedicated serial interface pin for the
background debug mode.

14.2.2  High Byte Instruction Tagging Pin ( TAGHI)

This pin is used to tag the high byte of an instruction. When instruction tagging is on, a logic 0 at the fa
edge of the external clock (ECLK) tags the high half of the instruction word being read into the instru
queue.

ENBDM CLKSW

BDMACT

ENTAG

TRACE

SDV

16-BIT SHIFT REGISTER
BKGD

CLOCKS

DATA

ADDRESS

HOST
SYSTEM

BUS INTERFACE
AND

CONTROL LOGICAND EXECUTION
INSTRUCTION DECODE

LOOKUP TABLE

standard BDM firmware
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14.2.3  Low Byte Instruction Tagging Pin ( TAGLO)

This pin is used to tag the low byte of an instruction. When instruction tagging is on and low strob
enabled, a logic 0 at the falling edge of the external clock (ECLK) tags the low half of the instruction w
being read into the instruction queue.

14.3  Registers

A summary of the registers associated with the BDM is shown inFigure 14-2  below. Registers are
accessed by host-driven communications to the BDM hardware using READ_BD and WRITE_BD
commands. Detailed descriptions of the registers and associated bits are given in the subsections
follow.

Figure 14-2  BDM Register Map Summary

Address Register
Name Bit 7 6 5 4 3 2 1 Bit 0

$FF00 Reserved
Read: X X X X X X 0 0
Write:

$FF01 BDMSTS
Read:

ENBDM BDMACT ENTAG SDV TRACE CLKSW
UNSEC 0

Write:

$FF02 Reserved
Read: X X X X X X X X
Write:

$FF03 Reserved
Read: X X X X X X X X
Write:

$FF04 Reserved
Read: X X X X X X X X
Write:

$FF05 Reserved
Read: X X X X X X X X
Write:

$FF06 BDMCCR
Read:

CCR7 CCR6 CCR5 CCR4 CCR3 CCR2 CCR1 CCR0
Write:

$FF07 BDMINR
Read: REG15 REG14 REG13 REG12 REG11 0 0 0
Write:

= Unimplemented X = Indeterminate
249



Core User Guide — S12CPU15UG V1.2

 by

nds.

s,
DM

nds

ive to
DM
14.3.1  BDM Status Register

Read: All modes through BDM operation
Write: All modes but subject to the following:

– BDMACT can only be set by BDM hardware upon entry into BDM. It can only be cleared
the standard BDM firmware lookup table upon exit from BDM active mode.

– CLKSW can only be written via BDM hardware or standard BDM firmware write comma

– All other bits, while writable via BDM hardware or standard BDM firmware write command
should only be altered by the BDM hardware or standard firmware lookup table as part of B
command execution.

– ENBDM should only be set via a BDM hardware command if the BDM firmware comma
are needed. (This does not apply in Special Single Chip Mode).

ENBDM - Enable BDM

This bit controls whether the BDM is enabled or disabled. When enabled, BDM can be made act
allow firmware commands to be executed. When disabled, BDM cannot be made active but B
hardware commands are still allowed.

1 = BDM enabled
0 = BDM disabled

NOTE: ENBDM is set by the firmware immediately out of reset in special single-chip mode.
In secure mode, this bit will not be set by the firmware until after the EEPROM and
FLASH erase verify tests are complete.

BDMACT - BDM active status

Address: $FF01

Bit 7 6 5 4 3 2 1 Bit 0

Read:
ENBDM BDMACT ENTAG SDV TRACE CLKSW

UNSEC 0

Write:

Reset:

Special single-chip mode: 0 1 0 0 0 0 0 0

Special peripheral mode: 0 1 0 0 0 0 0 0

All other modes: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 14-3  BDM Status Register (BDMSTS)
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This bit becomes set upon entering BDM. The standard BDM firmware lookup table is then en
and put into the memory map. BDMACT is cleared by a carefully timed store instruction in the
standard BDM firmware as part of the exit sequence to return to user code and remove the BD
memory from the map.

1 = BDM active
0 = BDM not active

ENTAG - Tagging enable

This bit indicates whether instruction tagging in enabled or disabled. It is set when the TAGGO
command is executed and cleared when BDM is entered. The serial system is disabled and th
function enabled 16 cycles after this bit is written. BDM cannot process serial commands while
tagging is active.

1 = Tagging enabled
0 = Tagging not enabled, or BDM active

SDV - Shift data valid

This bit is set and cleared by the BDM hardware. It is set after data has been transmitted as p
firmware read command or after data has been received as part of a firmware write command
cleared when the next BDM command has been received or BDM is exited. SDV is used by th
standard BDM firmware to control program flow execution.

1 = Data phase of command is complete
0 = Data phase of command not complete

TRACE - TRACE1 BDM firmware command is being executed

This bit gets set when a BDM TRACE1 firmware command is first recognized. It will stay set as l
as continuous back-to-back TRACE1 commands are executed. This bit will get cleared when th
command that is not a TRACE1 command is recognized.

1 = TRACE1 command is being executed
0 = TRACE1 command is not being executed

CLKSW - Clock switch

The CLKSW bit controls which clock the BDM operates with. It is only writable from a hardwar
BDM command. A 150 cycle delay at the clock speed that is active during the data portion of t
command will occur before the new clock source is guaranteed to be active. The start of the next
command uses the new clock for timing subsequent BDM communications.

1 = BDM system operates with bus rate
0 = BDM system operates with alternate clock

WARNING:
The BDM will not operate with CLKSW = 0 if the frequency of the alternate clock
source, peri_phase_oscdX, is greater than one half of the bus frequency. Please
refer to the users guide for the clock generation module to determine if this
condition can occur.

UNSEC - Unsecure
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This bit is only writable in special single chip mode from the BDM secure firmware and always
reset to zero. It is in a zero state as secure mode is entered so that the secure BDM firmware 
table is enabled and put into the memory map along with the standard BDM firmware lookup t

The secure BDM firmware lookup table verifies that the on-chip EEPROM and Flash EEPROM
erased. This being the case, the UNSEC bit is set and the BDM program jumps to the start of 
standard BDM firmware lookup table and the secure BDM firmware lookup table is turned off. If
erase test fails, the UNSEC bit will not be asserted.

1 = the system is in a unsecured mode
0 = the system is in a secured mode

WARNING:
When UNSEC is set, security is off and the user can change the state of the secure
bits in the on-chip Flash EEPROM. Note that if the user does not change the state
of the bits to "unsecured" mode, the system will be secured again when it is next
taken out of reset.

14.3.2  BDM CCR Holding Register

Read: All modes
Write: All modes

NOTE: When BDM is made active, the CPU stores the value of the CCR register in the
BDMCCR register. However, out of special single-chip reset, the BDMCCR is set
to $D8 and not $D0 which is the reset value of the CCR register.

When entering background debug mode, the BDM CCR holding register is used to save the conte
the condition code register of the user’s program. It is also used for temporary storage in the standard
firmware mode. The BDM CCR holding register can be written to modify the CCR value.

Address: $FF06

Bit 7 6 5 4 3 2 1 Bit 0

Read:
CCR7 CCR6 CCR5 CCR4 CCR3 CCR2 CCR1 CCR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 14-4  BDM CCR Holding Register (BDMCCR)
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14.3.3  BDM Internal Register Position Register

Read: All modes
Write: Never

REG15–REG11 - Internal register map position

These five bits show the state of the upper five bits of the base address for the system’s reloca
register block. BDMINR is a shadow of the INITRG register which maps the register block to any
byte space within the first 32K bytes of the 64K byte address space.

14.4  Operation

The BDM receives and executes commands from a host via a single wire serial interface. There a
types of BDM commands, namely, hardware commands and firmware commands.

Hardware commands are used to read and write target system memory locations and to enter act
background debug mode (see14.4.3). Target system memory includes all memory that is accessible by
CPU.

Firmware commands are used to read and write CPU resources and to exit from active background
mode (see14.4.4). The CPU resources referred to are the accumulator (D), X index register (X), Y in
register (Y), stack pointer (SP), and program counter (PC).

Hardware commands can be executed at any time and in any mode excluding a few exceptions a
highlighted in14.5 below. Firmware commands can only be executed when the system is in active
background debug mode (BDM).

14.4.1  Security

If the user resets into special single chip mode with the system secured, a secured mode BDM fir
lookup table is brought into the map overlapping a portion of the standard BDM firmware lookup t
The secure BDM firmware verifies that the on-chip EEPROM and Flash EEPROM are erased. This
the case, the UNSEC bit will get set. The BDM program jumps to the start of the standard BDM firmw
and the secured mode BDM firmware is turned off. If the EEPROM and FLASH do not verify as era
the BDM firmware sets the ENBDM bit, without asserting UNSEC, and the firmware enters a loop.

Address: $FF07

Bit 7 6 5 4 3 2 1 Bit 0

Read: REG15 REG14 REG13 REG12 REG11 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 14-5  BDM Internal Register Position (BDMINR)
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causes the BDM hardware commands to become enabled, but does not enable the software com
This allows the BDM hardware to be used to erase the EEPROM and FLASH.

14.4.2  Enabling and Activating BDM

The system must be in active BDM to execute standard BDM firmware commands. BDM can be acti
only after being enabled. BDM is enabled by setting the ENBDM bit in the BDM status (BDMSTS)
register. The ENBDM bit is set by writing to the BDM status (BDMSTS) register, via the single-wir
interface, using a hardware command such as WRITE_BD_BYTE.

After being enabled, BDM is activated by one of the following1:

• Hardware BACKGROUND command

• BDM external instruction tagging mechanism

• CPU BGND instruction

• Breakpoint sub-block’s force or tag mechanism2

When BDM is activated, the CPU finishes executing the current instruction and then begins executi
firmware in the standard BDM firmware lookup table. When BDM is activated by the breakpoint
sub-block, the type of breakpoint used determines if BDM becomes active before or after execution
next instruction.

NOTE: If an attempt is made to activate BDM before being enabled, the CPU resumes
normal instruction execution after a brief delay. If BDM is not enabled, any
hardware BACKGROUND commands issued are ignored by the BDM and the CPU
is not delayed.

In active BDM, the BDM registers and standard BDM firmware lookup table are mapped to addres
$FF00 to $FFFF. BDM registers are mapped to addresses $FF00 to $FF07. The BDM uses these r
which are readable anytime by the BDM. These registers are not, however, readable by user prog

14.4.3  BDM Hardware Commands

Hardware commands are used to read and write target system memory locations and to enter act
background debug mode. Target system memory includes all memory that is accessible by the CP
as on-chip RAM, EEPROM, Flash EEPROM, I/O and control registers, and all external memory.

Hardware commands are executed with minimal or no CPU intervention and do not require the sys
be in active BDM for execution, although, they can still be executed in this mode. When executing
hardware command, the BDM sub-block waits for a free CPU bus cycle so that the background acce
not disturb the running application program. If a free cycle is not found within 128 clock cycles, the C
is momentarily frozen so that the BDM can steal a cycle. When the BDM finds a free cycle, the oper
does not intrude on normal CPU operation provided that it can be completed in a single cycle. Ho

NOTES:
1. BDM is enabled and active immediately out of special single-chip reset (see 14.5.2).
2. This method is only available on systems that have a a Breakpoint sub-block.
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if an operation requires multiple cycles, the CPU is frozen until the operation is complete, even thoug
BDM found a free cycle.

The BDM hardware commands are listed inTable 14-1 .

The READ_BD and WRITE_BD commands allow access to the BDM register locations. These loca
are not normally in the system memory map but share addresses with the application in memory.
distinguish between physical memory locations that share the same address, BDM memory resour
enabled just for the READ_BD and WRITE_BD access cycle. This allows the BDM to access BDM
locations unobtrusively, even if the addresses conflict with the application memory map.

14.4.4  Standard BDM Firmware Commands

Firmware commands are used to access and manipulate CPU resources. The system must be in
BDM to execute standard BDM firmware commands (see14.4.2). Normal instruction execution is
suspended while the CPU executes the firmware located in the standard BDM firmware lookup table
hardware command BACKGROUND is the usual way to activate BDM.

As the system enters active BDM, the standard BDM firmware lookup table and BDM registers be
visible in the on-chip memory map at $FF00-$FFFF, and the CPU begins executing the standard 

Table 14-1  Hardware Commands

Command Opcode
 (hex) Data Description

BACKGROUN 90 None Enter background mode if firmware is enabled.

READ_BD_BYTE E4
16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table in map.
Odd address data on low byte; even address data on high byte

READ_BD_WORD EC
16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table in map.
Must be aligned access.

READ_BYTE E0
16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table out of
map. Odd address data on low byte; even address data on high byte

READ_WORD E8
16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table out of
map. Must be aligned access.

WRITE_BD_BYTE C4
16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table in map.
Odd address data on low byte; even address data on high byte

WRITE_BD_WORD CC
16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table in map.
Must be aligned access

WRITE_BYTE C0
16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table out of
map. Odd address data on low byte; even address data on high byte

WRITE_WORD C8
16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table out of
map. Must be aligned access.
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firmware. The standard BDM firmware watches for serial commands and executes them as they a
received. The firmware commands are shown inTable 14-2.

14.4.5  BDM Command Structure

Hardware and firmware BDM commands start with an 8-bit opcode followed by a 16-bit address an
16-bit data word depending on the command. All the read commands return 16 bits of data despite th
or word implication in the command name.

NOTE: 8-bit reads return 16-bits of data, of which, only one byte will contain valid data. If
reading an even address, the valid data will appear in the MSB. If reading an odd
address, the valid data will appear in the LSB.

NOTE: 16-bit misaligned reads and writes are not allowed. If attempted, the BDM will
ignore the least significant bit of the address and will assume an even address from
the remaining bits.

Table 14-2  Firmware Commands

Command Opcode
(hex) Data Description

READ_NEXT 62 16-bit data out Increment X by 2 (X = X + 2), then read word X points to.

READ_PC 63 16-bit data out Read program counter.

READ_D 64 16-bit data out Read D accumulator.

READ_X 65 16-bit data out Read X index register.

READ_Y 66 16-bit data out Read Y index register.

READ_SP 67 16-bit data out Read stack pointer.

WRITE_NEXT 42 16-bit data in
Increment X by 2 (X=X+2), then write word to location pointed to
by X.

WRITE_PC 43 16-bit data in Write program counter.

WRITE_D 44 16-bit data in Write D accumulator.

WRITE_X 45 16-bit data in Write X index register.

WRITE_Y 46 16-bit data in Write Y index register.

WRITE_SP 47 16-bit data in Write stack pointer.

GO 08 none Go to user program.

TRACE1 10 none Execute one user instruction then return to active BDM.

TAGGO 18 none Enable tagging and go to user program.
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For hardware data read commands, the external host must wait 150 target clock cycles1 after sending the
address before attempting to obtain the read data. This is to be certain that valid data is available
BDM shift register, ready to be shifted out. For hardware write commands, the external host must wa
target clock cycles after sending the data to be written before attempting to send a new command.
to avoid disturbing the BDM shift register before the write has been completed. The 150 target clock
delay in both cases includes the maximum 128 cycle delay that can be incurred as the BDM waits
free cycle before stealing a cycle.

For firmware read commands, the external host must wait 32 target clock cycles after sending the
command opcode before attempting to obtain the read data. This allows enough time for the request
to be made available in the BDM shift register, ready to be shifted out. For firmware write command
external host must wait 32 target clock cycles after sending the data to be written before attempting t
a new command. This is to avoid disturbing the BDM shift register before the write has been com

The external host should wait 64 target clock cycles after a TRACE1 or GO command before startin
new serial command. This is to allow the CPU to exit gracefully from the standard BDM firmware loo
table and resume execution of the user code. Disturbing the BDM shift register prematurely may adv
affect the exit from the standard BDM firmware lookup table.

Figure 14-6represents the BDM command structure. The command blocks illustrate a series of eig
times starting with a falling edge. The bar across the top of the blocks indicates that the BKGD line
in the high state. The time for an 8-bit command is 8× 16 target clock cycles.

Figure 14-6  BDM Command Structure

NOTES:
1. Target clock cycles are cycles measured using the target system’s serial clock rate. See 14.4.6 and 14.3.1 for information on
how serial clock rate is selected.
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14.4.6  BDM Serial Interface

The BDM communicates with external devices serially via the BKGD pin. During reset, this pin is a m
select input which selects between normal and special modes of operation. After reset, this pin be
the dedicated serial interface pin for the BDM.

The BDM serial interface is timed using the clock selected by the CLKSW bit in the status register
14.3.1). This clock will be referred to as the target clock in the following explanation.

The BDM serial interface uses a clocking scheme in which the external host generates a falling ed
the BKGD pin to indicate the start of each bit time. This falling edge is sent for every bit whether da
transmitted or received. Data is transferred most significant bit (MSB) first at 16 target clock cycle
bit. The interface times out if 512 clock cycles occur between falling edges from the host.

The BKGD pin is a pseudo open-drain pin and has an weak on-chip active pull-up that is enabled
times. It is assumed that there is an external pullup and that drivers connected to BKGD do not ty
drive the high level. Since R-C rise time could be unacceptably long, the target system and host p
brief driven-high (speedup) pulses to drive BKGD to a logic 1. The source of this speedup pulse is th
for transmit cases and the target for receive cases.

The timing for host-to-target is shown inFigure 14-7and that of target-to-host inFigure 14-8andFigure
14-9below. All four cases begin when the host drives the BKGD pin low to generate a falling edge. S
the host and target are operating from separate clocks, it can take the target system up to one ful
cycle to recognize this edge. The target measures delays from this perceived start of the bit time wh
host measures delays from the point it actually drove BKGD low to start the bit up to one target clock
earlier. Synchronization between the host and target is established in this manner at the start of e
time.

Figure 14-7 shows an external host transmitting a logic 1 and transmitting a logic 0 to the BKGD p
a target system. The host is asynchronous to the target, so there is up to a one clock-cycle delay fr
host-generated falling edge to where the target recognizes this edge as the beginning of the bit tim
target clock cycles later, the target senses the bit level on the BKGD pin. Internal glitch detect log
requires the pin be driven high no later that eight target clock cycles after the falling edge for a log
transmission.

Since the host drives the high speedup pulses in these two cases, the rising edges look like digitally
signals.
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Figure 14-7  BDM Host-to-Target Serial Bit Timing

The receive cases are more complicated.Figure 14-8 shows the host receiving a logic 1 from the targe
system. Since the host is asynchronous to the target, there is up to one clock-cycle delay from the
host-generated falling edge on BKGD to the perceived start of the bit time in the target. The host hol
BKGD pin low long enough for the target to recognize it (at least two target clock cycles). The host
release the low drive before the target drives a brief high speedup pulse seven target clock cycles a
perceived start of the bit time. The host should sample the bit level about 10 target clock cycles a
started the bit time.

Figure 14-8  BDM Target-to-Host Serial Bit Timing (Logic 1)
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Figure 14-9shows the host receiving a logic 0 from the target. Since the host is asynchronous to the t
there is up to a one clock-cycle delay from the host-generated falling edge on BKGD to the start of t
time as perceived by the target. The host initiates the bit time but the target finishes it. Since the t
wants the host to receive a logic 0, it drives the BKGD pin low for 13 target clock cycles then briefly dr
it high to speed up the rising edge. The host samples the bit level about 10 target clock cycles after s
the bit time.

Figure 14-9  BDM Target-to-Host Serial Bit Timing (Logic 0)

14.4.7  Instruction Tracing

When a TRACE1 command is issued to the BDM in active BDM, the CPU exits the standard BDM
firmware and executes a single instruction in the user code. Once this has occurred, the CPU is fo
return to the standard BDM firmware and the BDM is active and ready to receive a new command.
TRACE1 command is issued again, the next user instruction will be executed. This facilitates stepp
tracing through the user code one instruction at a time.

If an interrupt is pending when a TRACE1 command is issued, the interrupt stacking operation occu
no user instruction is executed. Once back in standard BDM firmware execution, the program cou
points to the first instruction in the interrupt service routine.

14.4.8  Instruction Tagging

The instruction queue and cycle-by-cycle CPU activity are reconstructible in real time or from trac
history that is captured by a logic analyzer. However, the reconstructed queue cannot be used to 
CPU at a specific instruction, because execution already has begun by the time an operation is vi
outside the system. A separate instruction tagging mechanism is provided for this purpose.
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The tag follows program information as it advances through the instruction queue. When a tagged
instruction reaches the head of the queue, the CPU enters active BDM rather than executing the inst

NOTE: Tagging is disabled when BDM becomes active and BDM serial commands are not
processed while tagging is active.

Executing the BDM TAGGO command configures two system pins for tagging. TheTAGLO signal
shares a pin with theLSTRB signal, and theTAGHI signal shares a pin with the BKGD signal.

Table 14-3shows the functions of the two tagging pins. The pins operate independently, that is, the
of one pin does not affect the function of the other. The presence of logic level 0 on either pin at t
of the external clock (ECLK) performs the indicated function. High tagging is allowed in all modes. L
tagging is allowed only when low strobe is enabled (LSTRB is allowed only in wide expanded mode
emulation expanded narrow mode).

14.5  Modes of Operation

BDM is available in all operating modes but must be enabled before firmware commands are exe

Some system peripherals may have a control bit which allows suspending the peripheral function
background debug mode.

In special single-chip mode, background operation is enabled and active out of reset. This allows
programming a system with blank memory.

BDM is also active out of special peripheral mode reset and can be turned off by clearing the BDM
bit in the BDM status (BDMSTS) register. This allows testing of the BDM memory space as well a
user’s memory space.

NOTE: The BDM serial system should not be used in special peripheral mode since the
CPU, which in other modes interfaces with the BDM to relinquish control of the bus
during a free cycle or a steal operation, is not operating in this mode.

14.5.1  Normal Operation

BDM operates the same in all normal modes.

Table 14-3  Tag Pin Function

TAGHI TAGLO Tag

1 1 No tag

1 0 Low byte

0 1 High byte

0 0 Both bytes
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14.5.2  Special Operation

14.5.2.1  Special single-chip mode

BDM is enabled and active immediately out of reset. This allows programming a system with blan
memory.

14.5.2.2  Special peripheral mode

BDM is enabled and active immediately out of reset. BDM can be disabled by clearing the BDMAC
in the BDM status (BDMSTS) register. The BDM serial system should not be used in special perip
mode.

14.5.3  Emulation Modes

In emulation modes, the BDM operates as in all normal modes.

14.6  Low-Power Options

14.6.1  Run Mode

The BDM does not include disable controls that would conserve power during run mode.

14.6.2  Wait Mode

The BDM cannot be used in wait mode if the system disables the clocks to the BDM.

14.6.3  Stop Mode

The BDM is completely shutdown in stop mode.

14.7  Interrupt Operation

The BDM does not generate interrupt requests.

14.8  Motorola Internal Information

This subsection details information about the BDM sub-block that is for Motorola use only and shoul
be published in any form outside of Motorola.
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14.8.1  Registers

This section gives detailed descriptions of all internally accessible registers and bits that are eithe
available or not disclosed to users external to Motorola. These registers were highlighted as being re
BDM registers previously in this section of the guide.

The BDM instruction (BDMIST) register is written by the BDM hardware as a result of a BDM comma
sent to the system via the BKGD pin. The individual bits decode into categories of BDM instruction.
two descriptions of the BDMIST below show the instruction decode when categorized as hardwar
firmware instructions.

All of the BDM registers are readable and writable in special peripheral mode on the parallel bus un
BDMACT bit in the BDMSTS register is cleared at which time the BDM resources are no longer
accessible via the peripheral bus and require a reset to be restored.

A full summary of the registers associated with the BDM is shown inFigure 14-10  below.

Figure 14-10  BDM Register Map

Address Name Bit 7 6 5 4 3 2 1 Bit 0

$FF00 BDMIST
read

H/F DATA R/W BKGND W/B BD/U
0 0

write

$FF01 BDMSTS
read

ENBDM BDMACT ENTAG SDV TRACE CLKSW
UNSEC 0

write

$FF02 BDMSHTH
read

S15 S14 S13 S12 S11 S10 S9 S8
write

$FF03 BDMSHTL
read

S7 S6 S5 S4 S3 S2 S1 S0
write

$FF04 BDMADDH
read

A15 A14 A13 A12 A11 A10 A9 A8
write

$FF05 BDMADDL
read

A7 A6 A5 A4 A3 A2 A1 A0
write

$FF06 BDMCCR
read

CCR7 CCR6 CCR5 CCR4 CCR3 CCR2 CCR1 CCR0
write

$FF07 BDMINR
read REG15 REG14 REG13 REG12 REG11 0 0 0
write

 = Unimplemented X = Indeterminate
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14.8.2  BDM Instruction Register (Hardware)

Read: All modes
Write: All modes; BDM hardware writes this register when a BDM command is received.

Hardware clears the register if 512 BDM clock cycles occur between falling edges from
the host. Firmware clears this register when exiting from BDM active mode.

H/F - Hardware/firmware flag

When the BDM is active, standard BDM firmware checks for this bit to be set by the BDM hardw
as part of a BDM instruction load.

1 = Hardware command
0 = Firmware command

DATA - Data flag

Shows that data accompanies the command.
1 = Data follows the command
0 = No data

R/W - Read/write flag
1 = Read
0 = Write

BKGND - Enter active background mode
1 = Hardware background command
0 = Not a hardware background command

W/B - Word/byte transfer flag
1 = Word transfer
0 = Byte transfer

BD/U - BDM map/user map flag

Indicates whether BDM access is to BDM registers and standard BDM firmware lookup table ma
to addresses $FF00 to $FFFF or the user resources in this range. Used only by hardware read
commands.

1 = standard BDM firmware lookup table and registers in map
0 = User resources in map.

Address: $FF00

Bit 7 6 5 4 3 2 1 Bit 0

Read:
H/F DATA R/W BKGND W/B BD/U

0 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 14-11  BDM Instruction Register (BDMIST)
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are
14.8.3  BDM Instruction Register (Firmware)

Read: All modes
Write: All modes; BDM hardware writes this register when a BDM command is received.

Hardware clears the register if 512 BDM clock cycles occur between falling edges from
the host. Firmware clears this register when exiting from BDM active mode.

H/F - Hardware/firmware flag

When the BDM is active, standard BDM firmware checks for this bit to be set by the BDM hardw
as part of a BDM instruction load.

1 = Hardware command
0 = Firmware command

DATA - Data flag

This bit indicates that data accompanies the command.
1 = Data follows the command
0 = No data

R/W - Read/write flag
1 = Read
0 = Write

TTAGO - Trace, tag, go bits.

The decoding of TTAGO is shown inTable 14-4  below.

RNEXT - Register/next bits

Address: $FF00

Bit 7 6 5 4 3 2 1 Bit 0

Read:
H/F DATA R/W TTAGO RNEXT

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 14-12  BDM Instruction Register (BDMIST)

Table 14-4  TTAGO Decoding

TTAGO value Instruction

00 —

01 GO

10 TRACE1

11 TAGGO
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Indicates which register is being affected by a command. In the case of a READ_NEXT or
WRITE_NEXT command, index register X is pre-incremented by 2 and the word pointed to by
then read or written. The decoding of RNEXT is shown inTable 14-5  below.

14.8.4  BDM Status Register

The BDM status (BDMSTS) register is described in14.3.1. In addition, it is readable and writable in
special peripheral mode on the parallel bus.

BDMACT - BDM active status

BDMACT is set by the BDM and is cleared in the exit sequence of the standard BDM firmware
BDMACT can be written to in special peripheral mode via the peripheral bus. It cannot be writte
via BDM hardware commands in any mode, that is, it cannot be written to if the H/F bit in the BDM
register is set.

Clearing BDMACT causes the standard BDM firmware lookup table and registers to be removed
the memory map and BDM to become inactive.

Setting BDMACT in special peripheral mode via the peripheral bus causes BDM to become activ
does not put the standard BDM firmware lookup table and registers into the memory map; the
BDMACT should not be set in this manner but should instead be set by resetting the system.

Table 14-5  RNEXT Decoding

RNEXT value Instruction

000 —

001 —

010 READ/WRITE NEXT

011 PC

100 D

101 X

110 Y

111 SP
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also
14.8.5  BDM Shift Register

Read: All modes
Write: All modes

The 16-bit BDM shift register contains data being received or transmitted via the serial interface. It is
used by the standard BDM firmware for temporary storage.

Address: $FF02

Bit 15 14 13 12 11 10 9 Bit 8

Read:
S15 S14 S13 S12 S11 S10 S9 S8

Write:

Reset:

Figure 14-13  BDM Shift Register (BDMSHTH)

Address: $FF03

Bit 7 6 5 4 3 2 1 Bit 0

Read:
S7 S6 S5 S4 S3 S2 S1 S0

Write:

Reset:

Figure 14-14  BDM Shift Register (BDMSHTL)
267



Core User Guide — S12CPU15UG V1.2

ds.

abled

not be
during
14.8.6  BDM Address Register

Read: All modes
Write: Can only be written by BDM hardware

In secure mode, if the BDM hardware commands have been enabled by the secure
firmware, the upper 5 bits of the address register will always be forced to the value from
the BDMINR register. This restricts access of the hardware commands to the register
space only.

The 16-bit address register is loaded with the address to be accessed by BDM hardware comman

14.8.7  Special Peripheral Mode

In Special Peripheral Mode the BDM is enabled and active immediately out of reset. BDM can be dis
by clearing the BDMACT bit in the BDM status (BDMSTS) register (see14.8.4). This allows testing the
BDM memory space as well as the user’s program memory space. The BDM serial system should
used in special peripheral mode since the CPU, which in other modes relinquishes control of the bus
a free cycle or a steal operation, is not operating in this mode.

14.8.8  Standard BDM Firmware Listing

;*******************************************************************************
;
;   Copyright (C) 1997 by Motorola Inc.
;                         6501 William Cannon Drive West
;                         Advanced MCU HC11 Group
;                         Austin, TX 78735-8598
;
;   All rights reserved. No part of this software may be sold or distributed

Address: $FF04

Bit 15 14 13 12 11 10 9 Bit 8

Read:
A15 A14 A13 A12 A11 A10 A9 A8

Write:

Reset:

Figure 14-15  BDM Address Register (BDMADDH)

Address: $FF05

Bit 7 6 5 4 3 2 1 Bit 0

Read:
A7 A6 A5 A4 A3 A2 A1 A0

Write:

Reset:

Figure 14-16  BDM Address Register (BDMADDL)
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;   in any form or by any means without the prior written permission of
;   Motorola, Inc.
;
;         MOTOROLA CONFIDENTIAL PROPRIETARY INFORMATION
;
;*******************************************************************************
;===============================================================================
; VERSION HISTORY
;
; Started from UDR HC12 BDM ROM code
;
;===============================================================================
;
; Design Strategy:
; -standard BDM firmware for M68HC12
; -There are MANY traps that someone modifying this code MUST be aware of.
; Those areas that have traps that we have fallen into and requiring
; special care have been marked with CAUTION. Here is a list of
; items to BEWARE of. Review this list after ANY ROM code changes.
; CAUTION 1. There is an inherent cpudead cycle that we rely on in the
; INST_LOOP loop when that ldaa instruction falls on an even
; address. For this reason, an ALIGN directive MUST be used
; at that location. See AR#156.
; CAUTION 2. The first event that occurs in code that may interfere
; with user code is the saving of all internal registers. When
; this BDM code is entered, all the internal registers such as
; CCR, PC, X, etc. MUST be saved so that they may be restored to
; the user's value upon an exit from this code.
; CAUTION 3. DO NOT insert code that affects the user CCR value before
; it gets saved. The code that saves the user CCR should be one
; of the very first items that occur at the beginning of this
; code. See AR#166.
; CAUTION 4. The PC value MUST be checked to see if it was a BDM (op=00)
; instruction that got us into BDM. If so, PC gets adjusted by 1.
; This works only if the user enters BDM from locations $0000
; thru $FEFF because locations $FF00-$FFFF are blocked out for the
; BDM. So, the BDM ROM is in the map and not the user's code.
; CAUTION 5. Any unused space should be set to $00 to ensure ROM
; is plugged and verified properly. Be careful to NOT OVERLAP
; vector space when filling unused space!!! Using the ZMB
; directive helps because the assembler version we used just hangs
; up when code OVERLAPs BUT some other assembler version may
; not catch this.
; CAUTION 6. The ROM code size is limited in available space. Make
; sure that when instructions are added, the vector space is not
; overwritten.
; CAUTION 7. The reset vector was INST_DONE. Added code
; so that after a reset, the ccr value at reset is saved because
; the exit sequence was changing the CCR to the value that was
; saved before the reset occurred. The user should really
; initialize the CCR, but we do it here to avoid confusion.
; CAUTION 8. The ENBDM bit MUST be set out of reset, otherwise it won't
; pass the "brset STATUS $80 INST_LOOP" test and the user gets
; kicked out of background unintentionally.
; CAUTION 9. The Dev. Tools PRU relies on the BDM entry point "START"
; being at location $FF24. They also rely on the exit point
; being at location $FF77 (the exit jump). Any changes to the
; start and exit points MUST be reviewed with them.
; CAUTION 10. Be careful that the BDMACT bit in the STATUS register is
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; not unintentionally changed from a 1 to a 0 during 16-bit
; manipulation of the INSTRUCTION register. This will cause a
; race condition because BDMACT=0 will disable the standard BDM firmware
; ROM while the CPU is executing this firmware.
; -This is a list of instructions which use the temp2 (t2) and temp3 (t3)
; instructions. List as of 7-27-94. Gotten from Tom Poterek's BDMcode.
; temp2
; =====
; bgnd
; emacs
; etbl
; mem
; revw
; stop
; tbl
; wai
; execution of BDM ROM
;
; temp3
; =====
; emacs
; etbl
; mem
; puld
; pulx
; puly
; rtc
; rti
; rts
; tbl
; wav
; execution of BDM ROM
;

********************************************************************************

********************************************************************************
* EQUATES

fff6 BDMVEC equ$fff6 ;First BDM ROM vector.

ff00 org$ff00 ;Start of BDM map (registers)
ff00 INSTR rmb1 ;Instruction (command) register

* s/w  !  H/S ! DATA !  R/W ! TTAG :  GO  !  R2  !  R1  !  R0  !
* hdw  !  H/S ! DATA !  R/W !BKGND :  W/B !BD/USR! NEXT !   -  !
* Reg codes: R2:R1:R0
* 0:0:0 - Illegal, command $00 is null command
* 0:0:1 - not used
* 0:1:0 - Next Word 2,+X pre inc X by 2 and r/w next word (,X)
*          later r/w next will work from ADDRESS reg value not X
* 0:1:1 - PC
* 1:0:0 - D
* 1:0:1 - X
* 1:1:0 - Y
* 1:1:1 - SP
* TTAG:GO coding:
* 0:0 - No execution command
* 0:1 - Go to user program
* 1:0 - Trace one user instruction and return to BDM
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* 1:1 - Tag Go command (reconfigure BKGD pin for tagging in)

ff01 STATUS rmb1 ;Status/Control register
*     ! enBDM!BDACTV!  TAG ! VALID: TRACE!   -  !   -  !   -  !
* Exit conditions vs value written to STATUS on exit
*  BDM not allowed - $00
*          Trace 1 - $88
*               Go - $80
*           Tag Go - $A0

ff02 SHIFTER rmb2 ;For serial data in/out

ff04 ADDRESS rmb2 ;Address for some commands
* ADDRESS will be read-only on first parts but later it will
* be r/w so r/w next word doesn't need to use X

ff06 CCRSAVE rmb1 ;Save user CCR value while in BDM
* CCRSAVE also used briefly to hold exit value for status
* during exit sequence to return to user code

ff20 orgff20 ;BDM ROM start
AFTER_RST ;*****CAUTION 7.  *****CAUTION 8.

ff20 1c ff 01 80 bset STATUS $80;Set the ENBDM bit to pass the brset
;test below.
;CCR immediately after rst is
;SXHINZVC=11x1xxxx.
;CCR after this bset is
;SXHINZVC=11x1100x.  This is o.k.
;because the SXI bits are not
;affected.

START
;*****CAUTION 2.  *****CAUTION 9.

ff24 b7 b4 exgt3 d ;Save D without affecting CCR.
;This "exg t3 d" instruction MUST
;occur before the following
;"tfr ccr a" instruction.

;*****CAUTION 3.
ff26 b7 20 tfrccr a
ff28 7a ff 06 staaCCRSAVE;Save user CCR value
ff2b b7 d3 exgx t2 ;pc into x.  *****CAUTION 4.
ff2d 8e ff 00 cpx#$FF00 ;Check to see if user PC overlaps BDM

;ROM.
ff30 24 04 bhsROM_INC;If so, increment regardless.
ff32 e7 00 tst0,x ;Test next opcode.  This instruction

;affects CCR so it MUST occur AFTER
;saving the user's CCR.

ff34 26 01 bneRES_X_T2;if not $00, restore
ff36 08 ROM_INC inx ;else inc, then restore. This

;instruction affects CCR so it MUST
;occur AFTER saving the user's CCR.

RES_X_T2
ff37 b7 d3 exgx t2 ;restore pc to temp 2
ff39 1e ff 01 80 06 brsetSTATUS $80 INST_LOOP  ;Check if BDM allowed
ff3e 87 clra ;Exit if BDM not allowed
ff3f 20 1c braEXIT_SEQ

* Above is 1 of 4 ways to exit BDM to user code.
INST_DONE

ff41 79 ff 00 clrINSTR ;clear INSTR then wait for new inst
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;CAUTION 10.

* Top of main loop to wait for a software instruction
;*****CAUTION 1.

ff44 ALIGN 1 ;Make sure the following loop
;starting with ldaa is ALWAYS on an
;even boundary.
;See AR# 156 for more details.

INST_LOOP
ff44 b6 ff 00 ldaaINSTR ;Wait for non-zero non-hdw command
ff47 2f fb bleINST_LOOP;$00 is null command

;MSB of A set (neg) is hdw command
ff49 85 18 bita#$18 ;TAGGO,TRACE, or GO commands?
ff4b 27 2e beqNOT_EXE;Branch if not execution command
ff4d 81 10 cmpa#$10 ;TRACE ---1:0--- ?  tp 4/7/95
ff4f 27 06 beqTRACE
ff51 2b 08 bmiGO ;If not GO it's TAG GO

* Fall through from TAG_GO is 4th of 4 ways to exit to user code.
ff53 86 a0 ldaa#$A0 ;enBDM + TAG bits in STATUS
ff55 20 06 braEXIT_SEQ;Controlled exit (3 of 4)

TRACE
ff57 86 88 ldaa#$88 ;enBDM + TRACE bits in STATUS
ff59 20 02 braEXIT_SEQ;Controlled exit (2 of 4)

GO
ff5b 86 80 ldaa#$80 ;enBDM bit only in STATUS

* Upon entry to EXIT_SEQ, A contains a value to be written
* to the STATUS register. Seq restores user info and
* resumes user program where it left to enter active BD mode

EXIT_SEQ ;CAUTION 10.
ff5d 79 ff 00 clrINSTR ;clear instruction    tp 4/6/95
ff60 f6 ff 06 ldabCCRSAVE;re-entry value for CCR
ff63 7a ff 06 staaCCRSAVE;will use movb to store to STATUS
ff66 b7 d3 exgx t2 ;Swap X to Temp2 and User PC to X
ff68 7e ff 02 stxSHIFTER;For later indirect jump
ff6b b7 d3 exgx t2 ;Restore user X
ff6d b7 12 tfrb ccr ;Restore user CCR
ff6f b7 b4 exgt3 d ;Restore user D reg
ff71 18 0c ff 06 ff 01 movbCCRSAVE STATUS;[OrPwPO] write w/o chg to ccr

* Critical timing: cycle signature of above move is OrPwPO
* Exit timing referenced to the byte-write in cycle 4
* Cycle signatures of remaining instructions in exit seq
* are shown in the comments. ROM switch from BD ROM to
* user map should occur at f cycle before PPP in exit jump
* If TRACE, issue liufbdm at T4 of the second last P cycle
* of the exit jump
*                  O r P w P O f I f P P P
*                         !       !     !

ff77 05 fb ff 87 jmp(SHIFTER-(*+4)),pc]  ;[fIfPPP] Exit to user PC

* In this exit jump, the I cycle is a word read of the user PC
* from the SHIFTER register (BD map). The PPP cycles are word
* fetches of user program info to fill instruction queue from
* user's map. The ROM switch must occur between I and PPP

* See also *****CAUTION 9. concerning this exit jump.
272



Core User Guide — S12CPU15UG V1.2
NOT_EXE
ff7b b7 01 tfra b ;Duplicate command in B
ff7d 84 07 anda#$07 ;Strip all but 3-bit reg code
ff7f 80 02 suba#2 ;codes 0 & 1 illegal or unused
ff81 2b be bmiINST_DONE;branch if A now negative
ff83 c5 20 bitb#$20 ;Check R/W bit
ff85 26 37 bne;COMP_GOTO;Go decode read command (was beq

;tp 3/30)

WAIT_DATA
ff87 f7 ff 00 tstINSTR ;Check for new command
ff8a 27 b8 beqINST_LOOP;Need escape if old command aborted
ff8c 1f ff 01 10 f6 brclrSTATUS $10 WAIT_DATA  ;Wait for data ready
ff91 c6 07 ldab#7
ff93 12 mul ;B = 7*(reg_code - 1)
ff94 05 fd jmpb,pc ;Calculated GOTO

* Each write command corresponding to reg code 2-7 takes
* exactly 7 bytes. For command 2 (write next word) the jump will
* GOTO 0,pc or the location immediately after the jump
* For command 7 (write SP) the jump will go to (5*7),pc
* Each command ends with a branch to the main command loop
W_NXT_WRD

ff96 fc ff 02 lddSHIFTER;Get data to write
ff99 6c 21 std2,+x ;pre-inc x by 2 and store word

INST_DONE1
ff9b 20 a4 braINST_DONE;Intermediate branch to loop top

WRITE_PC
ff9d fc ff 02 lddSHIFTER;Get data to write
ffa0 b7 c3 exgd t2 ;User PC in Temp2 reg
ffa2 20 9d braINST_DONE;Branch to loop top

WRITE_D
ffa4 fc ff 02 lddSHIFTER;Get data to write
ffa7 b7 b4 exgt3 d ;User D in Temp3 reg (was exg d t2

;tp 3/28)
ffa9 20 96 braINST_DONE;Branch to loop top

WRITE_X
ffab fe ff 02 ldxSHIFTER;Update X register
ffae 20 91 braINST_DONE;Branch to loop top
ffb0 a7 nop ;Pad to make command take 7 bytes
ffb1 a7 nop

WRITE_Y
ffb2 fd ff 02 ldySHIFTER;Update Y register
ffb5 20 8a braINST_DONE;Branch to loop top
ffb7 a7 nop ;Pad to make command take 7 bytes
ffb8 a7 nop

WRITE_SP
ffb9 ff ff 02 ldsSHIFTER;Update SP register
ffbc 20 83 braINST_DONE;Branch to loop top

* No need to pad last command since we don't index past it.

COMP_GOTO
ffbe 48 asla ;x2
ffbf 48 asla ;A = (reg_code - 2)*4
ffc0 05 fc jmpa,pc ;Calculated GOTO
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* Each read command corresponding to reg code 2-7 takes
* exactly 4 bytes. For command 2 (read next word) the jump will
* GOTO 0,pc or the location immediately after the jump
* For command 7 (read SP) the jump will go to (5*4),pc
* Each command ends with a branch to the main command loop
R_NXT_WRD

ffc2 ec 21 ldd2,+x ;pre-inc X by 2 and read word
ffc4 20 12 braR_COMMON;D->SHIFTER and bra loop top

READ_PC
ffc6 20 21 braREAD_PC1;This command needs 4 bytes
ffc8 a7 nop ;Pad to make command take 4 bytes
ffc9 a7 nop

READ_D
ffca b7 34 tfrt3 d ;User D was in Temp3
ffcc 20 0a braR_COMMON;D->SHIFTER and bra loop top

READ_X
ffce b7 54 tfrx d ;Requested data to D
ffd0 20 06 braR_COMMON;D->SHIFTER and bra loop top

READ_Y
ffd2 b7 64 tfry d ;Requested data to D
ffd4 20 02 braR_COMMON;D->SHIFTER and bra loop top

READ_SP
ffd6 b7 74 tfrsp d ;Requested data to D

R_COMMON
ffd8 7c ff 02 stdSHIFTER;Requested data to SHIFTER

WAIT
ffdb f7 ff 00 tst INSTR ;Check for new command    tp 3/30
ffde 18 27 ff 62 lbeq INST_LOOP;Need escape if old command aborted

;tp 3/30
ffe2 1f ff 01 10 f4 brclrSTATUS $10 WAIT ;Wait for data ready tp 3/30
ffe7 20 b2 braINST_DONE1;Back to loop top

READ_PC1
ffe9 b7 c3 exgd t2 ;User PC to D, junk to Temp2
ffeb 7c ff 02 std SHIFTER;User PC to SHIFTER
ffee b7 c3 exg d t2 ;User PC to Temp2, junk to D
fff0 20 e9 bra WAIT ;D->SHIFTER and bra loop top

FIXSP
fff2 1b 89 leas 9,sp;Restore sp
fff4 20 a5 braINST_DONE1;And try to resume

;*****CAUTION 5.
fff6 zmbBDMVEC-*;All unused space must be set to

;zero.

*****
* All other normal vectors are blocked out when in BDM.  The bdmact
* signal goes into INT module and blocks all I and X interrupts.
*****CAUTION 6.

fff6 orgBDMVEC ;BDM vectors start
fff6 ff 24 SWIV fdbSTART ;SWI vector (normal entry point)
fff8 ff f2 ILLOPV fdbFIXSP ;Illegal opcode vector
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fffa ff 24 COPV fdbSTART ;COP watchdog error vector
fffc ff 24 CMONV fdbSTART ;Clock monitor error vector
fffe ff 20 RESETV fdbAFTER_RST;Reset vector (Sgl chip special)

;*********** end **************************************************************

14.8.9  Secured Mode BDM Firmware Listing

;*******************************************************************************
                        ;
                        ;   Copyright (C) 1999 by Motorola Inc.
                        ;               MTC S-CORE Design Group
                        ;            7600-C Capitol of Texas Highway
                        ;                   Austin, TX 78731
                        ;                All rights reserved
                        ; No part of this software may be sold or distributed
                        ; in any form or by any means without the prior written
                        ; permission of Motorola, Inc.
                        ;
                        ;         MOTOROLA CONFIDENTIAL PROPRIETARY INFORMATION
                        ;
;*******************************************************************************
                        ; File:          secure_firm.s
                        ; Target:        HCS12 Version 1.5
                        ; Author:        John_Langan-RMAG10@email.sps.mot.com
                        ; Creation date: June 28, 1999
                        ; Comments: This code is contained in the secure ROM
                        ;           of the BDM.
;===============================================================================
                        ;                  VERSION HISTORY
                        ;
                        ; Ver 000       John Langan orig  July 02, 1999
                        ; update bug found by Lloyd, EERPOM size
                        ;                    spec changes Aug. 27, 1999
                        ;
                       ; Ver 001George Grimmer           26 July 2000
                       ; Enable BDM hardware commands when NVM erase verify fails,
                       ; BDM commands will remain disabled if Flash security bits = 01
;===============================================================================
                        ;
                        ; Design Strategy:
                        ;
                        ; This code determines if the FLASH and EEPROM are erased
                        ; If they are both erased, the program releases security,
                        ; else it hangs (branches to self).
                        ;

********************************************************************************
                        *               Equates here

********************************************************************************
001c                    MEMSIZ0   equ     $001C
0030                    PPAGE     equ     $0030
0012                    INITEE    equ     $0012
ff01                    BDMSTS    equ     $FF01
ff20                    BDMSTAR   equ     $FF20
fff6                    VECTORS   equ     $FFF6
********************************************************************************
275



Core User Guide — S12CPU15UG V1.2
                        ; Code starts here.

ff80                            org     $FF80
ff80                    START   equ     *

                        ; Verify the FLASH is erased (all ones)

                        ;       Initialization

ff80 ce 00 00                   ldx     #$0000          ; needed for indexing
ff83 86 3f                      ldaa    #$3F
ff85 5a 30                      staa    PPAGE           ; start with last page
ff87 cc bf fe                   ldd     #$BFFE          ; last word in page

                        ;       We check every 128th word then change Page

ff8a ed e6              FLOOP   ldy     D,X             ; read word from FLASH
ff8c 02                         iny                     ; erased will become $0000
ff8d 26 36                      bne     FAIL            ; not blank -> done
ff8f 83 00 80                   subd    #$0080          ; point to next word
ff92 2b f6                      bmi     FLOOP           ; until we go under $8000

                        ;       On each succesive Page, we start at a different point
                        ;       such that if we only had one array we would check the
                        ;       entire array

ff94 c3 3f fe                   addd    #$3FFE          ; point toward end of next page
ff97 73 00 30                   dec     PPAGE           ; change to next lower page
ff9a 2a ee                      bpl      FLOOP          ; until we go under $00

                        ; Completed FLASH verify if we make it here

                        ; Verify the EEPROM is erased (all ones)

                        ;       Move EEPROM to $7800
                        ;       This will be $7000 if the size is 4K
                        ;       This will be $6000 if the size is 8K

ff9c 86 79                      ldaa    #$79            ;bit 0 is EEON
ff9e 5a 12                      staa    INITEE

                        ;       First, determine the size of the EEPROM

ffa0 d6 1c                      ldab    MEMSIZ0    ; size is encoded in bits 5 & 4
ffa2 c4 30                      andb    #$30       ; just the bits we need
ffa4 27 15                      beq     ECLEAR     ; no EEPROM, we’re done!
ffa6 86 78                      ldaa    #$78       ; set up for 2K size
ffa8 c0 10            SLOOP     subb    #$10       ; 2K if clear after 1st subtract,
ffaa 27 03                      beq     EECHK      ;  2nd sub. is 4K, 3rd is 8K
ffac 48                         lsla               ; adjust for next size
ffad 20 f9                      bra     SLOOP

                        ;       Finally the erase verify loop
                        ;       Every ninth word is verified
                        ;       Accumulator D has already been set to the array size
                        ;       note that X still = 0 from earlier routines
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ffaf 84 78              EECHK   anda    #$78        ; index D + X = last word
ffb1 ed e6              ELOOP   ldy     D,X         ; read word from EEPROM
ffb3 02                         iny                 ; erased will become $0000
ffb4 26 0f                      bne     FAIL        ; not blank -> done
ffb6 c3 00 12                   addd    #$0012      ; point to next word
ffb9 2a f6                      bpl     ELOOP       ; until we get to or under $4000

                        ; When we arrive here, all is clear

ffbb 86 42              ECLEAR  ldaa    #$42        ; bit #1 is UNSEC
ffbd ce ff 01                   ldx     #BDMSTS
ffc0 6a 00                      staa    0,X    ; use instr that ends with write cycle
ffc2 06 ff 20                   jmp     BDMSTAR

                        ; Failures arrive here, forever.....

ffc5 18 0b 3f 00 30     FAIL    movb    #$3f,PPAGE
ffca f6 bf 0f                   ldab    $BF0F
ffcd ca fc                      orab    #$FC
ffcf ce ff 01                   ldx     #BDMSTS
ffd2 86 80                      ldaa    #$80
ffd4 aa 00                      oraa    0,x
ffd6 53                         decb
ffd7 27 03                      beq     BDMLOCK
ffd9 6a 00                      staa    0,x
ffdb a7                         align   1
                        BDMLOCK
ffdc a7                         nop
ffdd 20 fd                      bra     BDMLOCK

; Clear out space between here and the vectors

ffdf 00 00 00 00 00 00          zmb     VECTORS-*
     00 00 00 00 00 00
     00 00 00 00 00 00
     00 00 00 00 00

                        ; VECTORS HERE
fff6                            org     VECTORS
fff6 ff 24                      fdb     BDMSTAR+4    ; SWI
fff8 ff c5                      fdb     FAIL         ; TRAP
fffa ff 80                      fdb     START        ; COP
fffc ff 80                      fdb     START        ; CLK Monitor
fffe ff 80                      fdb     START        ; RESET

;*********** end **************************************************************
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Section 15  Secured Mode of Operation

This section provides a brief description of the secured mode of operation of the Core. Detailed
information relating to integration issues is provided in theHCS12 V1.5 Core Integration Guide.

15.1  Overview

The implementation of the secured mode of operation for the Core provides for protecting the conte
internal (on-chip) memory arrays. While in secured mode the system can execute in single-chip m
from an external memory block but the contents of the internal memory will not be accessible and
normal BDM functions will be blocked from execution. A mechanism is provided to release the sy
from the secured mode at which time normal operation will resume allowing the system to be reconfi
for unsecured mode.

15.1.1  Features

The secured mode of operation provides:

• Protection of internal (on-chip) Flash EEPROM contents

• Protection of internal (on-chip) EEPROM contents

• Operation in single-chip mode while secured

• Operation from external memory with internal Flash and EEPROM disabled while secured
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15.1.2  Block Diagram

A block diagram of the Core security implementation is given inFigure 15-1 .

Figure 15-1  Security Implementation Block Diagram

This figure includes one example system implementation of the Core security feature. In this
implementation, the Flash EEPROM block contains a security register that is programmed to the 
secured/un-secured state which generates a security request to the Core. See15.4 for a complete
description of the operation of the secured mode.

15.2  Interface Signals

The Core interface signals associated with the secured mode of operation are shown inTable 15-1 below.
The functional descriptions of the signals are provided below for completeness.

15.2.0.1  Core Secure Mode indicator (core_secure_t2)

This single bit Core output indicates that the Core is operating in secured mode.

Table 15-1 Security Interface Signal Definitions

Signal Name Type Functional Description
core_secure_t2 O Core secure mode signal

secreq I Security mode request from applicable memory

BDM
Background
Debug
Mode

MMC
Module
Mapping
Control

MEBI
Multiplexed External Bus Interface

BDM
BKGD
Pin

RAM

EEPROM

Flash
EEPROM

Bus Signals

Bus Signals

Bus Signals

Security Register

HCS12 V1.5 Core

Secure

core_secure_t2

SignalBDM
Unsecure
Signal

secreq

System Memories
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15.2.0.2  Core Security Request (secreq)

This single bit input indicates to the Core that the system memory is in a secured state and that th
should operate in secured mode.

15.3  Registers

There are no registers in the Core associated with the secured mode of operation. Typically, a non-v
memory block in the system will contain a register for programming the state of system security. P
refer to the chip-level and/or memory block documentation for implementation details.

15.4  Operation

When the system is configured for secured mode of operation, it will normally operate in either no
single-chip mode or in an expanded mode executing from external memory. The conditions impos
secured mode for each of these operating modes is discussed in the subsections that follow as w
description of the method to unsecure the system.

15.4.1  Normal Single-Chip Mode

Normal single-chip mode will be the most common operation of a system configured for secured m
The system functionality will appear just as an unsecured system with the exception imposed that the
operation will not be allowed and will be blocked. This will prevent any access to the internal non-vol
memory block contents.

15.4.2  Expanded Mode

To operate in secured mode and execute from external memory space, the system should be cor
configured for secured mode and then reset into expanded mode. The internal (on-chip) Flash EE
and EEPROM blocks (if applicable) will be disabled and unavailable. All BDM operation will be block
In addition, while in secured mode all internal visibility (IVIS) and CPU pipe (IPIPE) information will
blocked from output.

15.4.3  Unsecuring The System

To unsecure a system that is configured for secured mode, the internal (on-chip) Flash EEPROM
EEPROM must be fully erased. This can be performed using one of the following methods:

1. Reset the microcontroller into SPECIAL TEST mode, execute a program which writes the M
Erase command sequence into the Flash and EEPROM Command registers.

2. Reset the microcontroller into SPECIAL SINGLE CHIP mode, delay while the erase test is
performed by the BDM secure ROM. Send BDM commands to write the Mass Erase comm
sequence into the Flash and EEPROM Command registers.

3. Reset the microcontroller into SPECIAL PERIPHERAL mode, using SPM commands write 
Mass Erase command sequence into the Flash and EEPROM Command registers.
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In all modes the mass erase command sequence must have the following steps:
a. Write FCLKDIV register to set the Flash clock for proper timing.
b. Write $00 to FCNFG register to select Flash block 0.
c. Write $10 to FTSTMOD register to set WRALL bit.

(with WRALL set, all of the following writes to banked Flash registers will affect all Flash
blocks.)

d. Disable Flash protection by writing the FPROT register.
e. Write any data to Flash memory space $C000-$FFFF
f. Write Mass Erase command($41) to FCMD register.
g. Clear CBIEF (bit 7) it FSTAT register.
h. Write ECLKDIV register to set the EEPROM clock for proper timing.
i. Disable protection in EEPROM by writing the EPROT register.
j. Write any data to EEPROM memory space.
k. Write Mass Erase command($41) to ECMD register.
l. Clear CBIEF (bit 7) it ESTAT register.
m. Wait until all CCIF flags are set to 1 again.

After all the CCIF flags are set to 1 again, the Flash and EEPROM have been erased. Reset the
microcontroller into SPECIAL SINGLE CHIP mode. The BDM secure ROM will verify that the
nonvolatile memories are erased, and then it will assert the UNSEC bit in the BDM Status registe
will cause the core_secure_t2 signal to de-assert, and the microcontroller will be unsecure. All BD
commands will be enabled and the Flash security byte may be programmed to the unsecure state
of the following methods:

1. Send BDM commands to write to the MODE register and change to SPECIAL TEST mode, s
BDM WRITE_PC, followed by a BDM GO command to jump to a program at an external addr
This external program can then program the Flash security byte to the unsecure state.

2. .Send BDM commands to directly program the Flash security byte.

In all modes programming the security byte must have the following steps:
a. Write FCLKDIV register to set the Flash clock for proper timing.
b. Write $00 to FCNFG register to select Flash block 0.
c. Disable Flash protection by writing the FPROT register.
d. Write $FFFE to address $FF0E
e. Write Program command($20) to FCMD register.
f. Clear CBIEF (bit 7) it FSTAT register.
g. Wait until Flash CCIF flag is set to 1 again.

After this Flash programming sequence is complete, the microcontroller can be reset into any mo
Flash has been unsecured.

In normal modes, either SINGLE CHIP or EXPANDED, the microcontroller may only be unsecure
using the backdoor key access feature. This requires knowledge of the contents of the backdoor k
which must be written to the Flash memory space at the appropriate addresses, in the correct ord
addition, in SINGLE CHIP mode the user code stored in the Flash must have a method of receivin
backdoor key from an external stimulus. This external stimulus would typically be through one of t
on-chip serial ports. After the backdoor sequence has been correctly matched, the microcontroller
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unsecured, and all Flash commands will be enabled and the Flash security byte can be programme
unsecure state, if desired.

Please note that if the system goes through a reset condition prior to successful configuration of uns
mode the system will reset back into secured mode operation.

15.5  Motorola Internal Information

This subsection details information about the Core secured mode of operation that is for Motorola us
and should not be published in any form outside of Motorola.

15.5.1  BDM Secured Mode Firmware

When the Core is operating in secured mode and the system is reset into special single-chip mode, a
BDM firmware is invoked in place of the standard BDM firmware. A listing of this secured mode firmw
is given in14.8.9 of this guide.
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Appendix A  Instruction Set and Commands

A.1  General

This glossary contains entries for all assembler mnemonics in alphabetical order. Each entry descri
operation of the instruction, its effect on the condition code register, and its syntax.

A.2  Glossary Notation

A.2.1  Condition Code State Notation

Table A-1  Condition Code State Notation

– Not changed by operation

0 Cleared by operation

1 Set by operation

∆ Set or cleared by operation

⇓ May be cleared or remain set, but not set by operation

⇑ May be set or remain cleared, but not cleared by operation

? May be changed by operation but final state not defined

! Used for a special purpose
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A.2.2  Register and Memory Notation

Table A-2  Register and Memory Notation

A or a Accumulator A

An Bit n of accumulator A

B or b Accumulator B

Bn Bit n of accumulator B

D or d Accumulator D

Dn Bit n of accumulator D

X or x Index register X

XH High byte of index register X

XL Low byte of index register X

Xn Bit n of index register X

Y or y Index register Y

YH High byte of index register Y

YL Low byte of index register Y

Yn Bit n of index register Y

SP or sp Stack pointer

SPn Bit n of stack pointer

PC or pc Program counter

PCH High byte of program counter

PCL Low byte of program counter

CCR or c Condition code register

M Address of 8-bit memory location

Mn Bit n of byte at memory location M

Rn Bit n of the result of an arithmetic or logical operation

In Bit n of the intermediate result of an arithmetic or logical operation

RTNH High byte of return address

RTNL Low byte of return address

( ) Contents of
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A.2.3  Address Mode Notation

A.2.4  Operator Notation

A.2.5  Machine Code Notation

In theMachine Code (Hex)column on the glossary pages, digits 0–9 and upper case letters A–F repr
hexadecimal values. Pairs of lower-case letters represent 8-bit values as shown inTable A-5 .

Table A-3  Address Mode Notation

INH Inherent; no operands in instruction stream

IMM Immediate; operand immediate value in instruction stream

DIR Direct; operand is lower byte of address from $0000 to $00FF

EXT Operand is a 16-bit address

REL Two’s complement relative offset; for branch instructions

IDX Indexed (no extension bytes); includes:
5-bit constant offset from X, Y, SP or PC
Pre/post increment/decrement by 1–8
Accumulator A, B, or D offset

IDX1 9-bit signed offset from X, Y, SP, or PC; 1 extension byte

IDX2 16-bit signed offset from X, Y, SP, or PC; 2 extension bytes

[IDX2] Indexed-indirect; 16-bit offset from X, Y, SP, or PC

[D, IDX] Indexed-indirect; accumulator D offset from X, Y, SP, or PC

Table A-4  Operator Notation

+ Add

– Subtract

• AND

| OR

⊕ Exclusive OR

× Multiply

÷ Divide

: Concatenate

⇒ Transfer

⇔ Exchange
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A.2.6  Source Form Notation

TheSource Form column on the glossary pages gives essential information about assembler sour
forms. For complete information about writing source files for a particular assembler, refer to the
documentation provided by the assembler vendor.

Everything in theSource Form column,except expressions in italic characters, is literal information
which must appear in the assembly source file exactly as shown. The initial 3- to 5-letter mnemon
always a literal expression. All commas, pound signs (#), parentheses, square brackets ( [ or ] ), plus signs
(+), minus signs (–), and the register designation (A, B, D), are literal characters.

The groups of italic characters shown inTable A-6  represent variable information to be supplied by th
programmer. These groups can include any alphanumeric character or the underscore character, bu
include a space or comma. For example, the groupsxysppcandoprx0_xysppcare both valid, but the two
groupsoprx0 xysppc are not valid because there is a space between them.

Table A-5  Machine Code Notation

dd 8-bit direct address from $0000 to $00FF; high byte is $00

ee High byte of a 16-bit constant offset for indexed addressing

eb Exchange/transfer postbyte

ff
Low eight bits of a 9-bit signed constant offset in indexed addressing, or low byte of a 16-bit
constant offset in indexed addressing

hh High byte of a 16-bit extended address

ii 8-bit immediate data value

jj High byte of a 16-bit immediate data value

kk Low byte of a 16-bit immediate data value

lb Loop primitive (DBNE) postbyte

ll Low byte of a 16-bit extended address

mm
8-bit immediate mask value for bit manipulation instructions; bits that are set indicate bits to be
affected

pg Program page or bank number used in CALL instruction

qq High byte of a 16-bit relative offset for long branches

tn Trap number from $30 to $39 or from $40 to $FF

rr
Signed relative offset $80 (–128) to $7F (+127) relative to the byte following the relative offset byte,
or low byte of a 16-bit relative offset for long branches

xb Indexed addressing postbyte
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A.2.7  CPU Cycles Notation

TheCPU Cyclescolumn on the glossary pages shows how many bytes of information the CPU acc
while executing an instruction. With this information and knowledge of the type and speed of memo
the system, you can determine the execution time for any instruction in any system. Simply count the
letters to determine the execution time of an instruction in a best-case system. An example of a be
system is a single-chip 16-bit system with no 16-bit off-boundary data accesses to any locations oth
on-chip RAM.

A single-letter code in represents a single CPU access cycle. An upper-case letter indicates a 16-bit

Table A-6  Source Form Notation

abc Register designator for A, B, or CCR

abcdxysp Register designator for A, B, CCR, D, X, Y, or SP

abd Register designator for A, B, or D

abdxysp Register designator for A, B, D, X, Y, or SP

dxysp Register designator for D, X, Y, or SP

msk8
8-bit mask value
Some assemblers require the # symbol before the mask value.

opr8i 8-bit immediate value

opr16i 16-bit immediate value

opr8a 8-bit address value used with direct address mode

opr16a 16-bit address value

oprx0_xysp Indexed addressing postbyte code:
oprx3,–xysp — Predecrement X , Y, or SP by 1–8
oprx3,+xysp — Preincrement X , Y, or SP by 1–8
oprx3,xysp– — Postdecrement X, Y, or SP by 1–8
oprx3,xysp+ — Postincrement X, Y, or SP by 1–8
oprx5,xysppc — 5-bit constant offset from X, Y, SP, or PC
abd,xysppc — Accumulator A, B, or D offset from X, Y, SP, or PC

oprx3 Any positive integer from 1 to 8 for pre/post increment/decrement

oprx5 Any integer from –16 to +15

oprx9 Any integer from –256 to +255

oprx16 Any integer from –32,768 to +65,535

page
8-bit value for PPAGE register
Some assemblers require the # symbol before this value.

rel8 Label of branch destination within –256 to +255 locations

rel9 Label of branch destination within –512 to +511 locations

rel16 Any label within the 64-Kbyte memory space

trapnum Any 8-bit integer from $30 to $39 or from $40 to $FF

xysp Register designator for X or Y or SP

xysppc Register designator for X or Y or SP or PC
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Table A-7  CPU Cycle Notation

f Free cycle. During an f  cycle, the CPU does not use the bus. An f  cycle is always one cycle of the
system bus clock. An f cycle can be used by a queue controller or the background debug system to
perform a single-cycle access without disturbing the CPU.

g Read PPAGE register. A g cycle is used only in CALL instructions and is not visible on the external
bus. Since PPAGE is an internal 8-bit register, a g cycle is never stretched.

I Read indirect pointer. Indexed-indirect instructions use the 16-bit indirect pointer from memory to
address the instruction operand. An I  cycle is a 16-bit read that can be aligned or misaligned. An I
cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the
corresponding data is stored in external memory. There can be additional stretching when the
address space is assigned to a chip-select circuit programmed for slow memory. An I  cycle is also
stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle
misaligned access.

i Read indirect PPAGE value. An i  cycle is used only in indexed-indirect CALL instructions. The 8-bit
PPAGE value for the CALL destination is fetched from an indirect memory location. An i  cycle is
stretched only when controlled by a chip-select circuit that is programmed for slow memory.

n Write PPAGE register. An n cycle is used only in CALL and RTC instructions to write the destination
value of the PPAGE register and is not visible on the external bus. Since the PPAGE register is an
internal 8-bit register, an n cycle is never stretched.

O Optional cycle. An Ocycle adjusts instruction alignment in the instruction queue. An Ocycle can be a
free cycle (f ) or a program word access cycle (P). When the first byte of an instruction with an odd
number of bytes is misaligned, the O cycle becomes a P cycle to maintain queue order. If the first
byte is aligned, the O cycle is an f  cycle.

The $18 prebyte for a page-two opcode is treated as a special one-byte instruction. If the prebyte is
misaligned, the O cycle at the beginning of the instruction becomes a P cycle to maintain queue
order. If the prebyte is aligned, the O cycle is an f  cycle. If the instruction has an odd number of
bytes, it has a second O cycle at the end. If the first O cycle is a P cycle (prebyte misaligned), the
second Ocycle is an f cycle. If the first Ocycle is an f cycle (prebyte aligned), the second Ocycle is
a P cycle.

An Ocycle that becomes a P cycle can be extended to two bus cycles if the MCU is operating with an
8-bit external data bus and the program is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
An O cycle that becomes an f  cycle is never stretched.

P Program word access. Program information is fetched as aligned 16-bit words. A P cycle is extended
to two bus cycles if the MCU is operating with an 8-bit external data bus and the program is stored
externally. There can be additional stretching when the address space is assigned to a chip-select
circuit programmed for slow memory.

r 8-bit data read. An r cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

R 16-bit data read. An R cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
An R cycle is also stretched if it corresponds to a misaligned access to a memory that is not
designed for single-cycle misaligned access.

s Stack 8-bit data. An s cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

S Stack 16-bit data. An S cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external memory. There can be additional stretching if the
address space is assigned to a chip-select circuit programmed for slow memory. An S cycle is also
stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle
misaligned access. The internal RAM is designed to allow single cycle misaligned word access.
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w 8-bit data write. A w cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

W 16-bit data write. A W cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
A Wcycle is also stretched if it corresponds to a misaligned access to a memory that is not designed
for single-cycle misaligned access.

u Unstack 8-bit data. A W cycle is stretched only when controlled by a chip-select circuit programmed
for slow memory.

U Unstack 16-bit data. A U cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external memory. There can be additional stretching
when the address space is assigned to a chip-select circuit programmed for slow memory. A U cycle
is also stretched if it corresponds to a misaligned access to a memory that is not designed for
single-cycle misaligned access. The internal RAM is designed to allow single-cycle misaligned word
access.

V 16-bit vector fetch. Vectors are always aligned 16-bit words. A V cycle is extended to two bus cycles
if the MCU is operating with an 8-bit external data bus and the program is stored in external memory.
There can be additional stretching when the address space is assigned to a chip-select circuit
programmed for slow memory.

t 8-bit conditional read. A t cycle is either a data read cycle or a free cycle, depending on the data and
flow of the REVW instruction. A t  cycle is stretched only when controlled by a chip-select circuit
programmed for slow memory.

T 16-bit conditional read. A T cycle is either a data read cycle or a free cycle, depending on the data
and flow of the REV or REVW instruction. A T cycle is extended to two bus cycles if the MCU is
operating with an 8-bit external data bus and the corresponding data is stored in external memory.
There can be additional stretching when the address space is assigned to a chip-select circuit
programmed for slow memory. A T cycle is also stretched if it corresponds to a misaligned access to
a memory that is not designed for single-cycle misaligned access.

x 8-bit conditional write. An x  cycle is either a data write cycle or a free cycle, depending on the data
and flow of the REV or REVW instruction. An x  cycle is stretched only when controlled by a
chip-select circuit programmed for slow memory.

Special Notation for Branch Taken/Not Taken
PPP/P A short branch requires three cycles if taken, one cycle if not taken. Since the instruction consists of

a single word containing both an opcode and an 8-bit offset, the not-taken case is simple — the
queue advances, another program word fetch is made, and execution continues with the next
instruction. The taken case requires that the queue be refilled so that execution can continue at a
new address. First, the effective address of the destination is determined, then the CPU performs
three program word fetches from that address.

OPPP/OPO A long branch requires four cycles if taken, three cycles if not taken. An O cycle is required because
all long branches are page two opcodes and thus include the $18 prebyte. The prebyte is treated as
a one-byte instruction. If the prebyte is misaligned, the O cycle is a P cycle; if the prebyte is aligned,
the O cycle is an f  cycle. As a result, both the taken and not-taken cases use one O cycle for the
prebyte. In the not-taken case, the queue must advance so that execution can continue with the next
instruction, and another O cycle is required to maintain the queue. The taken case requires that the
queue be refilled so that execution can continue at a new address. First, the effective address of the
destination is determined, then the CPU performs three program word fetches from that address.

Table A-7  CPU Cycle Notation (Continued)
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A.3  Glossary

Operation (A) + (B) ⇒ A

Adds the value in B to the value in A and places the result in A. The value in B does
change. This instruction affects the H bit so it is suitable for use in BCD arithmetic
operations (see DAA instruction for additional information).

CCR
Effects

Code and
CPU
Cycles

ABA Add B to A ABA

S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: A3 • B3 | B3 • R3 | R3 • A3; set if there is a carry from bit 3; cleared otherwise
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 • B7 • R7 | A7 • B7 • R7; set if the operation produces a two’s complement overflow; cleared otherwise
C: A7 • B7 | B7 • R7 | R7 • A7; set if there is a carry from the MSB of the result; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ABA INH 18 06 OO
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Operation (X) + (B) ⇒ X

Adds the 8-bit unsigned value in B to the value in X considering the possible carry o
the low byte of X and places the result in X. The value in B does not change.

ABX assembles as LEAX B,X. The LEAX instruction allows A, B, D, or a constant to b
added to X.

CCR
Effects

Code and
CPU
Cycles

ABX Add B to X
(same as LEAX B,X) ABX

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ABX IDX 1A E5 Pf
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Operation (Y) + (B) ⇒ Y

Adds the 8-bit unsigned value in B to the value in Y considering the possible carry o
the low byte of Y and places the result in Y. The value in B does not change.

ABY assembles as LEAY B,Y. The LEAY instruction allows A, B, D, or a constant to b
added to Y.

CCR
Effects

Code and
CPU
Cycles

ABY Add B to Y
(same as LEAY B,Y) ABY

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ABY IDX 19 ED Pf
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Operation (A) + (M) + C ⇒ A
or
(A) + imm + C⇒ A

Adds either the value in M and the C bit or an immediate value and the C bit to the v
in A. Puts the result in A. This instruction affects the H bit, so it is suitable for use in BC
arithmetic operations (see DAA instruction for additional information).

CCR
Effects

Code and
CPU
Cycles

ADCA Add with Carry to A ADCA

S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: A3 • M3 | M3 • R3 | R3 • A3; set if there is a carry from bit 3; cleared otherwise
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 • M7 • R7 | A7 • M7 • R7; set if the operation produces a two’s complement overflow; cleared

otherwise
C: A7 • M7 | M7 • R7 | R7 • A7; set if there is a carry from the MSB of the result; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ADCA #opr8i
ADCA opr8a
ADCA opr16a
ADCA oprx0_xysppc
ADCA oprx9,xysppc
ADCA oprx16,xysppc
ADCA [D,xysppc]
ADCA [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

89 ii
99 dd
B9 hh ll
A9 xb
A9 xb ff
A9 xb ee ff
A9 xb
A9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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alue
CD
Operation (B) + (M) + C⇒ B
or
(B) + imm + C⇒ B

Adds either the value in M and the C bit or an immediate value and the C bit to the v
in B. Puts the result in B. This instruction affects the H bit, so it is suitable for use in B
arithmetic operations (see DAA instruction for additional information).

CCR
Effects

Code and
CPU
Cycles

ADCB Add with Carry to B ADCB

S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: B3 • M3 | M3 • R3 | R3 • B3; set if there is a carry from bit 3; cleared otherwise
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: B7 • M7 • R7 | B7 • M7 • R7; set if the operation produces a two’s complement overflow; cleared

otherwise
C: B7 • M7 | M7 • R7 | R7 • B7; set if there is a carry from the MSB of the result; cleared otherwise

Source Form Address
Mode

Machine Code
(Hex) CPU Cycles

ADCB #opr8i
ADCB opr8a
ADCB opr16a
ADCB oprx0_xysppc
ADCB oprx9,xysppc
ADCB oprx16,xysppc
ADCB [D,xysppc]
ADCB [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C9 ii
D9 dd
F9 hh ll
E9 xb
E9 xb ff
E9 xb ee ff
E9 xb
E9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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lt in
ions
Operation (A) + (M) ⇒ A
or
(A) + imm ⇒ A

Adds either the value in M or an immediate value to the value in A and places the resu
A. This instruction affects the H bit, so it is suitable for use in BCD arithmetic operat
(see DAA instruction for additional information).

CCR
Effects

Code and
CPU
Cycles

ADDA Add to A ADDA

S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: A3 • M3 | M3 • R3 | R3 • A3; set if there is a carry from bit 3; cleared otherwise
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 • M7 • R7 | A7 • M7 • R7; set if the operation produces a two’s complement overflow; cleared

otherwise
C: A7 • M7 | M7 • R7 | R7 • A7; set if there is a carry from the MSB of the result; cleared otherwise

Source Form Address
Mode

Machine Code
(Hex) CPU Cycles

ADDA #opr8i
ADDA opr8a
ADDA opr16a
ADDA oprx0_xysppc
ADDA oprx9,xysppc
ADDA oprx16,xysppc
ADDA [D,xysppc]
ADDA [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8B ii
9B dd
BB hh ll
AB xb
AB xb ff
AB xb ee ff
AB xb
AB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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lt in
ions
Operation (B) + (M) ⇒ B
or
(B) + imm⇒ B

Adds either the value in M or an immediate value to the value in B and places the resu
B. This instruction affects the H bit, so it is suitable for use in BCD arithmetic operat
(see DAA instruction for additional information).

CCR
Effects

Code and
CPU
Cycles

ADDB Add to B ADDB

S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: B3 • M3 | M3 • R3 | R3 • B3; set if there is a carry from bit 3; cleared otherwise
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: B7 • M7 • R7 | B7 • M7 • R7; set if the operation produces a two’s complement overflow; cleared

otherwise
C: B7 • M7 | M7 • R7 | R7 • B7; set if there is a carry from the MSB of the result; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ADDB #opr8i
ADDB opr8a
ADDB opr16a
ADDB oprx0_xysppc
ADDB oprx9,xysppc
ADDB oprx16,xysppc
ADDB [D,xysppc]
ADDB [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CB ii
DB dd
FB hh ll
EB xb
EB xb ff
EB xb ee ff
EB xb
EB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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e to
Operation (A):(B) + (M):(M + 1) ⇒ A:B
or
(A):(B) + imm ⇒ A:B

Adds either the value in M concatenated with the value in M + 1 or an immediate valu
the value in D. Puts the result in D. A is the high byte of D; B is the low byte.

CCR
Effects

Code and
CPU
Cycles

ADDD Add to D ADDD

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: D15 • M15 • R15 | D15 • M15 • R15; set if the operation produces a two’s complement overflow; cleared

otherwise
C: D15 • M15 | M15 • R15 | R15 • D15; set if there is a carry from the MSB of the result; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ADDD #opr16i
ADDD opr8a
ADDD opr16a
ADDD oprx0_xysppc
ADDD oprx9,xysppc
ADDD oprx16,xysppc
ADDD [D,xysppc]
ADDD [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C3 jj kk
D3 dd
F3 hh ll
E3 xb
E3 xb ff
E3 xb ee ff
E3 xb
E3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf
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 in
Operation (A) • (M) ⇒ A
or
(A) • imm ⇒ A

Performs a logical AND of either the value in M or an immediate value with the value
A. Puts the result in A.

CCR
Effects

Code and
CPU
Cycles

ANDA AND with A ANDA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ANDA #opr8i
ANDA opr8a
ANDA opr16a
ANDA oprx0_xysppc
ANDA oprx9,xysppc
ANDA oprx16,xysppc
ANDA [D,xysppc]
ANDA [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

84 ii
94 dd
B4 hh ll
A4 xb
A4 xb ff
A4 xb ee ff
A4 xb
A4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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 in
Operation (B) • (M) ⇒ B
or
(B) • imm ⇒ B

Performs a logical AND of either the value in M or an immediate value with the value
B. Puts the result in B.

CCR
Effects

Code and
CPU
Cycles

ANDB AND with B ANDB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ANDB #opr8i
ANDB opr8a
ANDB opr16a
ANDB oprx0_xysppc
ANDB oprx9,xysppc
ANDB oprx16,xysppc
ANDB [D,xysppc]
ANDB [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C4 ii
D4 dd
F4 hh ll
E4 xb
E4 xb ff
E4 xb ee ff
E4 xb
E4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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lt in

upt
ces
Operation (CCR)• imm ⇒ CCR

Performs a logical AND of an immediate value and the value in the CCR. Puts the resu
the CCR.

If the I mask bit is cleared, there is a one-cycle delay before the system allows interr
requests. This prevents interrupts from occurring between instructions in the sequen
CLI, WAI and CLI, SEI (CLI is equivalent to ANDCC #$EF).

CCR
Effects

Code and
CPU
Cycles

ANDCC AND with CCR ANDCC

S X H I N Z V C

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

All CCR bits: Clear if 0 before operation or if corresponding bit in mask is 0

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ANDCC #opr8i IMM 10 ii P
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ed
Operation

Shifts all bits of M one bit position to the left. Bit 0 is loaded with a 0. The C bit is load
from the most significant bit of M.

CCR
Effects

Code and
CPU
Cycles

ASL Arithmetic Shift Left M
(same as LSL) ASL

b7 b6 b5 b4 b3 b2 b1 b0C 0

M

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C; set if:

N is set and C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise

C: M7; set if the MSB of M was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ASL opr16a
ASL oprx0_xysppc
ASL oprx9,xysppc
ASL oprx16,xysppc
ASL [D,xysppc]
ASL [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
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ed
Operation

Shifts all bits of A one bit position to the left. Bit 0 is loaded with a 0. The C bit is load
from the most significant bit of A.

CCR
Effects

Code and
CPU
Cycles

ASLA Arithmetic Shift Left A
(same as LSLA) ASLA

b7 b6 b5 b4 b3 b2 b1 b0C 0

A

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C; set if:

N is set and C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise

C: A7; set if the MSB of A was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ASLA INH 48 O
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ded
Operation

Shifts all bits of B one bit position to the left. Bit 0 is loaded with a 0. The C bit is loa
from the most significant bit of B.

CCR
Effects

Code and
CPU
Cycles

ASLB Arithmetic Shift Left B
(same as LSLB) ASLB

b7 b6 b5 b4 b3 b2 b1 b0C 0

B

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C; set if:

N is set and C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise

C: B7; set if the MSB of B was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ASLB INH 58 O
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ed
Operation

Shifts all bits of D one bit position to the left. Bit 0 is loaded with a 0. The C bit is load
from the most significant bit of D.

CCR
Effects

Code and
CPU
Cycles

ASLD Arithmetic Shift Left D
(same as LSLD) ASLD

0b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0C

BA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: N ⊕ C; set if:

N is set and C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise

C: D15; set if the MSB of D was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ASLD INH 59 O
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e C
ing
Operation

Shifts all bits of M one place to the right. Bit 7 is held constant. Bit 0 is loaded into th
bit. This operation effectively divides a two’s complement value by two without chang
its sign. The carry bit can be used to round the result.

CCR
Effects

Code and
CPU
Cycles

ASR Arithmetic Shift Right M ASR
b7 b6 b5 b4 b3 b2 b1 b0 C

M

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C; set if:

N is set and C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise

C: M0; set if the LSB of M was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ASR opr16a
ASR oprx0_xysppc
ASR oprx9,xysppc
ASR oprx16,xysppc
ASR [D,xysppc]
ASR [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

77 hh ll
67 xb
67 xb ff
67 xb ee ff
67 xb
67 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
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e C
ing
Operation

Shifts all bits of A one place to the right. Bit 7 is held constant. Bit 0 is loaded into th
bit. This operation effectively divides a two’s complement value by two without chang
its sign. The carry bit can be used to round the result.

CCR
Effects

Code and
CPU
Cycles

ASRA Arithmetic Shift Right A ASRA
b7 b6 b5 b4 b3 b2 b1 b0 C

A

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C; set if:

N is set and C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise

C: A0; set if the LSB of A was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ASRA INH 47 O
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e C
ing
Operation

Shifts all bits of B one place to the right. Bit 7 is held constant. Bit 0 is loaded into th
bit. This operation effectively divides a two’s complement value by two without chang
its sign. The carry bit can be used to round the result.

CCR
Effects

Code and
CPU
Cycles

ASRB Arithmetic Shift Right B ASRB
b7 b6 b5 b4 b3 b2 b1 b0 C

B

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C; set if:

N is set and C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise

C: B0; set if the LSB of B was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ASRB INH 57 O
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y.
 of
Operation If C = 0, then (PC) + $0002 + rel⇒ PC

Tests the C bit and branches if C = 0.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BCC Branch if C Clear
(same as BHS) BCC

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BCC rel8 REL
24 rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BCC/BHS 24

(R) ≥ (M)
or
(B) ≥ (A) BCS/BLO 25

(R) < (M)
or
(B) < (A) Unsigned

C = 0 C = 1

BGE 2C

(R) ≥ (M)
or
(B) ≥ (A) BLT 2D

(R) < (M)
or
(B) < (A) Signed

N ⊕ V = 0 N ⊕ V = 1
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ined
are
Operation (M) • (mask byte)⇒ M

Performs a logical AND of the value in M and the complement of a mask byte conta
in the instruction. Puts the result in M. Bits in M that correspond to 1s in the mask byte
cleared. No other bits in M change.

CCR
Effects

Code and
CPU
Cycles

BCLR Clear Bit(s) in M BCLR

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form
Address
Mode1

NOTES:
1. Indirect forms of indexed addressing cannot be used with this instruction.

Machine
Code (Hex) CPU Cycles

BCLR opr8a, msk8
BCLR opr16a, msk8
BCLR oprx0_xysppc, msk8
BCLR oprx9,xysppc, msk8
BCLR oprx16,xysppc, msk8

DIR
EXT
IDX
IDX1
IDX2

4D dd mm
1D hh ll mm
0D xb mm
0D xb ff mm
0D xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO
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y.
 of
Operation If C = 1, then (PC) + $0002 + rel⇒ PC

Tests the C bit and branches if C = 1.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BCS Branch if C Set
(same as BLO) BCS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BCS rel8 REL
25 rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BCS/BLO 25

(R) < (M)
or
(B) < (A) BCC/BHS 24

(R) ≥ (M)
or
(B) ≥ (A) Unsigned

C = 1 C = 0

BLT 2D

(R) < (M)
or
(B) < (A) BGE 2C

(R) ≥ (M)
or
(B) ≥ (A) Signed

N ⊕ V = 1 N ⊕ V = 0
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y.
 of
Operation If Z = 1, then (PC) + $0002 + rel⇒ PC

Tests the Z bit and branches if Z = 1.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BEQ Branch if Equal BEQ

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BEQ rel8 REL
27 rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BEQ 27

(R) = (M)
or
(R) = zero BNE 26

(R) ≠ (M)
or
(R) ≠ zero

Signed,
unsigned or
simple

Z = 1 Z = 0
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t
r
ue in
the

y.
 of
Operation If N ⊕ V = 0, then (PC) + $0002 + rel⇒ PC

BGE can be used to branch after comparing or subtracting signed two’s complemen
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, o
SUBD, the branch occurs if the CPU register value is greater than or equal to the val
M. After CBA or SBA, the branch occurs if the value in B is greater than or equal to 
value in A.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BGE Branch if Greater Than or Equal to Zero BGE

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BGE rel8 REL
2C rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BGE 2C

(R) ≥ (M)
or
(B) ≥ (A) BLT 2D

(R) < (M)
or
(B) < (A) Signed

N ⊕ V = 0 N ⊕ V = 1

BHS/BCC 24

(R) ≥ (M)
or
(B) ≥ (A) BLO/BCS 25

(R) < (M)
or
(B) < (A) Unsigned

C = 0 C = 1
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 the

tor,
DM
tion
MP2

as for
at
t as
the

l
g
led,
and

ram.
Operation (PC)⇒ TMP2
BDM vector⇒ PC

BGND operates like a software interrupt, except that no registers are stacked. First,
current PC value is stored in internal CPU register TMP2. Next, the BDM ROM and
background register block become active. The BDM ROM contains a substitute vec
mapped to the address of the software interrupt vector, which points to routines in the B
ROM that control background operation. The substitute vector is fetched, and execu
continues from the address that it points to. Finally, the CPU checks the location that T
points to. If the value stored in that location is $00 (the BGND opcode), TMP2 is
incremented, so that the instruction that follows the BGND instruction is the first
instruction executed when normal program execution resumes.

For all other types of BDM entry, the CPU performs the same sequence of operations
a BGND instruction, but the value stored in TMP2 already points to the instruction th
would have executed next had BDM not become active. If active BDM is triggered jus
a BGND instruction is about to execute, the BDM firmware does increment TMP2, but
change does not affect resumption of normal execution.

While BDM is active, the CPU executes debugging commands received via a specia
single-wire serial interface. BDM is terminated by the execution of specific debuggin
commands. Upon exit from BDM, the background/boot ROM and registers are disab
the instruction queue is refilled starting with the return address pointed to by TMP2, 
normal processing resumes.

BDM is normally disabled to avoid accidental entry. While BDM is disabled, BGND
executes as described, but the firmware causes execution to return to the user prog

CCR
Effects

Code and
CPU
Cycles

BGND Enter Background Debug Mode BGND

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BGND INH 00 VfPPP
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t
r
fter

y.
 of
Operation If Z | (N ⊕ V) = 0, then (PC) + $0002 + rel⇒ PC

BGT can be used to branch after comparing or subtracting signed two’s complemen
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, o
SUBD, the branch occurs if the CPU register value is greater than the value in M. A
CBA or SBA, the branch occurs if the value in B is greater than the value in A.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BGT Branch if Greater Than Zero BGT

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BGT rel8 REL
2E rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BGT 2E

(R) > (M)
or
(B) > (A) BLE 2F

(R) ≤ (M)
or
(B) ≤ (A) Signed

Z | (N ⊕ V) = 0 Z | (N ⊕ V) = 1

BHI 22

(R) > (M)
or
(B) > (A) BLS 23

(R) ≤ (M)
or
(B) ≤ (A) Unsigned

C | Z = 0 C | Z = 1
316



Core User Guide — S12CPU15UG V1.2

PA,
urs
h

est,

y.
 of
Operation If C | Z = 0, then (PC) + $0002 + rel⇒ PC

BHI can be used to branch after comparing or subtracting unsigned values. After CM
CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occ
if the CPU register value is greater than the value in M. After CBA or SBA, the branc
occurs if the value in B is greater than the value in A. BHI is not for branching after
instructions that do not affect the C bit, such as increment, decrement, load, store, t
clear, or complement.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BHI Branch if Higher BHI

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BHI rel8 REL
22 rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BHI 22

(R) > (M)
or
(B) > (A) BLS 23

(R) ≤ (M)
or
(B) ≤ (A) Unsigned

C | Z = 0 C | Z = 1

BGT 2E

(R) > (M)
or
(B) > (A) BLE 2F

(R) ≤ (M)
or
(B) ≤ (A) Signed

Z | (N ⊕ V) = 0 Z | (N ⊕ V) = 1
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PA,
urs
the
for
load,

y.
 of
Operation If C = 0, then (PC) + $0002 + rel⇒ PC

BHS can be used to branch after subtracting or comparing unsigned values. After CM
CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occ
if the CPU register value is greater than or equal to the value in M. After CBA or SBA,
branch occurs if the value in B is greater than or equal to the value in A. BHS is not 
branching after instructions that do not affect the C bit, such as increment, decrement,
store, test, clear, or complement.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BHS Branch if Higher or Same
(same as BCC) BHS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BHS rel8 REL
24 rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BHS/BCC 24

(R) ≥ (M)
or
(B) ≥ (A) BLO/BCS 25

(R) < (M)
or
(B) < (A) Unsigned

C = 0 C = 1

BGE 2C

(R) ≥ (M)
or
(B) ≥ (A) BLT 2D

(R) < (M)
or
(B) < (A) Signed

N ⊕ V = 0 N ⊕ V = 1
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 in
Operation (A) • (M)
or
(A) • imm

Performs a logical AND of either the value in M or an immediate value with the value
A. CCR bits reflect the result. The values in A and M do not change.

CCR
Effects

Code and
CPU
Cycles

BITA Bit Test A BITA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BITA #opr8i
BITA opr8a
BITA opr16a
BITA oprx0_xysppc
BITA oprx9,xysppc
BITA oprx16,xysppc
BITA [D,xysppc]
BITA [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

85 ii
95 dd
B5 hh ll
A5 xb
A5 xb ff
A5 xb ee ff
A5 xb
A5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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 in
Operation (B) • (M)
or
(B) • imm

Performs a logical AND of either the value in M or an immediate value with the value
B. CCR bits reflect the result. The values in B and M do not change.

CCR
Effects

Code and
CPU
Cycles

BITB Bit Test B BITB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BITB #opr8i
BITB opr8a
BITB opr16a
BITB oprx0_xysppc
BITB oprx9,xysppc
BITB oprx16,xysppc
BITB [D,xysppc]
BITB [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C5 ii
D5 dd
F5 hh ll
E5 xb
E5 xb ff
E5 xb ee ff
E5 xb
E5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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lues.
e
BA

y.
 of
Operation If Z | (N ⊕ V) = 1, then (PC) + $0002 + rel⇒ PC

BLE can be used to branch after subtracting or comparing signed two’s complement va
After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, th
branch occurs if the CPU register value is less than or equal to the value in M. After C
or SBA, the branch occurs if the value in B is less than or equal to the value in A.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BLE Branch if Less Than or Equal to Zero BLE

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode Object Code CPU Cycles

BLE rel8 REL
2F rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BLE 2F

(R) ≤ (M)
or
(B) ≤ (A) BGT 2E

(R) > (M)
or
(B) > (A) Signed

Z | (N ⊕ V) = 1 Z | (N ⊕ V) = 0

BLS 23

(R) ≤ (M)
or
(B) ≤ (A) BHI 22

(R) > (M)
or
(B) > (A) Unsigned

C | Z = 1 C | Z = 0
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PA,
urs
urs
hat
ment.

y.
 of
Operation If C = 1, then (PC) + $0002 + rel⇒ PC

BLO can be used to branch after subtracting or comparing unsigned values. After CM
CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occ
if the CPU register value is less than the value in M. After CBA or SBA, the branch occ
if the value in B is less than the value in A. BLO is not for branching after instructions t
do not affect the C bit, such as increment, decrement, load, store, test, clear, or comple

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BLO Branch if Lower
(same as BCS) BLO

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BLO rel8 REL
25 rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BLO/BCS 25

(R) < (M)
or
(B) < (A) BHS/BCC 24

(R) ≥ (M)
or
(B) ≥ (A) Unsigned

C = 1 C = 0

BLT 2D

(R) < (M)
or
(B) < (A) BGE 2C

(R) ≥ (M)
or
(B) ≥ (A) Signed

N ⊕ V = 1 N ⊕ V = 0
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MPA,
urs
he

load,

y.
 of
Operation If C | Z = 1, then (PC) + $0002 + rel⇒ PC

BLS can be used to branch after subtracting or comparing unsigned values. After C
CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occ
if the CPU register value is less than or equal to the value in M. After CBA or SBA, t
branch occurs if the value in B is less than or equal to the value in A. BLS is not for
branching after instructions that do not affect the C bit, such as increment, decrement,
store, test, clear, or complement.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BLS Branch if Lower or Same BLS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BLS rel8 REL
23 rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BLS 23

(R) ≤ (M)
or
(B) ≤ (A) BHI 22

(R) > (M)
or
(B) > (A) Unsigned

C | Z = 1 C | Z = 0

BLE 2F

(R) ≤ (M)
or
(B) ≤ (A) BGT 2E

(R) > (M)
or
(B) > (A) Signed

Z | (N ⊕ V) = 1 Z | (N ⊕ V) = 0
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lues.
e
the

y.
 of
Operation If N ⊕ V = 1, then (PC) + $0002 + rel⇒ PC

BLT can be used to branch after subtracting or comparing signed two’s complement va
After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, th
branch occurs if the CPU register value is less than the value in M. After CBA or SBA,
branch occurs if the value in B is less than the value in A.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BLT Branch if Less Than Zero BLT

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BLT rel8 REL
2D rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BLT 2D

(R) < (M)
or
(B) < (A) BGE 2C

(R) ≥ (M)
or
(B) ≥ (A) Signed

N ⊕ V = 1 N ⊕ V = 0

BLO/BCS 25

(R) < (M)
or
(B) < (A) BHS/BCC 24

(R) ≥ (M)
or
(B) ≥ (A) Unsigned

C = 1 C = 0
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y.
 of
Operation If N = 1, then (PC) + $0002 + rel⇒ PC

Tests the N bit and branches if N = 1.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BMI Branch if Minus BMI

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BMI rel8 REL
2B rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BMI 2B
Negative

BPL 2A
Positive

Simple
N = 1 N = 0
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y.
 of
Operation If Z = 0, then (PC) + $0002 + rel⇒ PC

Tests the Z bit and branches if Z = 0.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BNE Branch if Not Equal to Zero BNE

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BNE rel8 REL
26 rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BNE 26

(R) ≠ (M)
or
(R) ≠ zero BEQ 27

(R) = (M)
or
(R) = zero

Signed,
unsigned, or
simple

Z = 0 Z = 1
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y.
 of
Operation If N = 0, then (PC) + $0002 + rel⇒ PC

Tests the N bit and branches if N = 0.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BPL Branch if Plus BPL

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) Source Form

BPL rel8 REL
2A rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BPL 2A
Positive

BMI 2B
Negative

Simple
N = 0 N = 1
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y.
 of

,
dress.

 the
Operation (PC) + $0002 + rel⇒ PC

Branches unconditionally.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

Execution time is longer when a conditional branch is taken than when it is not taken
because the instruction queue must be refilled before execution resumes at the new ad
Since the BRA branch condition is always satisfied, the branch is always taken, and
instruction queue must always be refilled.

CCR
Effects

Code and
CPU
Cycles

BRA Branch Always BRA

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BRA rel8 REL 20 rr PPP

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BRA 20 Always BRN 21 Never Simple
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ion.

y.
 of
Operation If (M) • (mask byte) = 0, then (PC)+ $0002 + rel⇒ PC

Performs a logical AND of the value in M and the mask value supplied with the instruct
Branches if all the 0s in M correspond to 1s in the mask byte.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BRCLR Branch if Bit(s) Clear BRCLR

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BRCLR opr8a, msk8, rel8
BRCLR opr16a, msk8, rel8
BRCLR oprx0_xysppc, msk8, rel8
BRCLR oprx9,xysppc, msk8, rel8
BRCLR oprx16,xysppc, msk8, rel8

DIR
EXT
IDX
IDX1
IDX2

4F dd mm rr
1F hh ll mm rr
0F xb mm rr
0F xb ff mm rr
0F xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP
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ded
ing
the

use
. Since
ingle
Operation (PC) + $0002⇒ PC

Never branches. BRN is effectively a 2-byte NOP that requires one cycle. BRN is inclu
in the instruction set to provide a complement to the BRA instruction. BRN is useful dur
program debug to negate the effect of another branch instruction without disturbing 
offset byte. A complement for BRA is also useful in compiler implementations.

Execution time is longer when a conditional branch is taken than when it is not, beca
the instruction queue must be refilled before execution resumes at the new address
the BRN branch condition is never satisfied, the branch is never taken, and only a s
program fetch is needed to update the instruction queue.

CCR
Effects

Code and
CPU
Cycles

BRN Branch Never BRN

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BRN rel8 REL 21 rr P

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BRN 21 Never BRA 20 Always Simple
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.

y.
 of
Operation If (M) • (mask byte) = 0, then (PC) + $0002 + rel⇒ PC

Performs a logical AND of the value ofM and the mask value supplied with the instruction
Branches if all the ones inM correspond to ones in the mask byte.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BRSET Branch if Bit(s) Set BRSET

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BRSET opr8a, msk8, rel8
BRSET opr16a, msk8, rel8
BRSET oprx0_xysppc, msk8, rel8
BRSET oprx9,xysppc, msk8, rel8
BRSET oprx16,xysppc, msk8, rel8

DIR
EXT
IDX
IDX1
IDX2

4E dd mm rr
1E hh ll mm rr
0E xb mm rr
0E xb ff mm rr
0E xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP
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Puts
Operation (M) | (mask byte)⇒ M

Performs a logical OR of the value in M and a mask byte contained in the instruction.
the result in M. Bits in M that correspond to 1s in the mask are set. No other bits in M
change.

CCR
Effects

Code and
CPU
Cycles

BSET Set Bit(s) in M BSET

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BSET opr8a, msk8
BSET opr16a, msk8
BSET oprx0_xysppc, msk8
BSET oprx9,xysppc, msk8
BSET oprx16,xysppc, msk8

DIR
EXT
IDX
IDX1
IDX2

4C dd mm
1C hh ll mm
0C xb mm
0C xb ff mm
0C xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO
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tine.

d.

urn
Operation (SP) – $0002⇒ SP
RTNH:RTNL ⇒ MSP:MSP + 1
(PC) + $0002 + rel⇒ PC

Sets up conditions to return to normal program flow, then transfers control to a subrou
Uses the address of the instruction after the BSR as a return address.

Decrements the SP by two, to allow the two bytes of the return address to be stacke

Stacks the return address (the SP points to the high byte of the return address).

Branches to a location determined by the branch offset.

Subroutines are normally terminated with an RTS instruction, which restores the ret
address from the stack.

CCR
Effects

Code and
CPU
Cycles

BSR Branch to Subroutine BSR

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BSR rel8 REL 07 rr SPPP
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n on
s a

id.

y.
 of
Operation If V = 0, then (PC) + $0002 + rel⇒ PC

Tests the V bit and branches if V = 0. BVC causes a branch when a previous operatio
two’s complement binary values does not cause an overflow. That is, when BVC follow
two’s complement operation, a branch occurs when the result of the operation is val

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BVC Branch if V Clear BVC

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BVC rel8 REL
28 rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BRN 21 Never BRA 20 Always Simple
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on

y.
 of
Operation If V = 1, then (PC) + $0002 + rel⇒ PC

Tests the V bit and branches if V = 1. BVS causes a branch when a previous operation
two’s complement values causes an overflow. That is, when BVS follows a two’s
complement operation, a branch occurs when the result of the operation is invalid.

Rel is an 8-bit two’s complement offset for branching forward or backward in memor
Branching range is $80 to $7F (–128 to 127) from the address following the last byte
object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

BVS Branch if V Set BVS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BVS rel8 REL
29 rr PPP (branch)

P (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

BVS 29
No overflow

BVC 28
Overflow

Simple
V = 1 V = 1
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tine
turn
ave

 the

tores
Operation (SP) – $0002⇒ SP
RTNH:RTNL ⇒ MSP:MSP + 1
(SP) – $0001⇒ SP
(PPAGE)⇒ MSP
new page value⇒ PPAGE
Subroutine address⇒ PC

Sets up conditions to return to normal program flow, then transfers control to a subrou
in expanded memory. Uses the address of the instruction following the CALL as a re
address. For code compatibility, CALL also executes correctly in devices that do not h
expanded memory capability.

Decrements SP by two, allowing the two return address bytes to be stacked.

Stacks the return address; SP points to the high byte of the return address.

Decrements SP by one, allowing the current PPAGE value to be stacked.

Stacks the value in PPAGE.

Writes a new page value supplied by the instruction to PPAGE.

Transfers control to the subroutine.

In indexed-indirect modes, the subroutine address and PPAGE value are fetched in
order M high byte, M low byte, and new PPAGE value.

Expanded-memory subroutines must be terminated by an RTC instruction, which res
the return address and PPAGE value from the stack.

CCR
Effects

Code and
CPU
Cycles

CALL Call Subroutine in Expanded Memory CALL

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CALL opr16a, page
CALL oprx0_xysppc, page
CALL oprx9,xysppc, page
CALL oprx16,xysppc, page
CALL [D,xysppc]
CALL [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

4A hh ll pg
4B xb pg
4B xb ff pg
4B xb ee ff pg
4B xb
4B xb ee ff

gnSsPPP
gnSsPPP
gnSsPPP
fgnSsPPP
fIignSsPPP
fIignSsPPP
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nge.
Operation (A) – (B)

Compares the value in A with the value in B. Condition code bits affected by the
comparison can be used for conditional branches. The values in A and B do not cha

CCR
Effects

Code and
CPU
Cycles

CBA Compare B to A CBA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 • B7 • R7 | A7 • B7 • R7; set if the operation produces a two’s complement overflow; cleared otherwise
C: A7 • B7 | B7 • R7 | R7 | A7; set if there is a borrow from the MSB of the result; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CBA INH 18 17 OO
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bit.
Operation 0 ⇒ C bit

Clears the C bit. CLC assembles as ANDCC #$FE.

CLC can be used to initialize the C bit prior to a shift or rotate instruction affecting the C

CCR
Effects

Code and
CPU
Cycles

CLC Clear C
(same as ANDCC #$FE) CLC

S X H I N Z V C

– – – – – – – 0

C: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CLC IMM 10 FE P
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ring

I

Operation 0 ⇒ I bit

Clears the I bit. CLI assembles as ANDCC #$EF.

Clearing the I bit enables interrupts. There is a one-cycle bus clock delay in the clea
mechanism. If interrupts were previously disabled, the next instruction after a CLI is
always executed, even if there was an interrupt pending prior to execution of the CL
instruction.

CCR
Effects

Code and
CPU
Cycles

CLI Clear I
(same as ANDCC #$EF) CLI

S X H I N Z V C

– – – 0 – – – –

I: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CLI IMM 10 EF P
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Operation $00⇒ M

Clears all bits in M.

CCR
Effects

Code and
CPU
Cycles

CLR Clear M CLR

S X H I N Z V C

– – – – 0 1 0 0

N: Cleared
Z: Set
V: Cleared
C: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CLR opr16a
CLR oprx0_xysppc
CLR oprx9,xysppc
CLR oprx16,xysppc
CLR [D,xysppc]
CLR [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

79 hh ll
69 xb
69 xb ff
69 xb ee ff
69 xb
69 xb ee ff

PwO
Pw
PwO
PwP
PIfw
PIPw
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Operation $00⇒ A

Clears all bits in A.

CCR
Effects

Code and
CPU
Cycles

CLRA Clear A CLRA

S X H I N Z V C

– – – – 0 1 0 0

N: Cleared
Z: Set
V: Cleared
C: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CLRA INH 87 O
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Operation $00⇒ B

Clears all bits in B.

CCR
Effects

Code and
CPU
Cycles

CLRB Clear B CLRB

S X H I N Z V C

– – – – 0 1 0 0

N: Cleared
Z: Set
V: Cleared
C: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CLRB INH C7 O
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Operation 0 ⇒ V bit

Clears the V bit. CLV assembles as ANDCC #$FD.

CCR
Effects

Code and
CPU
Cycles

CLV Clear V
(same as ANDCC #$FD) CLV

S X H I N Z V C

– – – – – – 0 –

V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CLV IMM 10 FD P
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flect
Operation (A) – (M)
or
(A) – imm

Compares the value in A to either the value in M or an immediate value. CCR bits re
the result. The values in A and M do not change.

CCR
Effects

Code and
CPU
Cycles

CMPA Compare A CMPA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 • M7 • R7 | A7 • M7 • R7; set if the operation produces a two’s complement overflow; cleared

otherwise
C: A7 • M7 | M7 • R7 | R7 • A7; set if there is a borrow from the MSB of the result; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CMPA #opr8i
CMPA opr8a
CMPA opr16a
CMPA oprx0_xysppc
CMPA oprx9,xysppc
CMPA oprx16,xysppc
CMPA [D,xysppc]
CMPA [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

81 ii
91 dd
B1 hh ll
A1 xb
A1 xb ff
A1 xb ee ff
A1 xb
A1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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flect
Operation (B) – (M)
or
(B) – imm

Compares the value in B to either the value in M or an immediate value. CCR bits re
the result. The values in B and M do not change.

CCR
Effects

Code and
CPU
Cycles

CMPB Compare B CMPB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: B7 • M7 • R7 | B7 • M7 • R7; set if the operation produces a two’s complement overflow; cleared

otherwise
C: B7 • M7 | M7 • R7 | R7 • B7; set if there is a borrow from the MSB of the result; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CMPB #opr8i
CMPB opr8a
CMPB opr16a
CMPB oprx0_xysppc
CMPB oprx9,xysppc
CMPB oprx16,xysppc
CMPB [D,xysppc]
CMPB [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C1 ii
D1 dd
F1 hh ll
E1 xb
E1 xb ff
E1 xb ee ff
E1 xb
E1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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tion
ed to
s are
Operation (M) = $FF – (M)⇒ M

Replaces the value in M with its one’s complement. Immediately after a COM opera
on unsigned values, only the BEQ, BNE, LBEQ, and LBNE branches can be expect
perform consistently. After operation on two’s complement values, all signed branche
available.

CCR
Effects

Code and
CPU
Cycles

COM Complement M COM

S X H I N Z V C

– – – – ∆ ∆ 0 1

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared
C: Set for M6800 compatibility

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

COM opr16a
COM oprx0_xysppc
COM oprx9,xysppc
COM oprx16,xysppc
COM [D,xysppc]
COM [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

71 hh ll
61 xb
61 xb ff
61 xb ee ff
61 xb
61 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
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n on
to
s are
Operation (A) = $FF – (A)⇒ A

Replaces the value in A with its one’s complement. Immediately after a COM operatio
unsigned values, only the BEQ, BNE, LBEQ, and LBNE branches can be expected 
perform consistently. After operation on two’s complement values, all signed branche
available.

CCR
Effects

Code and
CPU
Cycles

COMA Complement A COMA

S X H I N Z V C

– – – – ∆ ∆ 0 1

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared
C: Set for M6800 compatibility

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

COMA INH 41 O
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and
Operation (B) = $FF – (B)⇒ B

Replaces the value in B with its one’s complement. Each bit of B is complemented.
Immediately after a COM operation on unsigned values, only the BEQ, BNE, LBEQ,
LBNE branches can be expected to perform consistently. After operation on two’s
complement values, all signed branches are available.

CCR
Effects

Code and
CPU
Cycles

COMB Complement B COMB

S X H I N Z V C

– – – – ∆ ∆ 0 1

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared
C: Set for M6800 compatibility

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

COMB INH 51 O
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 bits
Operation (A):(B) – (M):(M + 1)
or
(A:B) – imm

Compares the value in D to either the value in M:M + 1 or an immediate value. CCR
reflect the result. The values in D and M:M + 1 do not change.

CCR
Effects

Code and
CPU
Cycles

CPD Compare D CPD

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: D15 • M15 • R15 | D15 • M15 • R15; set if the operation produces a two’s complement overflow; cleared

otherwise
C: D15 • M15 | M15 • R15 | R15 • D15; set if the absolute value of (M:M + 1) is larger than the absolute value

of (D); cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CPD #opr16i
CPD opr8a
CPD opr16a
CPD oprx0_xysppc
CPD oprx9,xysppc
CPD oprx16,xysppc
CPD [D,xysppc]
CPD [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8C jj kk
9C dd
BC hh ll
AC xb
AC xb ff
AC xb ee ff
AC xb
AC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf
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bits
Operation (SP) – (M):(M + 1)
or
(SP) – imm

Compares the value in SP to either the value in M:M + 1 or an immediate value. CCR
reflect the result. The values in SP and M:M + 1 do not change.

CCR
Effects

Code and
CPU
Cycles

CPS Compare SP CPS

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: SP15 • M15 • R15 | SP15 • M15 • R15; set if the operation produces a two’s complement overflow;

cleared otherwise
C: SP15 • M15 | M15 • R15 | R15 • SP15; set if the absolute value of (M:M + 1) is larger than the absolute

value of (SP); cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CPS #opr16i
CPS opr8a
CPS opr16a
CPS oprx0_xysppc
CPS oprx9,xysppc
CPS oprx16,xysppc
CPS [D,xysppc]
CPS [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8F jj kk
9F dd
BF hh ll
AF xb
AF xb ff
AF xb ee ff
AF xb
AF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf
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 bits
Operation (X) – (M):(M + 1)
or
(X) – imm

Compares the value in X to either the value in M:M + 1 or an immediate value. CCR
reflect the result. The values in X and M:M + 1 do not change.

CCR
Effects

Code and
CPU
Cycles

CPX Compare X CPX

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: X15 • M15 • R15 | X15 • M15 • R15; set if the operation produces a two’s complement overflow; cleared

otherwise
C: X15 • M15 | M15 • R15 | R15 • X15; set if the absolute value of (M:M + 1) is larger than the absolute value

of (X); cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CPX #opr16i
CPX opr8a
CPX opr16a
CPX oprx0_xysppc
CPX oprx9,xysppc
CPX oprx16,xysppc
CPX [D,xysppc]
CPX [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8E jj kk
9E dd
BE hh ll
AE xb
AE xb ff
AE xb ee ff
AE xb
AE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf
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 bits
Operation (Y) – (M):(M + 1)
or
(Y) – imm

Compares the value in Y to either the value in M:M + 1 or an immediate value. CCR
reflect the result. The values in Y and M:M + 1 do not change.

CCR
Effects

Code and
CPU
Cycles

CPY Compare Y CPY

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: Y15 • M15 • R15 | Y15 • M15 • R15; set if the operation produces a two’s complement overflow; cleared

otherwise
C: Y15 • M15 | M15 • R15 | R15 • Y15; set if the absolute value of (M:M + 1) is larger than the absolute value

of (Y); cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

CPY #opr16i
CPY opr8a
CPY opr16a
CPY oprx0_xysppc
CPY oprx9,xysppc
CPY oprx16,xysppc
CPY [D,xysppc]
CPY [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8D jj kk
9D dd
BD hh ll
AD xb
AD xb ff
AD xb ee ff
AD xb
AD xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf
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 is
bit

r

The

store
r the
Operation DAA adjusts the value in A and the state of the C bit to represent the correct
binary-coded-decimal (BCD) sum and the associated carry when a BCD calculation
performed. To execute DAA, the value in A, the state of the C bit, and the state of the H
must all be the result of performing an ABA, ADD, or ADC on BCD operands, with o
without an initial carry.

The table below shows DAA operation for all legal combinations of input operands. 
first four columns represent the results of ABA, ADC, or ADD operations on BCD
operands. The correction factor in the fifth column is added to the accumulator to re
the result of an operation on two BCD operands to a valid BCD value and to set or clea
C bit. All values are in hexadecimal.

CCR
Effects

Code and
CPU
Cycles

DAA Decimal Adjust A for BCD DAA

C Value A[7:6:5:4] Value H Value A[3:2:1:0] Value Correction Corrected C bit
0 0–9 0 0–9 00 0
0 0–8 0 A–F 06 0
0 0–9 1 0–3 06 0
0 A–F 0 0–9 60 1
0 9–F 0 A–F 66 1
0 A–F 1 0–3 66 1
1 0–2 0 0–9 60 1
1 0–2 0 A–F 66 1
1 0–3 1 0–3 66 1

S X H I N Z V C

– – – – ∆ ∆ – ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
C: Represents BCD carry

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

DAA INH 18 07 OfO
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et for
to
Operation (counter) – 1⇒ counter
If (counter) = 0, then (PC) + $0003 + rel⇒ PC

Subtracts one from the counter register A, B, D, X, Y, or SP. Branches to a relative
destination if the counter register reaches zero. Rel is a 9-bit two’s complement offs
branching forward or backward in memory. Branching range is $100 to $0FF (–256 
+255) from the address following the last byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

DBEQ Decrement and Branch if Equal to Zero DBEQ

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

DBEQ abdxysp, rel9
REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

Loop Primitive Postbyte ( lb ) Coding

Source
Form Postbyte 1

NOTES:
1. Bits 7:6:5 select DBEQ or DBNE; bit 4 is the offset sign bit: bit 3 is not used; bits 2:1:0 select

the counter register.

Object
Code

Counter
Register Offset

DBEQ A, rel9
DBEQ B, rel9
DBEQ D, rel9
DBEQ X, rel9
DBEQ Y, rel9
DBEQ SP, rel9

0000 X000
0000 X001
0000 X100
0000 X101
0000 X110
0000 X111

04 00 rr
04 01 rr
04 04 rr
04 05 rr
04 06 rr
04 07 rr

A
B
D
X
Y

SP

Positive

DBEQ A, rel9
DBEQ B, rel9
DBEQ D, rel9
DBEQ X, rel9
DBEQ Y, rel9
DBEQ SP, rel9

0001 X000
0001 X001
0001 X100
0001 X101
0001 X110
0001 X111

04 10 rr
04 11 rr
04 14 rr
04 15 rr
04 16 rr
04 17 rr

A
B
D
X
Y

SP

Negative
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nt
F

ion.
Operation (counter) – 1⇒ counter
If (counter) not = 0, then (PC) + $0003 + rel⇒ PC

Subtracts one from the counter register A, B, D, X, Y, or SP. Branches to a relative
destination if the counter register does not reach zero. Rel is a 9-bit two’s compleme
offset for branching forward or backward in memory. Branching range is $100 to $0F
(–256 to +255) from the address following the last byte of object code in the instruct

CCR
Effects

Code and
CPU
Cycles

DBNE Decrement and Branch if Not Equal to Zero DBNE

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

DBNE abdxysp, rel9
REL
(9-bit)

04 lb rr PPP (branch)
PPO (no branch)

Loop Primitive Postbyte ( lb ) Coding

Source
Form Postbyte 1

NOTES:
1. Bits 7:6:5 select DBEQ or DBNE; bit 4 is the offset sign bit: bit 3 is not used; bits 2:1:0 select

the counter register.

Object
Code

Counter
Register Offset

DBNE A, rel9
DBNE B, rel9
DBNE D, rel9
DBNE X, rel9
DBNE Y, rel9
DBNE SP, rel9

0010 X000
0010 X001
0010 X100
0010 X101
0010 X110
0010 X111

04 20 rr
04 21 rr
04 24 rr
04 25 rr
04 26 rr
04 27 rr

A
B
D
X
Y

SP

Positive

DBNE A, rel9
DBNE B, rel9
DBNE D, rel9
DBNE X, rel9
DBNE Y, rel9
DBNE SP, rel9

0011 X000
0011 X001
0011 X100
0011 X101
0011 X110
0011 X111

04 30 rr
04 31 rr
04 34 rr
04 35 rr
04 36 rr
04 37 rr

A
B
D
X
Y

SP

Negative
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tion.
loop
Operation (M) – $01⇒ M

Subtracts one from the value in M. The N, Z, and V bits are set or cleared by the opera
The C bit is not affected by the operation, allowing the DEC instruction to be used as a
counter in multiple-precision computations.

CCR
Effects

Code and
CPU
Cycles

DEC Decrement M DEC

S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Set if operation produces a two’s complement overflow (if and only if (M) was $80 before the operation);

cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

DEC opr16a
DEC oprx0_xysppc
DEC oprx9,xysppc
DEC oprx16,xysppc
DEC [D,xysppc]
DEC [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

73 hh ll
63 xb
63 xb ff
63 xb ee ff
63 xb
63 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
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tion.
loop
Operation (A) – $01⇒ A

Subtracts one from the value in A. The N, Z, and V bits are set or cleared by the opera
The C bit is not affected by the operation, allowing the DEC instruction to be used as a
counter in multiple-precision computations.

CCR
Effects

Code and
CPU
Cycles

DECA Decrement A DECA

S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Set if operation produces a two’s complement overflow (if and only if (A) was $80 before the operation);

cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

DECA INH 43 O
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tion.
loop
Operation (B) – $01⇒ B

Subtracts one from the value in B. The N, Z, and V bits are set or cleared by the opera
The C bit is not affected by the operation, allowing the DEC instruction to be used as a
counter in multiple-precision computations.

CCR
Effects

Code and
CPU
Cycles

DECB Decrement B DECB

S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Set if operation produces a two’s complement overflow (if and only if (B) was $80 before the operation);

cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

DECB INH 53 O
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n code
Operation (SP) – $0001⇒ SP

Subtracts one from SP. DES assembles as LEAS –1,SP. DES does not affect conditio
bits as DEX and DEY do.

CCR
Effects

Code and
CPU
Cycles

DES Decrement SP
(same as LEAS –1,SP) DES

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

DES IDX 1B 9F Pf
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the
Operation (X) – $0001⇒ X

Subtracts one from X. The Z bit reflects the result. The LEAX –1,X instruction does 
same thing as DEX, but without affecting the Z bit.

CCR
Effects

Code and
CPU
Cycles

DEX Decrement X DEX

S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

DEX INH 09 O
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the
Operation (Y) – $0001⇒ Y

Subtracts one from Y. The Z bit reflects the result. The LEAY –1,Y instruction does 
same thing as DEY, but without affecting the Z bit.

CCR
Effects

Code and
CPU
Cycles

DEY Decrement Y DEY

S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

DEY INH 03 O
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PU
s are
Operation (Y):(D) ÷ (X) ⇒ Y; remainder⇒ D

Divides a 32-bit unsigned dividend by a 16-bit divisor, producing a 16-bit unsigned
quotient and an unsigned 16-bit remainder. All operands and results are located in C
registers. Division by zero has no effect, except that the states of the N, Z, and V bit
undefined.

CCR
Effects

Code and
CPU
Cycles

EDIV Extended Divide, Unsigned EDIV

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise; undefined after overflow or division by 0
Z: Set if result is $0000; cleared otherwise; undefined after overflow or division by 0
V: Set if the result is greater than $FFFF; cleared otherwise; undefined after division by 0
C: Set if divisor is $0000; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

EDIV INH 11 ffffffffffO
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t

he N,
Operation (Y):(D) ÷ (X) ⇒ Y; remainder⇒ D

Divides a signed 32-bit dividend by a 16-bit signed divisor, producing a signed 16-bi
quotient and a signed 16-bit remainder. All operands and results are located in CPU
registers. Division by zero has no effect, except that the C bit is set and the states of t
Z, and V bits are undefined.

CCR
Effects

Code and
CPU
Cycles

EDIVS Extended Divide, Signed EDIVS

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise; undefined after overflow or division by 0
Z: Set if result is $0000; cleared otherwise; undefined after overflow or division by 0
V: Set if the result is greater than $7FFF or less than $8000; cleared otherwise; undefined after division by 0
C: Set if divisor is $0000; cleared otherwise; indicates division by 0

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

EDIVS INH 18 14 OffffffffffO
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tor
ed in
the
ction
Operation (MX):(MX + 1) × (MY):(MY + 1) + (M):(M + 1):(M + 2):(M + 3) ⇒ M + 1:M + 2:M + 3

Multiplies two 16-bit values. Adds the 32-bit product to the value in a 32-bit accumula
in memory. EMACS is a signed integer operation. All operands and results are locat
memory. X must point to the high byte of the first source operand, and Y must point to
high byte of the second source operand. An extended address supplied with the instru
must point to the most significant byte of the 32-bit result.

CCR
Effects

Code and
CPU
Cycles

EMACS Extended Multiply and Accumulate,
Signed EMACS

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result, R31, is set; cleared otherwise
Z: Set if result is $00000000; cleared otherwise
V: M31 • I31 • R31 | M31 • I31 • R31; set if result is greater than $7FFFFFFF (+ overflow) or less than

$80000000 (– underflow); indicates two’s complement overflow

C: M15 • I15 | I15 • R15 | R15 • M15; set if there is a carry from bit 15 of the result, R15; cleared otherwise;
indicates a carry from low word to high word of the result

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

EMACS opr16a1

NOTES:
1. opr16a is an extended address specification. Both X and Y point to source operands.

Special 18 12 hh ll ORROfffRRfWWP
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set.
the

g
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Operation MAX [(D), (M):(M + 1)] ⇒ D

Subtracts an unsigned 16-bit value in M:M + 1 from an unsigned 16-bit value in D to
determine which is larger. Puts the larger value in D. If the values are equal, the Z bit is
If the value in M:M + 1 is larger, the C bit is set when the value in M:M + 1 replaces 
value in D. If the value in D is larger, the C bit is cleared.

EMAXD accesses memory with indexed addressing modes for flexibility in specifyin
operand addresses. Autoincrement and autodecrement functions can facilitate findin
largest value in a list of values.

CCR
Effects

Code and
CPU
Cycles

EMAXD Extended Maximum in D EMAXD

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: D15 • M15 • R15 | D15 • M15 • R15; set if the operation produces a two’s complement overflow; cleared

otherwise
C: D15 • M15 | M15 • R15 | R15 • D15; set if (M):(M + 1) is larger than (D); cleared otherwise
Condition code bits reflect internal subtraction: R = (D) – (M):(M + 1).

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

EMAXD oprx0_xysppc
EMAXD oprx9,xysppc
EMAXD oprx16,xysppc
EMAXD [D,xysppc]
EMAXD [oprx16,xysppc]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1A xb
18 1A xb ff
18 1A xb ee ff
18 1A xb
18 1A xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf
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he Z
C

g
olling
Operation MAX [(D), (M):(M + 1)] ⇒ M:M + 1

Subtracts an unsigned 16-bit value in M:M + 1 from an unsigned 16-bit value in D to
determine which is larger. Puts the larger value in M:M + 1. If the values are equal, t
bit is set. If the value in M:M + 1 is larger, the C bit is set. If the value in D is larger, the
bit is cleared when the value in D replaces the value in M:M + 1.

EMAXM accesses memory with indexed addressing modes for flexibility in specifyin
operand addresses. Autoincrement and autodecrement functions can facilitate contr
the values in a list of values.

CCR
Effects

Code and
CPU
Cycles

EMAXM Extended Maximum in M EMAXM

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: D15 • M15 • R15 | D15 • M15 • R15; set if the operation produces a two’s complement overflow; cleared

otherwise
C: D15 • M15 | M15 • R15 | R15 • D15; set if (M):(M + 1) is larger than (D); cleared otherwise
Condition code bits reflect internal subtraction: R = (D) – (M):(M + 1).

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

EMAXM oprx0_xysppc
EMAXM oprx9,xysppc
EMAXM oprx16,xysppc
EMAXM [D,xysppc]
EMAXM [oprx16,xysppc]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1E xb
18 1E xb ff
18 1E xb ee ff
18 1E xb
18 1E xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW
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Operation MIN [(D), (M):(M + 1)] ⇒ D

Subtracts an unsigned 16-bit value in M:M + 1 from an unsigned 16-bit value in D to
determine which is larger. Puts the smaller value in D. If the values are equal, the Z
set. If the value in M:M + 1 is larger, the C bit is set. If the value in D is larger, the C bit
cleared when the value in M:M + 1 replaces the value in D.

EMIND accesses memory with indexed addressing modes for flexibility in specifying
operand addresses. Autoincrement and autodecrement functions can facilitate findin
smallest value in a list of values.

CCR
Effects

Code and
CPU
Cycles

EMIND Extended Minimum in D EMIND

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: D15 • M15 • R15 | D15 • M15 • R15; set if the operation produces a two’s complement overflow; cleared

otherwise
C: D15 • M15 | M15 • R15 | R15 • D15; set if (M):(M + 1) is larger than (D); cleared otherwise
Condition code bits reflect internal subtraction: R = (D) – (M):(M + 1).

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

EMIND oprx0_xysppc
EMIND oprx9,xysppc
EMIND oprx16,xysppc
EMIND [D,xysppc]
EMIND [oprx16,xysppc]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1B xb
18 1B xb ff
18 1B xb ee ff
18 1B xb
18 1B xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf
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Operation MIN [(D), (M):(M + 1)] ⇒ M:M + 1

Subtracts an unsigned 16-bit value in M:M + 1 from an unsigned 16-bit value in D to
determine which is larger. Puts the smaller value in M:M + 1. If the values are equal, th
bit is set. If the value in M:M + 1 is larger, the C bit is set when the value in D replaces
value in M:M + 1. If the value in D is larger, the C bit is cleared.

EMINM accesses memory with indexed addressing modes for flexibility in specifying
operand addresses. Autoincrement and autodecrement functions can facilitate findin
smallest value in a list of values.

CCR
Effects

Code and
CPU
Cycles

EMINM Extended Minimum in M EMINM

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: D15 • M15 • R15 | D15 • M15 • R15; set if the operation produces a two’s complement overflow; cleared

otherwise
C: D15 • M15 | M15 • R15 | R15 • D15; set if (M):(M + 1) is larger than (D); cleared otherwise
Condition code bits reflect internal subtraction: R = (D) – (M):(M + 1).

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

EMINM oprx0_xysppc
EMINM oprx9,xysppc
EMINM oprx16,xysppc
EMINM [D,xysppc]
EMINM [oprx16,xysppc]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1F xb
18 1F xb ff
18 1F xb ee ff
18 1F xb
18 1F xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW
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igh
Operation (D) × (Y) ⇒ Y:D

Multiplies an unsigned 16-bit value in D by an unsigned 16-bit value in Y. Puts the h
16-bits of the unsigned 32-bit result in Y and the low 16-bits of the result in D.

The C bit can be used to round the low 16 bits of the result.

CCR
Effects

Code and
CPU
Cycles

EMUL Extended Multiply, Unsigned EMUL

S X H I N Z V C

– – – – ∆ ∆ – ∆

N: Set if the MSB of the result is set; cleared otherwise
Z: Set if result is $00000000; cleared otherwise
C: Set if bit 15 of the result is set; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

EMUL INH 13 ffO
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of
Operation (D) × (Y) ⇒ Y:D

Multiplies a signed 16-bit value in D by a signed 16-bit value in Y. Puts the high 16 bits
the 32-bit signed result in Y and the low 16 bits of the result in D.

The C bit can be used to round the low 16 bits of the result.

CCR
Effects

Code and
CPU
Cycles

EMULS Extended Multiply, Signed EMULS

S X H I N Z V C

– – – – ∆ ∆ – ∆

N: Set if the MSB of the result is set; cleared otherwise
Z: Set if result is $00000000; cleared otherwise
C: Set if bit 15 of the result is set; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

EMULS INH
18 13 OfO

OffO 1

NOTES:
1. EMULS has an extra free cycle if it is followed by another page two instruction.
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iate
Operation (A) ⊕ (M) ⇒ A
or
(A) ⊕ imm ⇒ A

Performs a logical exclusive OR of the value in A and either the value in M or an immed
value. Puts the result in A.

CCR
Effects

Code and
CPU
Cycles

EORA Exclusive OR A EORA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

EORA #opr8i
EORA opr8a
EORA opr16a
EORA oprx0_xysppc
EORA oprx9,xysppc
EORA oprx16,xysppc
EORA [D,xysppc]
EORA [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

88 ii
98 dd
B8 hh ll
A8 xb
A8 xb ff
A8 xb ee ff
A8 xb
A8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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iate
Operation (B) ⊕ (M) ⇒ B
or
(B) ⊕ imm ⇒ B

Performs a logical exclusive OR of the value in B and either the value in M or an immed
value. Puts the result in B.

CCR
Effects

Code and
CPU
Cycles

EORB Exclusive OR B with M EORB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

EORB #opr8i
EORB opr8a
EORB opr16a
EORB oprx0_xysppc
EORB oprx9,xysppc
EORB oprx16,xysppc
EORB [D,xysppc]
EORB [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C8 ii
D8 dd
F8 hh ll
E8 xb
E8 xb ff
E8 xb ee ff
E8 xb
E8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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Operation (M):(M + 1) + [(B) × ((M + 2):(M + 3) – (M):(M + 1))]⇒ D

Linearly interpolates and stores in D one of 256 values between a pair of data entrie
and Y2, in a lookup table. Data entries represent y coordinates of line segment endp
Table entries and the interpolated results are 16-bit values.

Before executing ETBL, point an indexing register at the Y1 value
closest to but less than or equal to the Y value to interpolate. Poin
Y1 using any indexed addressing mode except indirect, 9-bit offs
and 16-bit offset. The next table entry after Y1 is Y2. Load B with
binary fraction (radix point to the left of the MSB) representing the
ratio:

(XL – X1) ÷ (X2 – X1)
where
X1 = Y1 and X2 = Y2
XL is the x coordinate of the value to interpolate

The 16-bit unrounded result, YL, is calculated using the expression:
YL = Y1 + [(B) × (Y2 – Y1)]
where
Y1 = 16-bit data entry pointed to by effective address
Y2 = 16-bit data entry pointed to by the effective address plus two

The 24-bit intermediate value (B)× (Y2 – Y1) has a radix point between bits 7 and 8.

CCR
Effects

Code and
CPU
Cycles

ETBL Extended Table Lookup and Interpolate ETBL

X1 X2
Y1

Y2

XL

YL

S X H I N Z V C

– – – – ∆ ∆ – ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
C: Set if result can be rounded up; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ETBL oprx0_xysppc IDX 18 3F xb ORRffffffP
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ation
for
Operation (r1) ⇔ (r2) when r1 and r2 are the same size
$00:(r1)⇒ (r2) when r1 is 8 bits and r2 is 16 bits
(r1L) ⇔ (r2) when r1 is 16 bits and r2 is 8 bits

See the table on the next page.

Exchanges the values between a source register A, B, CCR, D, X, Y, or SP and a destin
register A, B, CCR, D, X, Y, or SP. Exchanges involving TMP2 and TMP3 are reserved
Motorola use.

CCR
Effects

Code and
CPU
Cycles

EXG Exchange Register Contents EXG

S X H I N Z V C

– – – – – – – –

or

S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

CCR bits affected only when the CCR is the destination register. The X bit cannot change from 0 to 1.
Software can leave the X bit set, leave it cleared, or change it from 1 to 0, but X can only be set by a reset or
by recognition of an XIRQ interrupt.

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

EXG abcdxysp,abcdxysp INH B7 eb P
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EXG Exchange Register Contents
(continued) EXG

Exchange Postbyte ( eb) Coding

Source
Form

Postbyte
Object
Code

Exchange
Source
Form

Postbyte
Object
Code

Exchange

EXG A,A
EXG A,B
EXG A,CCR
EXG A,TMP2
EXG A,D
EXG A,X
EXG A,Y
EXG A,SP

1000 X000
1000 X001
1000 X010
1000 X011
1000 X100
1000 X101
1000 X110
1000 X111

B7 80
B7 81
B7 82
B7 83
B7 84
B7 85
B7 86
B7 87

A⇔A
A⇔B
A⇔CCR
$00:A⇒TMP2, TMP2L⇒A
$00:A⇒D
$00:A⇒X, XL⇒A
$00:A⇒Y, YL⇒A
$00:A⇒SP, SPL⇒A

EXG B,A
EXG B,B
EXG B,CCR
EXG D,TMP2
EXG D,D
EXG D,X
EXG D,Y
EXG D,SP

1100 X000
1100 X001
1100 X010
1100 X011
1100 X100
1100 X101
1100 X110
1100 X111

B7 C0
B7 C1
B7 C2
B7 C3
B7 C4
B7 C5
B7 C6
B7 C7

B⇒A, A⇒B
B⇒B, $FF⇒A
B⇒CCR, $FF:CCR⇒D
D⇔TMP2
D⇔D
D⇔X
D⇔Y
D⇔SP

EXG B,A
EXG B,B
EXG B,CCR
EXG B,TMP2
EXG B,D
EXG B,X
EXG B,Y
EXG B,SP

1001 X000
1001 X001
1001 X010
1001 X011
1001 X100
1001 X101
1001 X110
1001 X111

B7 90
B7 91
B7 92
B7 93
B7 94
B7 95
B7 96
B7 97

B⇔A
B⇔B
B⇔CCR
$00:B⇒TMP2, TMP2L⇒B
$00:B⇒D
$00:B⇒X, XL⇒B
$00:B⇒Y, YL⇒B
$00:B⇒SP, SPL⇒B

EXG X,A
EXG X,B
EXG X,CCR
EXG X,TMP2
EXG X,D
EXG X,X
EXG X,Y
EXG X,SP

1101 X000
1101 X001
1101 X010
1101 X011
1101 X100
1101 X101
1101 X110
1101 X111

B7 D0
B7 D1
B7 D2
B7 D3
B7 D4
B7 D5
B7 D6
B7 D7

XL⇒A, $00:A⇒X
XL⇒B, $FF:B⇒X
XL⇒CCR, $FF:CCR⇒X
X⇔TMP2
X⇔D
X⇔X
X⇔Y
X⇔SP

EXG CCR,A
EXG CCR,B
EXG CCR,CCR
EXG CCR,TMP2
EXG CCR,D
EXG CCR,X
EXG CCR,Y
EXG CCR,SP

1010 X000
1010 X001
1010 X010
1010 X011
1010 X100
1010 X101
1010 X110
1010 X111

B7 A0
B7 A1
B7 A2
B7 A3
B7 A4
B7 A5
B7 A6
B7 A7

CCR⇔A
CCR⇔B
CCR⇔CCR
$00:CCR⇒TMP2, TMP2L⇒CCR
$00:CCR⇒D
$00:CCR⇒X, XL⇒CCR
$00:CCR⇒Y, YL⇒CCR
$00:CCR⇒SP, SPL⇒CCR

EXG Y,A
EXG Y,B
EXG Y,CCR
EXG Y,TMP2
EXG Y,D
EXG Y,X
EXG Y,Y
EXG Y,SP

1110 X000
1110 X001
1110 X010
1110 X011
1110 X100
1110 X101
1110 X110
1110 X111

B7 E0
B7 E1
B7 E2
B7 E3
B7 E4
B7 E5
B7 E6
B7 E7

YL⇒A, $00:A⇒Y
YL⇒B, $FF:B⇒Y
YL⇒CCR, $FF:CCR⇒Y
Y⇔TMP2
Y⇔D
Y⇔X
Y⇔Y
Y⇔SP

EXG TMP3,A
EXG TMP3,B
EXG TMP3,CCR
EXG TMP3,TMP2
EXG TMP3,D
EXG TMP3,X
EXG TMP3,Y
EXG TMP3,SP

1011 X000
1011 X001
1011 X010
1011 X011
1011 X100
1011 X101
1011 X110
1011 X111

B7 B0
B7 B1
B7 B2
B7 B3
B7 B4
B7 B5
B7 B6
B7 B7

TMP3L⇒A, $00:A⇒TMP3
TMP3L⇒B, $FF:B⇒TMP3
TMP3L⇒CCR, $FF:CCR⇒TMP3
TMP3⇔TMP2
TMP3⇔D
TMP3⇔X
TMP3⇔Y
TMP3⇔SP

EXG SP,A
EXG SP,B
EXG SP,CCR
EXG SP,TMP2
EXG SP,D
EXG SP,X
EXG SP,Y
EXG SP,SP

1111 X000
1111 X001
1111 X010
1111 X011
1111 X100
1111 X101
1111 X110
1111 X111

B7 F0
B7 F1
B7 F2
B7 F3
B7 F4
B7 F5
B7 F6
B7 F7

SPL⇒A, $00:A⇒SP
SPL⇒B, $FF:B⇒SP
SPL⇒CCR, $FF:CCR⇒SP
SP⇔TMP2
SP⇔D
SP⇔X
SP⇔Y
SP⇔SP
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DIV
he
ted
Operation (D) ÷ (X) ⇒ X, remainder⇒ D

Divides an unsigned 16-bit numerator in D by an unsigned 16-bit denominator in X. 
the unsigned 16-bit quotient in X and the unsigned 16-bit remainder in D. If both the
numerator and the denominator are assumed to have radix points in the same positio
radix point of the quotient is to the left of bit 15. The numerator must be less than th
denominator. In the case of overflow (denominator is less than or equal to the nume
or division by 0, the quotient is set to $FFFF and the remainder is indeterminate.

FDIV is equivalent to multiplying the numerator by 216and then performing 32 x 16-bit
integer division. The result is interpreted as a binary-weighted fraction, which resulte
from the division of a 16-bit integer by a larger 16-bit integer. A result of $0001
corresponds to 0.000015, and $FFFF corresponds to 0.9998. The remainder of an I
instruction can be resolved into a binary-weighted fraction by an FDIV instruction. T
remainder of an FDIV instruction can be resolved into the next 16 bits of binary-weigh
fraction by another FDIV instruction.

CCR
Effects

Code and
CPU
Cycles

FDIV Fractional Divide FDIV

S X H I N Z V C

– – – – – ∆ ∆ ∆

Z: Set if quotient is $0000; cleared otherwise
V: Set if the denominator X is less than or equal to the numerator D; cleared otherwise
C: X15 • X14 • X13 • X12 • . . . • X3 • X2 • X1 • X0; set if denominator is $0000; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

FDIV INH 18 11 OffffffffffO
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ng
the
Operation (counter) + 1⇒ counter
If (counter) = 0, then (PC) + $0003 + rel⇒ PC

Adds one to the counter register A, B, D, X, Y, or SP. Branches to a relative destinatio
the counter register reaches zero. Rel is a 9-bit two’s complement offset for branchi
forward or backward in memory. Branching range is $100 to $0FF (–256 to +255) from
address following the last byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

IBEQ Increment and Branch if Equal to Zero IBEQ

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

IBEQ abdxysp, rel9 REL
04 lb rr PPP (branch)

PPO (no branch)

Loop Primitive Postbyte ( lb ) Coding

Source
Form Postbyte 1

NOTES:
1. Bits 7:6:5 select IBEQ or IBNE; bit 4 is the offset sign bit: bit 3 is not used; bits 2:1:0 select the

counter register.

Object
Code

Counter
Register Offset

IBEQ A, rel9
IBEQ B, rel9
IBEQ D, rel9
IBEQ X, rel9
IBEQ Y, rel9
IBEQ SP, rel9

1000 X000
1000 X001
1000 X100
1000 X101
1000 X110
1000 X111

04 80 rr
04 81 rr
04 84 rr
04 85 rr
04 86 rr
04 87 rr

A
B
D
X
Y

SP

Positive

IBEQ A, rel9
IBEQ B, rel9
IBEQ D, rel9
IBEQ X, rel9
IBEQ Y, rel9
IBEQ SP, rel9

1001 X000
1001 X001
1001 X100
1001 X101
1001 X110
1001 X111

04 90 rr
04 91 rr
04 94 rr
04 95 rr
04 96 rr
04 97 rr

A
B
D
X
Y

SP

Negative
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n if

to
Operation (counter) + 1⇒ counter
If (counter)≠ 0, then (PC) + $0003 + rel⇒ PC

Adds one to the counter register A, B, D, X, Y, or SP. Branches to a relative destinatio
the counter register does not reach zero.Rel is a 9-bit two’s complement offset for
branching forward or backward in memory. Branching range is $100 to $0FF (–256 
+255) from the address following the last byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

IBNE Increment and Branch if Not Equal to Zero IBNE

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

IBNE abdxysp, rel9 REL
04 lb rr PPP (branch)

PPO (no branch)

Loop Primitive Postbyte ( lb ) Coding

Source
Form Postbyte 1

NOTES:
1. Bits 7:6:5 select IBEQ or IBNE; bit 4 is the offset sign bit: bit 3 is not used; bits 2:1:0 select the

counter register.

Object
Code

Counter
Register Offset

IBNE A, rel9
IBNE B, rel9
IBNE D, rel9
IBNE X, rel9
IBNE Y, rel9
IBNE SP, rel9

1010 X000
1010 X001
1010 X100
1010 X101
1010 X110
1010 X111

04 A0 rr
04 A1 rr
04 A4 rr
04 A5 rr
04 A6 rr
04 A7 rr

A
B
D
X
Y

SP

Positive

IBNE A, rel9
IBNE B, rel9
IBNE D, rel9
IBNE X, rel9
IBNE Y, rel9
IBNE SP, rel9

1011 X000
1011 X001
1011 X100
1011 X101
1011 X110
1011 X111

04 B0 rr
04 B1 rr
04 B4 rr
04 B5 rr
04 B6 rr
04 B7 rr

A
B
D
X
Y

SP

Negative
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isor
int of
FF,
Operation (D) ÷ (X) ⇒ X; remainder⇒ D

Divides an unsigned 16-bit dividend in D by an unsigned 16-bit divisor in X. Puts the
unsigned 16-bit quotient in X and the unsigned 16-bit remainder in D. If both the div
and the dividend are assumed to have radix points in the same positions, the radix po
the quotient is to the right of bit 0. In the case of division by 0, the quotient is set to $FF
and the remainder is indeterminate.

CCR
Effects

Code and
CPU
Cycles

IDIV Integer Divide, Unsigned IDIV

S X H I N Z V C

– – – – – ∆ 0 ∆

Z: Set if quotient is $0000; cleared otherwise
V: Cleared
C: X15 • X14 • X13 • X12 ... • X3 • X2 • X1 • X0; set if denominator is $0000; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

IDIV INH 18 10 OffffffffffO
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-bit
ues

 is:

mber
Operation (D) ÷ (X) ⇒ X; remainder⇒ D

Divides a signed 16-bit dividend in D by a signed 16-bit divisor in X. Puts the signed 16
quotient in X and the signed 16-bit remainder in D. If division by 0 is attempted, the val
in D and X do not change, but the N, Z, and V bits are undefined.

Other than division by 0, which is not legal and sets the C bit, the only overflow case

But the highest positive value that can be represented in a 16-bit two’s complement nu
is 32,767 ($7FFFF).

CCR
Effects

Code and
CPU
Cycles

IDIVS Integer Divide, Signed IDIVS

$8000
$FFFF
------------------

–32,768
–1

−−−−−−−−−−−−− +32,768= =

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of quotient is set; cleared otherwise; undefined after overflow or division by 0
Z: Set if quotient is $0000; cleared otherwise; undefined after overflow or division by 0
V: Set if the quotient is greater than $7FFF or less than $8000; cleared otherwise; undefined after division by

0
C: X15 • X14 • X13 • X12 •... • X3 • X2 • X1 • X0; set if denominator is $0000; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

IDIVS INH 18 15 OffffffffffO
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e C
 loop

n be
gned
Operation (M) + $01⇒ M

Adds one to the value in M. The N, Z, and V bits reflect the result of the operation. Th
bit is not affected by the operation, thus allowing the INC instruction to be used as a
counter in multiple-precision computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE branches ca
expected to perform consistently. When operating on two’s complement values, all si
branches are available.

CCR
Effects

Code and
CPU
Cycles

INC Increment M INC

S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Set if the operation produces a two’s complement overflow (if and only if (M) was $7F before the

operation); cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

INC opr16a
INC oprx0_xysppc
INC oprx9,xysppc
INC oprx16,xysppc
INC [D,xysppc]
INC [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

72 hh ll
62 xb
62 xb ff
62 xb ee ff
62 xb
62 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
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e C
 loop

n be
gned
Operation (A) + $01⇒ A

Adds one to the value in A. The N, Z and V bits reflect the result of the operation. Th
bit is not affected by the operation, thus allowing the INC instruction to be used as a
counter in multiple-precision computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE branches ca
expected to perform consistently. When operating on two’s complement values, all si
branches are available.

CCR
Effects

Code and
CPU
Cycles

INCA Increment A INCA

S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Set if the operation produces a two’s complement overflow (if and only if (A) was $7F before the

operation); cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

INCA INH 42 O
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e C
 loop

n be
gned
Operation (B) + $01⇒ B

Adds one to the value in B. The N, Z and V bits reflect the result of the operation. Th
bit is not affected by the operation, thus allowing the INC instruction to be used as a
counter in multiple-precision computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE branches ca
expected to perform consistently. When operating on two’s complement values, all si
branches are available.

CCR
Effects

Code and
CPU
Cycles

INCB Increment B INCB

S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Set if the operation produces a two’s complement overflow (if and only if (B) was $7F before the

operation); cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

INCB INH 52 O
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bits as
Operation (SP) + $0001⇒ SP

Adds one to SP. INS assembles as LEAS 1,SP. INS does not affect condition code 
INX and INY instructions do.

CCR
Effects

Code and
CPU
Cycles

INS Increment SP
(same as LEAS 1,SP) INS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

INS IDX 1B 81 Pf
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bit.
e.
Operation (X) + $0001⇒ X

Adds one to X. LEAX 1,X can produce the same result but LEAX does not affect the Z
Although the LEAX instruction is more flexible, INX requires only one byte of object cod

CCR
Effects

Code and
CPU
Cycles

INX Increment X INX

S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

INX INH 08 O
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bit.
e.
Operation (Y) + $0001⇒ Y

Adds one to Y. LEAY 1,Y can produce the same result but LEAY does not affect the Z
Although the LEAY instruction is more flexible, INY requires only one byte of object cod

CCR
Effects

Code and
CPU
Cycles

INY Increment Y INY

S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

INY INH 02 O
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ained
Operation Subroutine address⇒ PC

Jumps to the instruction stored at the effective address. The effective address is obt
according to the rules for extended or indexed addressing.

CCR
Effects

Code and
CPU
Cycles

JMP Jump JMP

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

JMP opr16a
JMP oprx0_xysppc
JMP oprx9,xysppc
JMP oprx16,xysppc
JMP [D,xysppc]
JMP [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

06 hh ll
05 xb
05 xb ff
05 xb ee ff
05 xb
05 xb ee ff

PPP
PPP
PPP
fPPP
fIfPPP
fIfPPP
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tine.

d

urn
Operation (SP) – $0002⇒ SP
RTNH:RTNL ⇒ (MSP):(MSP + 1)

Subroutine address⇒ PC

Sets up conditions to return to normal program flow, then transfers control to a subrou
Uses the address of the instruction following the JSR as a return address.

Decrements SP by two, to allow the two bytes of the return address to be stacked.

Stacks the return address (SP points to the high byte of the return address).

Calculates an effective address according to the rules for extended, direct, or indexe
addressing.

Jumps to the location determined by the effective address.

Subroutines are normally terminated with an RTS instruction, which restores the ret
address from the stack.

CCR
Effects

Code and
CPU
Cycles

JSR Jump to Subroutine JSR

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

JSR opr8a
JSR opr16a
JSR oprx0_xysppc
JSR oprx9,xysppc
JSR oprx16,xysppc
JSR [D,xysppc]
JSR [oprx16,xysppc]

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

17 dd
16 hh ll
15 xb
15 xb ff
15 xb ee ff
15 xb
15 xb ee ff

SPPP
SPPP
PPPS
PPPS
fPPPS
fIfPPPS
fIfPPPS
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Operation If C = 0, then (PC) + $0004 + rel⇒ PC

Tests the C bit and branches if C = 0.

CCR
Effects

Code and
CPU
Cycles

LBCC Long Branch if C Clear
(same as LBHS) LBCC

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBCC rel16 REL
18 24 qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBCC/LBHS 18 24

(R) ≥ (M)
or
(B) ≥ (A) LBCS/LBLO 18 25

(R) < (M)
or
(B) < (A) Unsigned

C = 0 C = 1

LBGE 2C

(R) ≥ (M)
or
(B) ≥ (A) LBLT 18 2D

(R) < (M)
or
(B) < (A) Signed

N ⊕ V = 0 N ⊕ V = 1
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Operation If C = 1, then (PC) + $0004 + rel⇒ PC

Tests the C bit and branches if C = 1.

CCR
Effects

Code and
CPU
Cycles

LBCS Long Branch if C Set
(same as LBLO) LBCS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBCS rel16 REL
18 25 qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBCS/LBLO 18 25

(R) < (M)
or
(B) < (A) LBCC/LBHS 18 24

(R) ≥ (M)
or
(B) ≥ (A) Unsigned

C = 1 C = 0

LBLT 18 2D

(R) < (M)
or
(B) < (A) LBGE 18 2C

(R) ≥ (M)
or
(B) ≥ (A) Signed

N ⊕ V = 1 N ⊕ V = 0
390



Core User Guide — S12CPU15UG V1.2

y.
last
Operation If Z = 1, (PC) + $0004 + rel⇒ PC

Tests the Z bit and branches if Z = 1.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBEQ Long Branch if Equal LBEQ

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBEQ rel16 REL
18 27 qq rr OPPP (no branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBEQ 18 27

(R) = (M)
or
(R) = zero LBNE 18 26

(R) ≠ (M)
or
(R) ≠ zero

Signed,
unsigned or
simple

Z = 1 Z = 0
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nt
r
ue in
the

y.
last
Operation If N ⊕ V = 0, (PC) + $0004 + rel⇒ PC

LBGE can be used to branch after subtracting or comparing signed two’s compleme
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, o
SUBD, the branch occurs if the CPU register value is greater than or equal to the val
M. After CBA or SBA, the branch occurs if the value in B is greater than or equal to 
value in A.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBGE Long Branch if Greater Than or Equal to
Zero LBGE

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBGE rel16 REL
18 2C qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBGE 18 2C

(R) ≥ (M)
or
(B) ≥ (A) LBLT 18 2D

(R) < (M)
or
(B) < (A) Signed

N ⊕ V = 0 N ⊕ V = 1

LBHS/LBCC 18 24

(R) ≥ (M)
or
(B) ≥ (A) LBLO/LBCS 18 25

(R) < (M)
or
(B) < (A) Unsigned

C = 0 C = 1
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nt
r
fter

y.
last
Operation If Z | (N ⊕ V) = 0, then (PC) + $0004 + rel⇒ PC

LBGT can be used to branch after subtracting or comparing signed two’s compleme
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, o
SUBD, the branch occurs if the CPU register value is greater than the value in M. A
CBA or SBA, the branch occurs if the value in B is greater than the value in A.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBGT Long Branch if Greater Than Zero LBGT

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBGT rel16 REL
18 2E qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBGT 18 2E

(R) > (M)
or
(B) > (A) LBLE 18 2F

(R) ≤ (M)
or
(B) ≤ (A) Signed

Z | (N ⊕ V) = 0 Z | (N ⊕ V) = 1

LBHI 18 22

(R) > (M)
or
(B) > (A) LBLS 18 23

(R) ≤ (M)
or
(B) ≤ (A) Unsigned

C | Z = 0 C | Z = 1
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PA,
urs
h

y.
last
Operation If C | Z = 0, then (PC) + $0004 + rel⇒ PC

LBHI can be used to branch after subtracting or comparing unsigned values. After CM
CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occ
if the CPU register value is greater than the value in M. After CBA or SBA, the branc
occurs if the value in B is greater than the value in A.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBHI Long Branch if Higher LBHI

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBHI rel16 REL
18 22 qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBHI 18 22

(R) > (M)
or
(B) > (A) LBLS 18 23

(R) ≤ (M)
or
(B) ≤ (A) Unsigned

C | Z = 0 C | Z = 1

LBGT 18 2E

(R) > (M)
or
(B) > (A) LBLE 18 2F

(R) ≤ (M)
or
(B) ≤ (A) Signed

Z | (N ⊕ V) = 0 Z | (N ⊕ V) = 1
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PA,
urs
the

y.
last
Operation If C = 0, then (PC) + $0004 + rel⇒ PC

LBHS can be used to branch after subtracting or comparing unsigned values. After CM
CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occ
if the CPU register value is greater than or equal to the value in M. After CBA or SBA,
branch occurs if the value in B is greater than or equal to the value in A.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBHS Long Branch if Higher or Same
(same as LBCC) LBHS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBHS rel16 REL
18 24 qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBHS/LBCC 18 24

(R) ≥ (M)
or
(B) ≥ (A) LBLO/LBCS 18 25

(R) < (M)
or
(B) < (A) Unsigned

C = 0 C = 1

LBGE 18 2C

(R) ≥ (M)
or
(B) ≥ (A) LBLT 18 2D

(R) < (M)
or
(B) < (A) Signed

N ⊕ V = 0 N ⊕ V = 1
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nt
r
n M.
n A.

y.
last
Operation If Z | (N ⊕ V) = 1, then (PC) + $0004 + rel⇒ PC

LBLE can be used to branch after subtracting or comparing signed two’s compleme
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, o
SUBD, the branch occurs if the CPU register value is less than or equal to the value i
After CBA or SBA, the branch occurs if the value in B is less than or equal to the value i

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBLE Long Branch if Less Than or Equal to Zero LBLE

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBLE rel16 REL
18 2F qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBLE 18 2F

(R) ≤ (M)
or
(B) ≤ (A) LBGT 18 2E

(R) > (M)
or
(B) > (A) Signed

Z | (N ⊕ V) = 1 Z | (N ⊕ V) = 0

LBLS 18 23

(R) ≤ (M)
or
(B) ≤ (A) LBHI 18 22

(R) > (M)
or
(B) > (A) Unsigned

C | Z = 1 C | Z = 0
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PA,
urs
urs

y.
last
Operation If C = 1, then (PC) + $0004 + rel⇒ PC

LBLO can be used to branch after subtracting or comparing unsigned values. After CM
CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occ
if the CPU register value is less than the value in M. After CBA or SBA, the branch occ
if the value in B is less than the value in A.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBLO Long Branch if Lower
(same as LBCS) LBLO

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBLO rel16 REL
18 25 qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBLO/LBCS 18 25

(R) < (M)
or
(B) < (A) LBHS/LBCC 18 24

(R) ≥ (M)
or
(B) ≥ (A) Unsigned

C = 1 C = 0

LBLT 18 2D

(R) < (M)
or
(B) < (A) LBGE 18 2C

(R) ≥ (M)
or
(B) ≥ (A) Signed

N ⊕ V = 1 N ⊕ V = 0
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PA,
urs
he

y.
last
Operation If C | Z = 1, then (PC) + $0004 + rel⇒ PC

LBLS can be used to branch after subtracting or comparing unsigned values. After CM
CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occ
if the CPU register value is less than or equal to the value in M. After CBA or SBA, t
branch occurs if the value in B is less than or equal to the value in A.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBLS Long Branch if Lower or Same LBLS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBLS rel16 REL
18 23 qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBLS 18 23

(R) ≤ (M)
or
(B) ≤ (A) LBHI 18 22

(R) > (M)
or
(B) > (A) Unsigned

C | Z = 1 C | Z = 0

LBLE 18 2F

(R) ≤ (M)
or
(B) ≤ (A) LBGT 18 2E

(R) > (M)
or
(B) > (A) Signed

Z | (N ⊕ V) = 1 Z | (N ⊕ V) = 0
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t
r
BA

y.
last
Operation If N ⊕ V = 1, (PC) + $0004 + rel⇒ PC

LBLT can be used to branch after subtracting or comparing signed two’s complemen
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, o
SUBD, the branch occurs if the CPU register value is less than the value in M. After C
or SBA, the branch occurs if the value in B is less than the value in A.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBLT Long Branch if Less Than Zero LBLT

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBLT rel16 REL
18 2D qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBLT 18 2D

(R) < (M)
or
(B) < (A) LBGE 18 2C

(R) ≥ (M)
or
(B) ≥ (A) Signed

N ⊕ V = 1 N ⊕ V = 0

LBLO/LBCS 18 25

(R) < (M)
or
(B) < (A) LBHS/LBCC 18 24

(R) ≥ (M)
or
(B) ≥ (A) Unsigned

C = 1 C = 0
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y.
last
Operation If N = 1, then (PC) + $0004 + rel⇒ PC

Tests the N bit and branches if N = 1.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBMI Long Branch if Minus LBMI

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBMI rel16 REL
18 2B qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBMI 18 2B
Negative

LBPL 18 2A
Positive

Simple
N = 1 N = 0
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y.
last
Operation If Z = 0, then (PC) + $0004 + rel⇒ PC

Tests the Z bit and branches if Z = 0.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBNE Long Branch if Not Equal to Zero LBNE

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBNE rel16 REL
18 26 qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBNE 18 26

(R) ≠ (M)
or
(R) ≠ zero LBEQ 18 27

(R) = (M)
or
(R) = zero

Signed,
unsigned, or
simple

Z = 0 Z = 1
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y.
last
Operation If N = 0, then (PC) + $0004 + rel⇒ PC

Tests the N bit and branches if N = 0.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBPL Long Branch if Plus LBPL

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBPL rel16 REL
18 2A qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBPL 18 2A
Positive

LBMI 18 2B
Negative

Simple
N = 0 N = 1
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y.
last

use
. Since
Operation (PC) + $0004 + rel⇒ PC

Branches unconditionally.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

Execution time is longer when a conditional branch is taken than when it is not, beca
the instruction queue must be refilled before execution resumes at the new address
the LBRA branch condition is always satisfied, the branch is always taken, and the
instruction queue must always be refilled.

CCR
Effects

Code and
CPU
Cycles

LBRA Long Branch Always LBRA

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBRA rel16 REL 18 20 qq rr OPPP

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBRA 18 20 Always LBRN 18 21 Never Simple
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 is
is
ut
Operation (PC) + $0004⇒ PC

Never branches. LBRN is effectively a 4-byte NOP that requires three cycles. LBRN
included in the instruction set to provide a complement to the LBRA instruction. LBRN
useful during program debug to negate the effect of another branch instruction witho
disturbing the offset byte. A complement for LBRA is also useful in compiler
implementations.

CCR
Effects

Code and
CPU
Cycles

LBRN Long Branch Never LBRN

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBRN rel16 REL 18 21 qq rr OPO

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBRN 18 21 Never LBRA 18 20 Always Simple
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on
ws

alid.

y.
last
Operation If V = 0, then (PC) + $0004 + rel⇒ PC

Tests the V bit and branches if V = 0. LBVC causes a branch when a previous operation
two’s complement binary values does not cause an overflow. That is, when LBVC follo
a two’s complement operation, a branch occurs when the result of the operation is v

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBVC Long Branch if V Clear LBVC

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBVC rel16 REL
18 28 qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBVC 18 28
No overflow

LBVS 18 29
Overflow

Simple
V = 0 V = 1
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n on

y.
last
Operation If V = 1, then (PC) + $0004 + rel⇒ PC

Tests the V bit and branches if V = 1. LBVS causes a branch when a previous operatio
two’s complement values causes an overflow. That is, when LBVS follows a two’s
complement operation, a branch occurs when the result of the operation is invalid.

Rel is a 16-bit two’s complement offset for branching forward or backward in memor
Branching range is $8000 to $7FFF (–32768 to 32767) from the address following the
byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

LBVS Long Branch if V Set LBVS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LBVS rel16 REL
18 29 qq rr OPPP (branch)

OPO (no branch)

Branch Complementary Branch
Comment

Mnemonic Opcode Test Mnemonic Opcode Test

LBVS 18 29
Overflow

LBVC 18 28
No overflow

Simple
V = 1 V = 0
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Operation (M) ⇒ A
or
imm ⇒ A

Loads A with either the value in M or an immediate value.

CCR
Effects

Code and
CPU
Cycles

LDAA Load A LDAA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LDAA #opr8i
LDAA opr8a
LDAA opr16a
LDAA oprx0_xysppc
LDAA oprx9,xysppc
LDAA oprx16,xysppc
LDAA [D,xysppc]
LDAA [oprx16,xysppc

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

86 ii
96 dd
B6 hh ll
A6 xb
A6 xb ff
A6 xb ee ff
A6 xb
A6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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Operation (M) ⇒ B
or
imm ⇒ B

Loads B with either the value in M or an immediate value.

CCR
Effects

Code and
CPU
Cycles

LDAB Load B LDAB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LDAB #opr8i
LDAB opr8a
LDAB opr16a
LDAB oprx0_xysppc
LDAB oprx9,xysppc
LDAB oprx16,xysppc
LDAB [D,xysppc]
LDAB [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C6 ii
D6 dd
F6 hh ll
E6 xb
E6 xb ff
E6 xb ee ff
E6 xb
E6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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Operation (M):(M + 1) ⇒ A:B
or
imm ⇒ A:B

Loads A with the value in M and loads B with the value in M:M+ 1 or loads A:B with an
immediate value.

CCR
Effects

Code and
CPU
Cycles

LDD Load D LDD

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LDD #opr16i
LDD opr8a
LDD opr16a
LDD oprx0_xysppc
LDD oprx9,xysppc
LDD oprx16,xysppc
LDD [D,xysppc]
LDD [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CC jj kk
DC dd
FC hh ll
EC xb
EC xb ff
EC xb ee ff
EC xb
EC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf
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or
Operation (M):(M + 1) ⇒ SP
or
imm ⇒ SP

Loads the high byte of SP with the value in M and the low byte with the value in M + 1
loads SP with an immediate value.

CCR
Effects

Code and
CPU
Cycles

LDS Load SP LDS

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LDS #opr16i
LDS opr8a
LDS opr16a
LDS oprx0_xysppc
LDS oprx9,xysppc
LDS oprx16,xysppc
LDS [D,xysppc]
LDS [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CF jj kk
DF dd
FF hh ll
EF xb
EF xb ff
EF xb ee ff
EF xb
EF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf
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X

Operation (M):(M + 1) ⇒ X
or
imm ⇒ X

Loads the high byte of X with value in M and low byte with the value in M + 1 or loads
with an immediate value.

CCR
Effects

Code and
CPU
Cycles

LDX Load X LDX

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LDX #opr16i
LDX opr8a
LDX opr16a
LDX oprx0_xysppc
LDX oprx9,xysppc
LDX oprx16,xysppc
LDX [D,xysppc]
LDX [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CE jj kk
DE dd
FE hh ll
EE xb
EE xb ff
EE xb ee ff
EE xb
EE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf
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 or
Operation (M):(M + 1) ⇒ Y
or
imm ⇒ Y

Loads the high byte of Y with the value in M and the low byte with the value in M + 1
loads Y with an immediate value.

CCR
Effects

Code and
CPU
Cycles

LDY Load Y LDY

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LDY #opr16i
LDY opr8a
LDY opr16a
LDY oprx0_xysppc
LDY oprx9,xysppc
LDY oprx16,xysppc
LDY [D,xysppc]
LDY [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CD jj kk
DD dd
FD hh ll
ED xb
ED xb ff
ED xb ee ff
ED xb
ED xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf
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ctive
ddress.
stant
 PC.

ing

th the
n SP.
Operation Effective address⇒ SP

Loads the stack pointer with an effective address specified by the program. The effe
address can be any indexed addressing mode operand address except an indirect a
Indexed addressing mode operand addresses are formed by adding an optional con
supplied by the program or an accumulator value to the current value in X, Y, SP, or

LEAS does not alter condition code bits. This allows stack modification without disturb
CCR bits changed by recent arithmetic operations.

When SP is the indexing register, a predecrement or preincrement LEAS loads SP wi
changed value. A postdecrement or postincrement LEAS does not affect the value i

CCR
Effects

Code and
CPU
Cycles

LEAS Load Effective Address into SP LEAS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LEAS oprx0_xysppc
LEAS oprx9,xysppc
LEAS oprx16,xysppc

IDX
IDX1
IDX2

1B xb
1B xb ff
1B xb ee ff

Pf
PO
PP
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an be

lied by

 the
n X.
Operation Effective address⇒ X

Loads X with an effective address specified by the program. The effective address c
any indexed addressing mode operand address except an indirect address. Indexed
addressing mode operand addresses are formed by adding an optional constant supp
the program or an accumulator value to the current value in X, Y, SP, or PC.

When X is the indexing register, a predecrement or preincrement LEAX loads X with
changed value. A postdecrement or postincrement LEAX does not affect the value i

CCR
Effects

Code and
CPU
Cycles

LEAX Load Effective Address into X LEAX

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LEAX oprx0_xysppc
LEAX oprx9,xysppc
LEAX oprx16,xysppc

IDX
IDX1
IDX2

1A xb
1A xb ff
1A xb ee ff

Pf
PO
PP
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an be

lied by

 the
n Y.
Operation Effective address⇒ Y

Loads Y with an effective address specified by the program. The effective address c
any indexed addressing mode operand address except an indirect address. Indexed
addressing mode operand addresses are formed by adding an optional constant supp
the program or an accumulator value to the current value in X, Y, SP, or PC.

When Y is the indexing register, a predecrement or preincrement LEAY loads Y with
changed value. A postdecrement or postincrement LEAY does not affect the value i

CCR
Effects

Code and
CPU
Cycles

LEAY Load Effective Address into Y LEAY

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LEAY oprx0_xysppc
LEAY oprx9,xysppc
LEAY oprx16,xysppc

IDX
IDX1
IDX2

19 xb
19 xb ff
19 xb ee ff

Pf
PO
PP
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he
Operation

Shifts all bits of the M one place to the left. Loads bit 0 with 0. Loads the C bit from t
most significant bit of M.

CCR
Effects

Code and
CPU
Cycles

LSL Logical Shift Left M
(same as ASL) LSL

b7 b6 b5 b4 b3 b2 b1 b0C 0

M

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] (for N and C after the shift); set if (N is set and C is cleared) or (N is cleared and

C is set); cleared otherwise (for values of N and C after the shift)
C: M7; set if the LSB of M was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LSL opr16a
LSL oprx0_xysppc
LSL oprx9,xysppc
LSL oprx16,xysppc
LSL [D,xysppc]
LSL [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff

rPwO
rPw
rPwO
frPPw
fIfrPw
fIPrPw
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ost
Operation

Shifts all bits of A one place to the left. Loads bit 0 with 0. Loads the C bit is from the m
significant bit of A.

CCR
Effects

Code and
CPU
Cycles

LSLA Logical Shift Left A
(same as ASLA) LSLA

b7 b6 b5 b4 b3 b2 b1 b0C 0

A

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] (for N and C after the shift); set if (N is set and C is cleared) or (N is cleared and

C is set); cleared otherwise (for values of N and C after the shift)
C: A7; set if the LSB of A was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LSLA INH 48 O
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ost
Operation

Shifts all bits of B one place to the left. Loads bit 0 with 0. Loads the C bit from the m
significant bit of B.

CCR
Effects

Code and
CPU
Cycles

LSLB Logical Shift Left B
(same as ASLB) LSLB

b7 b6 b5 b4 b3 b2 b1 b0C 0

B

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] (for N and C after the shift); set if (N is set and C is cleared) or (N is cleared and

C is set); cleared otherwise (for values of N and C after the shift)
C: B7; set if the LSB of B was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LSLB INH 58 O
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ost
Operation

Shifts all bits of D one place to the left. Loads bit 0 with 0. Loads the C bit from the m
significant bit of A.

CCR
Effects

Code and
CPU
Cycles

LSLD Logical Shift Left D
(same as ASLD) LSLD

0b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0C

BA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] (for N and C after the shift); set if (N is set and C is cleared) or (N is cleared and

C is set); cleared otherwise (for values of N and C after the shift)
C: D15; set if the MSB of D was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LSLD INH 59 O
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ast
Operation

Shifts all bits of M one place to the right. Loads bit 7 with 0. Loads the C bit from the le
significant bit of M.

CCR
Effects

Code and
CPU
Cycles

LSR Logical Shift Right M LSR
b7 b6 b5 b4 b3 b2 b1 b00

M

C

S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: Cleared
Z: Set if result is $00; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] (for N and C after the shift); set if (N is set and C is cleared) or (N is cleared and

C is set); cleared otherwise (for values of N and C after the shift)
C: M0; set if the LSB of M was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LSR opr16a
LSR oprx0_xysppc
LSR oprx9,xysppc
LSR oprx16,xysppc
LSR [D,xysppc]
LSR [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

74 hh ll
64 xb
64 xb ff
64 xb ee ff
64 xb
64 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
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ast
Operation

Shifts all bits of A one place to the right. Loads bit 7 with 0. Loads the C bit from the le
significant bit of A.

CCR
Effects

Code and
CPU
Cycles

LSRA Logical Shift Right A LSRA
b7 b6 b5 b4 b3 b2 b1 b00

A

C

S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: Cleared
Z: Set if result is $00; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] (for N and C after the shift); set if (N is set and C is cleared) or (N is cleared and

C is set); cleared otherwise (for values of N and C after the shift)
C: A0; set if the LSB of A was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LSRA INH 44 O
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ast
Operation

Shifts all bits of B one place to the right. Loads bit 7 with 0. Loads the C bit from the le
significant bit of B.

CCR
Effects

Code and
CPU
Cycles

LSRB Logical Shift Right B LSRB
b7 b6 b5 b4 b3 b2 b1 b00

B

C

S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: Cleared
Z: Set if result is $00; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] (for N and C after the shift); set if (N is set and C is cleared) or (N is cleared and

C is set); cleared otherwise (for values of N and C after the shift)
C: B0; set if the LSB of B was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LSRB INH 54 O
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0

Operation

Shifts all bits of D one place to the right. Loads D15 (A7) with 0. Loads the C bit from D
(B0).

CCR
Effects

Code and
CPU
Cycles

LSRD Logical Shift Right D LSRD
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b00

BA

C

S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: Cleared
Z: Set if result is $0000; cleared otherwise
V: D0; set if, after the shift operation, C is set; cleared otherwise
C: D0; set if the LSB of D was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

LSRD INH 49 O
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e
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e in
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Operation MAX [(A), (M)] ⇒ A

Subtracts an unsigned 8-bit value in M from an unsigned 8-bit value in A to determin
which is larger. Puts the larger value in A. If the values are equal, the Z bit is set. If the v
in M is larger, the C bit is set when the value in M replaces the value in A. If the valu
A is larger, the C bit is cleared.

MAXA accesses memory with indexed addressing modes for flexibility in specifying
operand addresses. Autoincrement and autodecrement functions can facilitate findin
largest value in a list of values.

CCR
Effects

Code and
CPU
Cycles

MAXA Maximum in A MAXA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 • M7 • R7 | A7 • M7 • R7; set if the operation produces a two’s complement overflow; cleared

otherwise
C: A7 • M7 | M7 • R7 | R7 • A7; set if (M) is larger than (A); cleared otherwise
Condition code bits reflect internal subtraction: R = (A) – (M).

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

MAXA oprx0_xysppc
MAXA oprx9,xysppc
MAXA oprx16,xysppc
MAXA [D,xysppc]
MAXA [oprx16,xysppc]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 18 xb
18 18 xb ff
18 18 xb ee ff
18 18 xb
18 18 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf
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e
the
the
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Operation MAX [(A), (M)] ⇒ M

Subtracts an unsigned 8-bit value in M from an unsigned 8-bit value in A to determin
which is larger. Puts the larger value in M. If the values are equal, the Z bit is set. If 
value in M is larger, the C bit is set. If the value in A is larger, the C bit is cleared when
value in A replaces the value in M.

MAXM accesses memory with indexed addressing modes for flexibility in specifying
operand addresses. Autoincrement and autodecrement functions can facilitate contr
the values in a list of values.

CCR
Effects

Code and
CPU
Cycles

MAXM Maximum in M MAXM

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 • M7 • R7 | A7 • M7 • R7; set if the operation produces a two’s complement overflow; cleared

otherwise
C: A7 • M7 | M7 • R7 | R7 • A7; set if (M) is larger than (A); cleared otherwise
Condition code bits reflect internal subtraction: R = (A) – (M).

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

MAXM oprx0_xysppc
MAXM oprx9,xysppc
MAXM oprx16,xysppc
MAXM [D,xysppc]
MAXM [oprx16,xysppc]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1C xb
18 1C xb ff
18 1C xb ee ff
18 1C xb
18 1C xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw
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nt_2

is
Operation Grade of membership⇒ MY
(Y) + $0001⇒ Y
(X) + $0004⇒ X

Before executing MEM, initialize A, X and Y. Load A with the current crisp value of a
system input variable. Load Y with the fuzzy input RAM location where the grade of
membership is to be stored. Load X with the first address of a 4-byte data structure 
describes a trapezoidal membership function. The data structure consists of:

• Point_1 — The x-axis starting point for the leading side (at MX)

• Slope_1 — The slope of the leading side (at MX + 1)

• Point_2 — The x-axis position of the rightmost point (at MX + 2)

• Slope_2 — The slope of the trailing side (at MX + 3)

A slope_1 or slope_2 value of $00 is a special case in which the membership function e
starts with a grade of $FF at input = point_1, or ends with a grade of $FF at input = poi
(infinite slope).

During execution, the value of A remains the same. X is incremented by four and Y 
incremented by one.

CCR
Effects

Code and
CPU
Cycles

MEM Determine Grade of Membership
(Fuzzy Logic) MEM

S X H I N Z V C

– – ? – ? ? ? ?

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

MEM Special 01 RRfOw
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e
f the
the

g the
Operation MIN [(A), (M)] ⇒ A

Subtracts an unsigned 8-bit value in M from an unsigned 8-bit value in A to determin
which is larger. Puts the smaller value in A. If the values are equal, the Z bit is set. I
value in M is larger, the C bit is set. If the value in A is larger, the C bit is cleared when
value in M replaces the value in A.

MINA accesses memory with indexed addressing modes for flexibility in specifying
operand addresses. Autoincrement and autodecrement functions can facilitate findin
smallest value in a list of values.

CCR
Effects

Code and
CPU
Cycles

MINA Minimum in A MINA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 • M7 • R7 | A7 • M7 • R7; set if the operation produced a two’s complement overflow; cleared

otherwise
C: A7 • M7 | M7 • R7 | R7 • A7; set if the value of the value in M is larger than the value in A; cleared

otherwise
Condition codes reflect internal subtraction R = (A) – (M).

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

MINA oprx0_xysppc
MINA oprx9,xysppc
MINA oprx16,xysppc
MINA [D,xysppc]
MINA [oprx16,xysppc]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 19 xb
18 19 xb ff
18 19 xb ee ff
18 19 xb
18 19 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf
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e
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Operation MIN [(A), (M)] ⇒ M

Subtracts an unsigned 8-bit value in M from an unsigned 8-bit value in A to determin
which is larger. Puts the smaller value in M. If the values are equal, the Z bit is set. I
value in M is larger, the C bit is set when the value in A replaces the value in M. If the va
in A is larger, the C bit is cleared.

MINM accesses memory with indexed addressing modes for flexibility in specifying
operand addresses. Autoincrement and autodecrement functions can facilitate contr
the values in a list of values.

CCR
Effects

Code and
CPU
Cycles

MINM Minimum in M MINM

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 • M7 • R7 | A7 • M7 • R7; set if the operation produced a two’s complement overflow; cleared

otherwise
C: A7 • M7 | M7 • R7 | R7 • A7; set if the value in M is larger than the value in A; cleared otherwise
Condition codes reflect internal subtraction R = (A) – (M).

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

MINM oprx0_xysppc
MINM oprx9,xysppc
MINM oprx16,xysppc
MINM [D,xysppc]
MINM [oprx16,xysppc]

IDX
IDX1
IDX2
[D,IDX]
[IDX2]

18 1D xb
18 1D xb ff
18 1D xb ee ff
18 1D xb
18 1D xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw
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ination

tant
ct
Operation (M1) ⇒ M2

Moves the value in one 8-bit memory location, M1, to another 8-bit memory location, M2.
The value in M1 does not change.

Move instructions can use different addressing modes to access the source and dest
of a move. Supported addressing mode combinations are: IMM–EXT, IMM–IDX,
EXT–EXT, EXT–IDX, IDX–EXT, and IDX–IDX. IDX operands allow indexed
addressing mode specifications that fit in a single postbyte; including 5-bit constant,
accumulator offsets, and autoincrement/decrement modes. Nine-bit and 16-bit cons
offsets would require additional extension bytes and are not allowed. Indexed-indire
modes (for example [D,r]) are also not allowed.

CCR
Effects

Code and
CPU
Cycles

MOVB Move Byte MOVB

S X H I N Z V C

– – – – – – – –

Source Form 1

NOTES:
1. The first operand in the source code statement specifies the source for the move.

Address
Mode

Machine
Code (Hex) CPU Cycles

MOVB #opr8, opr16a
MOVB #opr8i, oprx0_xysppc
MOVB opr16a, opr16a
MOVB opr16a, oprx0_xysppc
MOVB oprx0_xysppc, opr16a
MOVB oprx0_xysppc, oprx0_xysppc

IMM–EXT
IMM–IDX
EXT–EXT
EXT–IDX
IDX–EXT
IDX–IDX

18 0B ii hh ll
18 08 xb ii
18 0C hh ll hh ll
18 09 xb hh ll
18 0D xb hh ll
18 0A xb xb

OPwP
OPwO
OrPwPO
OPrPw
OrPwP
OrPwO
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ination

6-bit
Operation (M1):(M1 + 1)⇒ M2:M2 + 1

Moves the value in one 16-bit memory location, M1:M1 + 1, to another 16-bit memory
location, M2:M2 + 1. The value in M1:M1 + 1 does not change.

Move instructions can use different addressing modes to access the source and dest
of a move. These combinations of addressing modes are supported: IMM–EXT,
IMM–IDX, EXT–EXT, EXT–IDX, IDX–EXT, and IDX–IDX. IDX operands allow
indexed addressing mode specifications that fit in a single postbyte; including 5-bit
constant, accumulator offsets, and autoincrement/decrement modes. Nine-bit and 1
constant offsets would require additional extension bytes and are not allowed.
Indexed-indirect modes (for example [D,r]) are also not allowed.

CCR
Effects

Code and
CPU
Cycles

MOVW Move Word MOVW

S X H I N Z V C

– – – – – – – –

Source Form 1

NOTES:
1. The first operand in the source code statement specifies the source for the move.

Address
Mode

Machine
Code (Hex) CPU Cycles

MOVW #opr16i, opr16a
MOVW #opr16i, oprx0_xysppc
MOVW opr16a, opr16a
MOVW opr16a, oprx0_xysppc
MOVW oprx0_xysppc, opr16a
MOVW oprx0_xysppc, oprx0_xysppc

IMM–EXT
IMM–IDX
EXT–EXT
EXT–IDX
IDX–EXT
IDX–IDX

18 03 jj kk hh ll
18 00 xb jj kk
18 04 hh ll hh ll
18 01 xb hh ll
18 05 xb hh ll
18 02 xb xb

OPWPO
OPPW
ORPWPO
OPRPW
ORPWP
ORPWO
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he
Operation (A) × (B) ⇒ A:B

Multiplies the 8-bit unsigned value in A by the 8-bit unsigned value in B and places t
16-bit unsigned result in D. The carry flag allows rounding the high byte of the result
through the sequence: MUL, ADCA #0.

CCR
Effects

Code and
CPU
Cycles

MUL Multiply, Unsigned MUL

S X H I N Z V C

– – – – – – – ∆

C: R7; set if bit 7 of the result is set; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

MUL INH 12 O
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.

Operation 0 – (M) = (M) + 1 ⇒ M

Replaces the value in M with its two’s complement. A value of $80 does not change

CCR
Effects

Code and
CPU
Cycles

NEG Negate M NEG

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0; set if there is a two’s complement overflow from the implied

subtraction from 0; cleared otherwise; two’s complement overflow occurs if and only if (M) = $80
C: R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0; set if there is a borrow in the implied subtraction from 0; cleared

otherwise; set in all cases except when (M) = $00

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

NEG opr16a
NEG oprx0_xysppc
NEG oprx9,xysppc
NEG oprx16,xysppc
NEG [D,xysppc]
NEG [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

70 hh ll
60 xb
60 xb ff
60 xb ee ff
60 xb
60 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
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Operation 0 – (A) = (A) + 1 ⇒ A

Replaces the value in A with its two’s complement. A value of $80 does not change.

CCR
Effects

Code and
CPU
Cycles

NEGA Negate A NEGA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0; set if there is a two’s complement overflow from the implied

subtraction from 0; cleared otherwise; two’s complement overflow occurs if and only if (A) = $80
C: R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0; set if there is a borrow in the implied subtraction from 0; cleared

otherwise; set in all cases except when (A) = $00

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

NEGA INH 40 O
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Operation 0 – (B) = (B) + 1⇒ B

Replaces the value in B with its two’s complement. A value of $80 does not change.

CCR
Effects

Code and
CPU
Cycles

NEGB Negate B NEGB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0; set if there is a two’s complement overflow from the implied

subtraction from 0; cleared otherwise; two’s complement overflow occurs if and only if (B) = $80
C: R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0; set if there is a borrow in the implied subtraction from 0; cleared

otherwise; set in all cases except when (B) = $00

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

NEGB INH 50 O
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OP
ions,
Operation No operation

This single-byte instruction increments the PC and does nothing else. No other CPU
registers are affected. NOP typically is used to produce a time delay, although some
software disciplines discourage CPU frequency-based time delays. During debug, N
instructions are sometimes used to temporarily replace other machine code instruct
thus disabling the replaced instruction(s).

CCR
Effects

Code and
CPU
Cycles

NOP Null Operation NOP

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

NOP INH A7 O
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ate
Operation (A) | (M) ⇒ A
or
(A) | imm ⇒ A

Performs logical inclusive OR of the value in A and either the value in M or an immedi
value. Puts the result in A.

CCR
Effects

Code and
CPU
Cycles

ORAA OR Accumulator A ORAA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ORAA #opr8i
ORAA opr8a
ORAA opr16a
ORAA oprx0_xysppc
ORAA oprx9,xysppc
ORAA oprx16,xysppc
ORAA [D,xysppc]
ORAA [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

8A ii
9A dd
BA hh ll
AA xb
AA xb ff
AA xb ee ff
AA xb
AA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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iate
Operation (B) | (M) ⇒ B
or
(B) | imm⇒ B

Performs logical inclusive OR of the value in B and either the value in M or an immed
value. Puts the result in B.

CCR
Effects

Code and
CPU
Cycles

ORAB OR Accumulator B ORAB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine Coding
(Hex) CPU Cycles

ORAB #opr8i
ORAB opr8a
ORAB opr16a
ORAB oprx0_xysppc
ORAB oprx9,xysppc
ORAB oprx16,xysppc
ORAB [D,xysppc]
ORAB [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

CA ii
DA dd
FA hh ll
EA xb
EA xb ff
EA xb ee ff
EA xb
EA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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s the
ange.
Operation (CCR) | imm⇒ CCR

Performs a logical inclusive OR of the value in the CCR and an immediate value. Put
result in the CCR. CCR bits that correspond to 1s in M are set. No other CCR bits ch

NOTE: The X bit cannot be set by any software instruction.

CCR
Effects

Code and
CPU
Cycles

ORCC OR CCR ORCC

S X H I N Z V C

⇑ – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

A condition code bit is set if the corresponding bit was 1 before the operation or if the corresponding bit in the
instruction-provided mask is 1. The X bit cannot be set by any software instruction.

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ORCC #opr8i IMM 14 ii P
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.

ters at
saved
Operation (SP) – $0001⇒ SP
(A) ⇒ MSP

Decrements SP by one and loads the value in A into the address to which SP points

Push instructions are commonly used to save the contents of one or more CPU regis
the start of a subroutine. Complementary pull instructions can be used to restore the
CPU registers just before returning from the subroutine.

CCR
Effects

Code and
CPU
Cycles

PSHA Push A onto Stack PSHA

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PSHA INH 36 Os
439



Core User Guide — S12CPU15UG V1.2

.

ters at
saved
Operation (SP) – $0001⇒ SP
(B) ⇒ MSP

Decrements SP by one and loads the value in B into the address to which SP points

Push instructions are commonly used to save the contents of one or more CPU regis
the start of a subroutine. Complementary pull instructions can be used to restore the
CPU registers just before returning from the subroutine.

CCR
Effects

Code and
CPU
Cycles

PSHB Push B onto Stack PSHB

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PSHB INH 37 Os
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points.

ters at
saved
Operation (SP) – $0001⇒ SP
(CCR)⇒ MSP

Decrements SP by one and loads the value in CCR into the address to which the SP

Push instructions are commonly used to save the contents of one or more CPU regis
the start of a subroutine. Complementary pull instructions can be used to restore the
CPU registers just before returning from the subroutine.

CCR
Effects

Code and
CPU
Cycles

PSHC Push CCR onto Stack PSHC

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PSHC INH 39 Os
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oads
oints

ters at
U

Operation (SP) – $0002⇒ SP
(A):(B) ⇒ MSP:MSP + 1

Decrements SP by two and loads the value in A into the address to which SP points. L
the value in B into the address to which SP points plus one. After PSHD executes, SP p
to the stacked value of A.

Push instructions are commonly used to save the contents of one or more CPU regis
the start of a subroutine. Complementary pull instructions can restore the saved CP
registers just before returning from the subroutine.

CCR
Effects

Code and
CPU
Cycles

PSHD Push D onto Stack PSHD

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PSHD INH 3B OS
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ints.
utes,

ters at
U

Operation (SP) – $0002⇒ SP
(XH):(XL) ⇒ MSP:MSP + 1

Decrements SP by two and loads the high byte of X into the address to which SP po
Loads the low byte of X into the address to which SP points plus one. After PSHX exec
SP points to the stacked value of the high byte of X.

Push instructions are commonly used to save the contents of one or more CPU regis
the start of a subroutine. Complementary pull instructions can restore the saved CP
registers just before returning from the subroutine.

CCR
Effects

Code and
CPU
Cycles

PSHX Push X onto Stack PSHX

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PSHX INH 34 OS
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ints.
utes,

ters at
U

Operation (SP) – $0002⇒ SP
(YH):(YL) ⇒ MSP:MSP + 1

Decrements SP by two and loads the high byte of Y into the address to which SP po
Loads the low byte of Y into the address to which SP points plus one. After PSHY exec
SP points to the stacked value of the high byte of Y.

Push instructions are commonly used to save the contents of one or more CPU regis
the start of a subroutine. Complementary pull instructions can restore the saved CP
registers just before returning from the subroutine.

CCR
Effects

Code and
CPU
Cycles

PSHY Push Y onto Stack PSHY

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PSHY INH 35 OS
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ts of
Operation (MSP) ⇒ A
(SP) + $0001⇒ SP

Loads A from the address to which SP points. Then increments SP by one.

Pull instructions are commonly used at the end of a subroutine to restore the conten
CPU registers that were pushed onto the stack before subroutine execution.

CCR
Effects

Code and
CPU
Cycles

PULA Pull A from Stack PULA

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PULA INH 32 ufO
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ts of
Operation (MSP) ⇒ B
(SP) + $0001⇒ SP

Loads B from the address to which SP points. Then increments SP by one.

Pull instructions are commonly used at the end of a subroutine to restore the conten
CPU registers that were pushed onto the stack before subroutine execution.

CCR
Effects

Code and
CPU
Cycles

PULB Pull B from Stack PULB

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PULB INH 33 ufO
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ts of
Operation (MSP) ⇒ CCR
(SP) + $0001⇒ SP

Loads CCR from the address to which SP points. Then increments SP by one.

Pull instructions are commonly used at the end of a subroutine to restore the conten
CPU registers that were pushed onto the stack before subroutine execution.

CCR
Effects

Code and
CPU
Cycles

PULC Pull CCR from Stack PULC

S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Condition codes take on the value pulled from the stack, except that the X mask bit cannot change from 0 to
1. Software can leave the X bit set, leave it cleared, or change it from 1 to 0, but it can only be set by a reset
or by recognition of an XIRQ interrupt.

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PULC INH 38 ufO
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rom

ts of
Operation (MSP):(MSP + 1) ⇒ A:B
(SP) + $0002⇒ SP

Loads the high byte of D from the address to which SP points. Loads the low byte of D f
the address to which SP points plus one. Then increments SP by two.

Pull instructions are commonly used at the end of a subroutine to restore the conten
CPU registers that were pushed onto the stack before subroutine execution.

CCR
Effects

Code and
CPU
Cycles

PULD Pull D from Stack PULD

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PULD INH 3A UfO
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rom

ts of
Operation (MSP):(MSP + 1) ⇒ XH:XL
(SP) + $0002⇒ SP

Loads the high byte of X from the address to which SP points. Loads the low byte of X f
the address to which SP points plus one. Then increments SP by two.

Pull instructions are commonly used at the end of a subroutine to restore the conten
CPU registers that were pushed onto the stack before subroutine execution.

CCR
Effects

Code and
CPU
Cycles

PULX Pull X from Stack PULX

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PULX INH 30 UfO
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rom

ts of
Operation (MSP):(MSP + 1) ⇒ YH:YL
(SP) + $0002⇒ SP

Loads the high byte of Y from the address to which SP points. Loads the low byte of Y f
the address to which SP points plus one. Then increments SP by two.

Pull instructions are commonly used at the end of a subroutine to restore the conten
CPU registers that were pushed onto the stack before subroutine execution.

CCR
Effects

Code and
CPU
Cycles

PULY Pull Y from Stack PULY

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PULY INH 31 UfO
450



Core User Guide — S12CPU15UG V1.2

zzy

dress
 of a
alue

ive rules.

at of
ing
lue to
 is
r to

ith
ad

t
he

s not
Operation MIN – MAX rule evaluation

Performs an unweighted evaluation of a list of rules, using fuzzy inputs to produce fu
outputs. REV can be interrupted, so it does not adversely affect interrupt latency.

REV uses an 8-bit unsigned offset from a base address stored in Y to determine the ad
of each fuzzy input and fuzzy output. Each rule in the knowledge base must consist
table of 8-bit antecedent offsets followed by a table of 8-bit consequent offsets. The v
$FE marks boundaries between antecedents and consequents and between success
The value $FF marks the end of the rule list.

REV begins with the address pointed to by the first rule antecedent and evaluates
successive fuzzy input values until it finds an $FE separator. Operation is similar to th
a MINA instruction. The smallest input value is the truth value of the rule. Then, beginn
with the address pointed to by the first rule consequent, REV compares the truth va
successive fuzzy output values until it finds another $FE separator. If the truth value
greater than the current output value, REV writes it to the output. Operation is simila
that of a MAXM instruction. Rule processing continues up to the $FF terminator

Before executing REV, clear fuzzy outputs and initialize A, CCR, X, and Y. Load A w
$FF. Clear the V bit. Load X with the address of the first 8-bit rule element in the list. Lo
Y with the base address for fuzzy inputs and fuzzy outputs.

X points to the element in the rule list that is being evaluated. REV updates X so tha
execution can resume correctly in case of an interrupt. After execution, X points to t
address after the $FF separator at the end of the rule list.

Y points to the base address for the fuzzy inputs and fuzzy outputs. The value in Y doe
change during execution.

REV Fuzzy Logic Rule Evaluation REV
451



Core User Guide — S12CPU15UG V1.2

each

finds

must
alue
,
is 0 at
A holds intermediate results. During antecedent processing, a MIN function compares
fuzzy input to the value in A and writes the smaller value to A. After evaluation of all
antecedents, A contains the smallest input value. This is the truth value used during
consequent processing. For subsequent rules, REV reinitializes A with $FF when it 
an $FE separator. After execution, A contains the truth value for the last rule.

The V bit signals whether antecedents (0) or consequents (1) are being processed. V
be initialized to 0 for processing to begin with the antecedents of the first rule. The v
of V changes as $FE separators are encountered. After execution, V should equal 1
because the last element before the $FF terminator should be a rule consequent. If V
the end of execution, the rule list is incorrect.

CCR
Effects

Code and
CPU
Cycles

REV Fuzzy Logic Rule Evaluation
(continued) REV

S X H I N Z V C

– – ? – ? ? ∆ ?

V: Set unless rule structure is incorrect

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

REV Special 18 3A
OrfttxO 1

ff + Orf 2

NOTES:
1. The 3-cycle ttx  loop is executed once for each element in the rule list.
2. These are additional cycles caused by an interrupt: ff is a 2-cycle exit sequence and Orf

is a 3-cycle re-entry sequence. Execution resumes with a prefetch of the last antecedent
or consequent being processed at the time of the interrupt.
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Operation MIN – MAX rule evaluation with optional rule weighting

Performs either weighted or unweighted evaluation of a list of rules, using fuzzy input
produce fuzzy outputs. REVW can be interrupted, so it does not adversely affect inte
latency.

Each rule in the knowledge base must consist of a table of 16-bit antecedent pointe
followed by a table of 16-bit consequent pointers. The value $FFFE marks boundari
between antecedents and consequents and between successive rules. The value $
marks the end of the rule list.

In weighted evaluation, a table of 8-bit weighting factors, one per rule, must be store
memory.

REVW begins with the address pointed to by the first rule antecedent, and evaluate
successive fuzzy input values until it finds an $FFFE separator. Operation is similar to
of a MINA instruction. The smallest input value is the truth value of the rule. If weigh
evaluation is enabled, the truth value is modified. Then, beginning with the address po
to by the first consequent, REVW compares the truth value to successive fuzzy outp
values until it finds another $FFFE. If the truth value is greater than the current outp
value, REVW writes it to the output. Operation is similar to that of a MAXM instructio
Rule processing continues up to the $FFFF terminator.

Before executing REVW, clear fuzzy outputs and initialize A, CCR, X, and Y. Load A w
$FF. Clear the V bit. Set or clear the C bit for weighted or unweighted evaluation. Fo
weighted evaluation, load Y with the first item in a table of 8-bit weighting factors. Lo
X with the address of the first 16-bit element in the list.

X points to the element in the list that is being evaluated. REVW updates X so that
execution can resume after an interrupt. After execution, X points to the address aft
$FFFF separator at the end of the list.

REVW Fuzzy Logic Rule Evaluation, Weighted REVW
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Y points to the current weighting factor. REVW updates Y so that execution can res
after an interrupt. After execution, Y points to the last weighting factor used. Y does 
change in unweighted evaluation.

A holds intermediate results. During antecedent processing, a MIN function compares
fuzzy input to the value stored in A and writes the smaller value to A. After evaluatio
all antecedents, A contains the smallest input value. In unweighted evaluation, this i
truth value for consequent processing. In weighted evaluation, it is multiplied by the
quantity rule weight + 1, and the upper eight bits of the result replace the value in A. RE
reinitializes A with $FF when it finds an $FFFE separator. After execution, A holds th
truth value for the last rule.

The V bit signals whether antecedents (0) or consequents (1) are being processed. V
be initialized to 0 for processing to begin with the antecedents of the first rule. The v
of V changes as $FFFE separators are found. After execution, V should equal 1, be
the last element before the $FF end marker should be a rule consequent. If V is equa
at the end of execution, the rule list is incorrect.

CCR
Effects

Code and
CPU
Cycles

REVW Fuzzy Logic Rule Evaluation, Weighted
(continued) REVW

S X H I N Z V C

– – ? – ? ? ∆ !

V: Set unless rule structure is incorrect
C: 1 selects weighted rule evaluation; 0 selects unweighted rule evaluation

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

REVW Special 18 3B

ORftTxO 1

or
ORftTfRfO 2

ffff + ORf 3

NOTES:
1. Weighting not enabled; the 3-cycle tTx loop is executed once for each element in the rule

list.
2. Weighting enabled; the 3-cycle tTx  loop expands to tTfRf  for separators.
3. These are additional cycles caused by an interrupt: ffff  is a 4-cycle exit sequence and

ORf is a 3-cycle re-entry sequence. Execution resumes with a prefetch of the last ante-
cedent or consequent being processed at the time of the interrupt.
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Operation

Shifts all bits of M one place to the left. Bit 0 is loaded from the C bit. The C bit is load
from the most significant bit of M. Rotate operations include the carry bit to allow
extension of shift and rotate operations to multiple bytes. For example, to shift a 24-
value one bit to the left, the sequence ASL LOW, ROL MID, ROL HIGH could be us
where LOW, MID, and HIGH refer to the low, middle, and high bytes of the 24-bit valu
respectively.

CCR
Effects

Code and
CPU
Cycles

ROL Rotate Left M ROL
b7 b6 b5 b4 b3 b2 b1 b0C

M

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] (for N and C after the shift); set if (N is set and C is cleared) or (N is cleared and

C is set); cleared otherwise (for values of N and C after the shift)
C: M7; set if the MSB of M was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ROL opr16a
ROL oprx0_xysppc
ROL oprx9,xysppc
ROL oprx16,xysppc
ROL [D,xysppc]
ROL [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

75 hh ll
65 xb
65 xb ff
65 xb ee ff
65 xb
65 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
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Operation

Shifts all bits of A one place to the left. Bit 0 is loaded from the C bit. The C bit is load
from the most significant bit of A. Rotate operations include the carry bit to allow extens
of shift and rotate operations to multiple bytes. For example, to shift a 24-bit value on
to the left, the sequence ASL LOW, ROL MID, ROL HIGH could be used where LOW
MID and HIGH refer to the low, middle, and high bytes of the 24-bit value, respectiv

CCR
Effects

Code and
CPU
Cycles

ROLA Rotate Left A ROLA
b7 b6 b5 b4 b3 b2 b1 b0C

A

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] (for N and C after the shift); set if (N is set and C is cleared) or (N is cleared and

C is set); cleared otherwise (for values of N and C after the shift)
C: A7; set if the MSB of A was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ROLA INH 45 O
456



Core User Guide — S12CPU15UG V1.2

ded
ion

e bit
,

ely.
Operation

Shifts all bits of B one place to the left. Bit 0 is loaded from the C bit. The C bit is loa
from the most significant bit of B. Rotate operations include the carry bit to allow extens
of shift and rotate operations to multiple bytes. For example, to shift a 24-bit value on
to the left, the sequence ASL LOW, ROL MID, ROL HIGH could be used where LOW
MID and HIGH refer to the low, middle, and high bytes of the 24-bit value, respectiv

CCR
Effects

Code and
CPU
Cycles

ROLB Rotate Left B ROLB
b7 b6 b5 b4 b3 b2 b1 b0C

B

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] (for N and C after the shift); set if (N is set and C is cleared) or (N is cleared and

C is set); cleared otherwise (for values of N and C after the shift)
C: B7; set if the MSB of B was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ROLB INH 55 O
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Operation

Shifts all bits of M one place to the right. Bit 7 is loaded from the C bit. The C bit is load
from the least significant bit of M. Rotate operations include the carry bit to allow extens
of shift and rotate operations to multiple bytes. For example, to shift a 24-bit value on
to the right, the sequence LSR HIGH, ROR MID, ROR LOW could be used where LO
MID and HIGH refer to the low, middle, and high bytes of the 24-bit value, respectiv

CCR
Effects

Code and
CPU
Cycles

ROR Rotate Right M ROR
b7 b6 b5 b4 b3 b2 b1 b0 C

M

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] for N and C after the shift; cleared otherwise
C: M0; set if the LSB of M was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

ROR opr16a
ROR oprx0_xysppc
ROR oprx9,xysppc
ROR oprx16,xysppc
ROR [D,xysppc]
ROR [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

76 hh ll
66 xb
66 xb ff
66 xb ee ff
66 xb
66 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
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Operation

Shifts all bits of A one place to the right. Bit 7 is loaded from the C bit. The C bit is load
from the least significant bit of A. Rotate operations include the carry bit to allow extens
of shift and rotate operations to multiple bytes. For example, to shift a 24-bit value on
to the right, the sequence LSR HIGH, ROR MID, ROR LOW could be used where LO
MID and HIGH refer to the low, middle, and high bytes of the 24-bit value, respectiv

CCR
Effects

Code and
CPU
Cycles

RORA Rotate Right A RORA
b7 b6 b5 b4 b3 b2 b1 b0 C

A

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] for N and C after the shift; cleared otherwise
C: A0; set if the LSB of A was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

RORA INH 46 O
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Operation

Shifts all bits of B one place to the right. Bit 7 is loaded from the C bit. The C bit is load
from the least significant bit of B. Rotate operations include the carry bit to allow extens
of shift and rotate operations to multiple bytes. For example, to shift a 24-bit value on
to the right, the sequence LSR HIGH, ROR MID, ROR LOW could be used where LO
MID and HIGH refer to the low, middle, and high bytes of the 24-bit value, respectiv

CCR
Effects

Code and
CPU
Cycles

RORB Rotate Right B RORB
b7 b6 b5 b4 b3 b2 b1 b0 C

B

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N ⊕ C = [N • C] | [N • C] for N and C after the shift; cleared otherwise
C: B0; set if the LSB of B was set before the shift; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

RORB INH 56 O
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Operation (MSP) ⇒ PPAGE
(SP) + $0001⇒ SP
(MSP):(MSP + 1) ⇒ PCH:PCL
(SP) + $0002⇒ SP

Terminates subroutines in expanded memory invoked by the CALL instruction. Retu
execution flow from the subroutine to the calling program. The program overlay pag
(PPAGE) register and the return address are restored from the stack; program exec
continues at the restored address. For code compatibility purposes, CALL and RTC
execute correctly in MCUs that do not have expanded memory capability.

CCR
Effects

Code and
CPU
Cycles

RTC Return from Call RTC

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

RTC INH 0A uUnfPPP
461



Core User Guide — S12CPU15UG V1.2

ared

e SP
Operation (MSP) ⇒ CCR, (SP) + $0001⇒ SP
(MSP):(MSP + 1) ⇒ B:A, (SP) + $0002⇒ SP
(MSP):(MSP + 1) ⇒ XH:XL, (SP) + $0004⇒ SP
(MSP):(MSP + 1) ⇒ PCH:PCL, (SP) – $0002⇒ SP
(MSP):(MSP + 1) ⇒ YH:YL, (SP) + $0004⇒ SP

Restores the values of CPU registers CCR, B, A, X, PC, and Y from the stack.

The X bit may be cleared as a result of an RTI instruction, but cannot be set if it was cle
prior to execution of the RTI instruction.

If another interrupt is pending when RTI finishes restoring registers from the stack, th
is adjusted to preserve stack content, and the new vector is fetched.

CCR
Effects

Code and
CPU
Cycles

RTI Return from Interrupt RTI

S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Condition codes take on the value pulled from the stack, except that the X mask bit cannot change from 0 to
1. Software can leave the X bit set, leave it cleared, or change it from 1 to 0, but it can only be set by a reset
or by recognition of an XIRQ interrupt.

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

RTI INH 0B
uUUUUPPP
or
uUUUUfVfPPP1

NOTES:
1. RTI takes 11 cycles if an interrupt is pending.
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tion
Operation (MSP):(MSP + 1) ⇒ PCH:PCL
(SP) + $0002⇒ SP

Restores the value of PC from the stack and increments SP by two. Program execu
continues at the address restored from the stack.

CCR
Effects

Code and
CPU
Cycles

RTS Return from Subroutine RTS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

RTS INH 3D UfPPP
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not
Operation (A) – (B) ⇒ A

Subtracts the value in B from the value in A and puts the result in A. The value in B is
affected. The C bit represents a borrow.

CCR
Effects

Code and
CPU
Cycles

SBA Subtract B from A SBA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 • B7 • R7 | A7 • B7 • R7; set if a two’s complement overflow resulted from the operation; cleared

otherwise
C: A7 • B7 | B7 • R7 | R7 • A7; set if the absolute value of B is larger than the absolute value of A; cleared

otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

SBA INH 18 16 OO
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Operation (A) – (M) – C⇒ A
or
(A) – imm – C⇒ A

Subtracts either the value in M and the C bit or an immediate value and the C bit from
value in A. Puts the result in A. The C bit represents a borrow.

CCR
Effects

Code and
CPU
Cycles

SBCA Subtract with Carry from A SBCA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 • M7 • R7 | A7 • M7 • R7; set if a two’s complement overflow resulted from the operation; cleared

otherwise
C: A7 • M7 | M7 • R7 | R7 • A7; set if the absolute value of the content of memory plus previous carry is

larger than the absolute value of A; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

SBCA #opr8i
SBCA opr8a
SBCA opr16a
SBCA oprx0_xysppc
SBCA oprx9,xysppc
SBCA oprx16,xysppc
SBCA [D,xysppc]
SBCA [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

82 ii
92 dd
B2 hh ll
A2 xb
A2 xb ff
A2 xb ee ff
A2 xb
A2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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the
Operation (B) – (M) – C⇒ B
or
(B) – imm – C⇒ B

Subtracts either the value in M and the C bit or an immediate value and the C bit from
value in B. Puts the result in B. The C bit represents a borrow.

CCR
Effects

Code and
CPU
Cycles

SBCB Subtract with Carry from B SBCB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: B7 • M7 • R7 | B7 • M7 • R7; set if a two’s complement overflow resulted from the operation; cleared

otherwise
C: B7 • M7 | M7 • R7 | R7 • B7; set if the absolute value in M plus previous carry is larger than the absolute

value in B; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

SBCB #opr8i
SBCB opr8a
SBCB opr16a
SBCB oprx0_xysppc
SBCB oprx9,xysppc
SBCB oprx16,xysppc
SBCB [D,xysppc]
SBCB [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C2 ii
D2 dd
F2 hh ll
E2 xb
E2 xb ff
E2 xb ee ff
E2 xb
E2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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Operation (CCR) | $01⇒ CCR

Performs a logical inclusive OR of the value in the CCR and $01. Puts the result in t
CCR, setting the C bit. SEC assembles as ORCC #$01.

SEC can be used to initialize the C bit prior to a shift or rotate instruction involving the
bit.

CCR
Effects

Code and
CPU
Cycles

SEC Set C
(same as ORCC #$01) SEC

S X H I N Z V C

– – – – – – – 1

C: Set

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

SEC IMM 14 01 P
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Operation (CCR) | $10⇒ CCR

Performs a logical inclusive OR of the value in the CCR and $10. Puts the result in t
CCR, setting the I bit. SEI assembles as ORCC #$10. When the I bit is set, all I-mask
interrupts are inhibited.

CCR
Effects

Code and
CPU
Cycles

SEI Set I
(same as ORCC #$10) SEI

S X H I N Z V C

– – – 1 – – – –

I: Set

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

SEI IMM 14 10 P
468



Core User Guide — S12CPU15UG V1.2

he
Operation (CCR) | $02⇒ CCR

Performs a logical inclusive OR of the value in the CCR and $02. Puts the result in t
CCR, setting the V bit. SEV assembles as ORCC #$02.

CCR
Effects

Code and
CPU
Cycles

SEV Set V
(same as ORCC #$02) SEV

S X H I N Z V C

– – – – – – 1 –

V: Set

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

SEV IMM 14 02 P
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Operation If r1 bit 7 = 0, then $00:(r1)⇒ r2
If r1 bit 7 = 1, then $FF:(r1)⇒ r2

Transfers the two’s complement value in A, B, or CCR to the low byte of D, X, Y, or 
Loads the high byte with $00 if bit 7 is 0 or $FF if bit 7 is 1. The result is the 16-bit
sign-extended version of the original 8-bit value. SEX is an alternate mnemonic for t
TFR r1,r2 instruction, The value in the original register does not change except in the
of SEX A,D (D is A:B).

CCR
Effects

Code and
CPU
Cycles

SEX Sign Extend SEX

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

SEX abc,dxysp INH B7 eb P

Sign-Extend Postbyte ( eb) Coding

Source
Form Postbyte Object

Code
Sign

Extension
SEX A,TMP2
SEX A,D
SEX A,X
SEX A,Y
SEX A,SP

0000 X011
0000 X100
0000 X101
0000 X110
0000 X111

B7 03
B7 04
B7 05
B7 06
B7 07

($00 or $FF):A ⇒ TMP2
($00 or $FF):A ⇒ D
($00 or $FF):A ⇒ X
($00 or $FF):A ⇒ Y
($00 or $FF):A ⇒ SP

SEX B,TMP2
SEX B,D
SEX B,X
SEX B,Y
SEX B,SP

0001 X011
0001 X100
0001 X101
0001 X110
0001 X111

B7 13
B7 14
B7 15
B7 16
B7 17

($00 or $FF):B ⇒ TMP2
($00 or $FF):B ⇒ D
($00 or $FF):B ⇒ X
($00 or $FF):B ⇒ Y
($00 or $FF):B ⇒ SP

SEX CCR,TMP2
SEX CCR,D
SEX CCR,X
SEX CCR,Y
SEX CCR,SP

0010 X011
0010 X100
0010 X101
0010 X110
0010 X111

B7 23
B7 24
B7 25
B7 26
B7 27

($00 or $FF):CCR ⇒ TMP2
($00 or $FF):CCR ⇒ D
($00 or $FF):CCR ⇒ X
($00 or $FF):CCR ⇒ Y
($00 or $FF):CCR ⇒ SP
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Operation (A) ⇒ M

Stores the value in A in M. The value in A does not change.

CCR
Effects

Code and
CPU
Cycles

STAA Store Accumulator A STAA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

STAA opr8a
STAA opr16a
STAA oprx0_xysppc
STAA oprx9,xysppc
STAA oprx16,xysppc
STAA [D,xysppc]
STAA [oprx16,xysppc]

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5A dd
7A hh ll
6A xb
6A xb ff
6A xb ee ff
6A xb
6A xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw
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Operation (B) ⇒ M

Stores the value in B in M. The value in B does not change.

CCR
Effects

Code and
CPU
Cycles

STAB Store Accumulator B STAB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

STAB opr8a
STAB opr16a
STAB oprx0_xysppc
STAB oprx9,xysppc
STAB oprx16,xysppc
STAB [D,xysppc]
STAB [oprx16,xysppc]

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5B dd
7B hh ll
6B xb
6B xb ff
6B xb ee ff
6B xb
6B xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw
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ot
Operation (A):(B) ⇒ M:M + 1

Stores the value in A in M and the value in B in M:M + 1. The values in A and B do n
change.

CCR
Effects

Code and
CPU
Cycles

STD Store D STD

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

STD opr8a
STD opr16a
STD oprx0_xysppc
STD oprx9,xysppc
STD oprx16,xysppc
STD [D,xysppc]
STD [oprx16,xysppc]

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5C dd
7C hh ll
6C xb
6C xb ff
6C xb ee ff
6C xb
6C xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW
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Operation (SP) – $0002⇒ SP, RTNH:RTNL ⇒ MSP:MSP + 1
(SP) – $0002⇒ SP, (YH):(YL) ⇒ MSP:MSP + 1
(SP) – $0002⇒ SP, (XH):(XL) ⇒ MSP:MSP + 1
(SP) – $0002⇒ SP, (B):(A)⇒ MSP:MSP + 1
(SP) – $0001⇒ SP, (CCR)⇒ MSP
Stop all clocks

When the S bit is set, STOP is disabled and operates like a 2-cycle NOP instruction. W
S is cleared, STOP stacks CPU registers, stops all system clocks, and puts the dev
standby mode. Standby mode minimizes power consumption. The contents of registe
the states of I/O pins do not change.

AssertingRESET,XIRQ, or IRQ ends standby mode. If the clock reference crystal als
stops during low-power mode, crystal startup delay lengthens recovery time.

If XIRQ is asserted while the X mask bit = 0 (XIRQ interrupts enabled), execution resume
with a vector fetch for theXIRQ interrupt. If the X mask bit = 1 (XIRQ interrupts disabled),
a 2-cycle recovery sequence, including an O cycle, adjusts the instruction queue, an
execution continues with the next instruction after STOP.

CCR
Effects

Code and
CPU
Cycles

STOP Stop Processing STOP

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

STOP INH 18 3E

OOSSSSsf (enter stop mode)
fVfPPP (exit stop mode)
ff (continue stop mode)
OO (if stop mode disabled by S = 1)
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Operation (SPH):(SPL) ⇒ M:M + 1

Stores the high byte of SP in M and the low byte in M + 1.

CCR
Effects

Code and
CPU
Cycles

STS Store SP STS

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

STS opr8a
STS opr16a
STS oprx0_xysppc
STS oprx9,xysppc
STS oprx16,xysppc
STS [D,xysppc]
STS [oprx16,xysppc]

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5F dd
7F hh ll
6F xb
6F xb ff
6F xb ee ff
6F xb
6F xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW
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Operation (XH):(XL) ⇒ M:M + 1

Stores the high byte of X in M and the low byte in M + 1.

CCR
Effects

Code and
CPU
Cycles

STX Store X STX

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

STX opr8a
STX opr16a
STX oprx0_xysppc
STX oprx9,xysppc
STX oprx16,xysppc
STX [D,xysppc]
STX [oprx16,xysppc]

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5E dd
7E hh ll
6E xb
6E xb ff
6E xb ee ff
6E xb
6E xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW
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Operation (YH):(YL) ⇒ M:M + 1

Stores the high by of Y in M and the low byte in M + 1.

CCR
Effects

Code and
CPU
Cycles

STY Store Y STY

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

STY opr8a
STY opr16a
STY oprx0_xysppc
STY oprx9,xysppc
STY oprx16,xysppc
STY [D,xysppc]
STY [oprx16,xysppc]

DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

5D dd
7D hh ll
6D xb
6D xb ff
6D xb ee ff
6D xb
6D xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW
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esult
Operation (A) – (M) ⇒ A
or
(A) – imm ⇒ A

Subtracts either the value in M or an immediate value from the value in A. Puts the r
in A. The C bit represents a borrow.

CCR
Effects

Code and
CPU
Cycles

SUBA Subtract from A SUBA

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 • M7 • R7 | A7 • M7 • R7; set if a two’s complement overflow resulted from the operation; cleared

otherwise
C: A7 • M7 | M7 • R7 | R7 • A7; set if the value in M is larger than the value in A; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

SUBA #opr8i
SUBA opr8a
SUBA opr16a
SUBA oprx0_xysppc
SUBA oprx9,xysppc
SUBA oprx16,xysppc
SUBA [D,xysppc]
SUBA [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

80 ii
90 dd
B0 hh ll
A0 xb
A0 xb ff
A0 xb ee ff
A0 xb
A0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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esult
Operation (B) – (M) ⇒ B
or
(B) – imm⇒ B

Subtracts either the value in M or an immediate value from the value in B. Puts the r
in B. The C bit represents a borrow.

CCR
Effects

Code and
CPU
Cycles

SUBB Subtract from B SUBB

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: B7 • M7 • R7 | B7 • M7 • R7; set if a two’s complement overflow resulted from the operation; cleared

otherwise
C: B7 • M7 | M7 • R7 | R7 • B7; set if the value in M is larger than the value in B; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

SUBB #opr8i
SUBB opr8a
SUBB opr16a
SUBB oprx0_xysppc
SUBB oprx9,xysppc
SUBB oprx16,xysppc
SUBB [D,xysppc]
SUBB [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

C0 ii
D0 dd
F0 hh ll
E0 xb
E0 xb ff
E0 xb ee ff
E0 xb
E0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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the
Operation (A):(B) – (M):(M + 1) ⇒ A:B
or
(A):(B) – imm ⇒ A:B

Subtracts either the value in M:M + 1 or an immediate value from the value in D. Puts
result in D. The C bit represents a borrow.

CCR
Effects

Code and
CPU
Cycles

SUBD Subtract from D SUBD

S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: D15 • M15 • R15 | D15 • M15 • R15; set if a two’s complement overflow resulted from the operation;

cleared otherwise
C: D15 • M15 | M15 • R15 | R15 • D15; set if the value in M is larger than the value in D; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

SUBD #opr16i
SUBD opr8a
SUBD opr16a
SUBD oprx0_xysppc
SUBD oprx9,xyssp
SUBD oprx16,xysppc
SUBD [D,xysppc]
SUBD [oprx16,xysppc]

IMM
DIR
EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

83 jj kk
93 dd
B3 hh ll
A3 xb
A3 xb ff
A3 xb ee ff
A3 xb
A3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf
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of the
gisters
loads
ector
Operation (SP) – $0002⇒ SP, RTNH:RTNL ⇒ MSP:MSP + 1
(SP) – $0002⇒ SP, (YH):(YL) ⇒ MSP:MSP + 1
(SP) – $0002⇒ SP, (XH):(XL) ⇒ MSP:MSP + 1
(SP) – $0002⇒ SP, (B):(A)⇒ MSP:MSP + 1
(SP) – $0001⇒ SP, (CCR)⇒ MSP
1 ⇒ I
SWI vector⇒ PC

Causes an interrupt without an external interrupt service request. Uses the address 
next instruction after SWI as a return address. Stacks the return address and CPU re
Y, X, B, A, and CCR, decrementing SP before each item is stacked. Sets the I bit and
PC with the SWI vector. Instruction execution resumes at the address to which the v
points. SWI is not affected by the I bit.

CCR
Effects

Code and
CPU
Cycles

SWI Software Interrupt SWI

S X H I N Z V C

– – – 1 – – – –

I: Set

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

SWI INH 3F VSPSSPSsP1

NOTES:
1. The CPU also uses the SWI processing sequence for hardware interrupts and

unimplemented opcode traps. A variation of the sequence (VfPPP) is used for resets.
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ge.
its,
Operation (A) ⇒ B

Loads the value in A into B. The former value in B is lost; the value in A does not chan
Unlike the general transfer instruction TFR A,B which does not affect condition code b
the TAB instruction affects the N, Z, and V bits.

CCR
Effects

Code and
CPU
Cycles

TAB Transfer A to B TAB

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TAB INH 18 0E OO
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e
 the
upt
Operation (A) ⇒ CCR

Loads the value in A into the CCR. The value in A does not change. The X bit can b
cleared as a result of a TAP, but cannot be set if it was cleared prior to execution of
TAP. If the I bit is cleared, there is a one-cycle delay before the system allows interr
requests. This delay prevents interrupts from occurring between instructions in the
sequences CLI, WAI and CLI, SEI. TAP assembles as TFR A,CCR.

CCR
Effects

Code and
CPU
Cycles

TAP Transfer A to CCR
(same as TFR A,CCR) TAP

S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Condition codes take on the value of the corresponding bit of accumulator A, except that the X mask bit
cannot change from 0 to 1. Software can leave the X bit set, leave it cleared, or change it from 1 to 0, but it
can only be set by a reset or by recognition of an XIRQ interrupt.

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TAP INH B7 02 P
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ge.
its,
Operation (B) ⇒ A

Loads the value in B into A. The former value in A is lost; the value in B does not chan
Unlike the general transfer instruction TFR B,A, which does not affect condition code b
the TBA instruction affects the N, Z, and V bits.

CCR
Effects

Code and
CPU
Cycles

TBA Transfer B to A TBA

S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Source Form Address
Mode

Machine Code
(Hex) CPU Cycles

TBA INH 18 0F OO
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he
ard

ress
Operation If (counter) = 0, then (PC) + $0003 + Rel⇒ PC

Tests the counter register A, B, D, X, Y, or SP. Branches to a relative destination if t
counter register reaches zero. Rel is a 9-bit two’s complement offset for branching forw
or backward in memory. Branching range is $100 to $0FF (–256 to +255) from the add
following the last byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

TBEQ Test and Branch if Equal to Zero TBEQ

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TBEQ abdxysp,rel9
REL
(9-bit)

04 lb rr
PPP (branch)
PPO (no branch)

Loop Primitive Postbyte ( lb ) Coding
Source
Form Postbyte 1

NOTES:
1. Bits 7:6:5 select TBEQ or TBNE; bit 4 is the offset sign bit: bit 3 is not used; bits 2:1:0 select

the counter register.

Object
Code

Counter
Register Offset

TBEQ A, rel9
TBEQ B, rel9
TBEQ D, rel9
TBEQ X, rel9
TBEQ Y, rel9
TBEQ SP, rel9

0100 X000
0100 X001
0100 X100
0100 X101
0100 X110
0100 X111

04 40 rr
04 41 rr
04 44 rr
04 45 rr
04 46 rr
04 47 rr

A
B
D
X
Y

SP

Positive

TBEQ A, rel9
TBEQ B, rel9
TBEQ D, rel9
TBEQ X, rel9
TBEQ Y, rel9
TBEQ SP, rel9

0101 X000
0101 X001
0101 X100
0101 X101
0101 X110
0101 X111

04 50 rr
04 51 rr
04 54 rr
04 55 rr
04 56 rr
04 57 rr

A
B
D
X
Y

SP

Negative
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s, Y1
oints.

t to
et,
 a

e
lue
Operation (M) + [(B) × ((M + 1) – (M))] ⇒ A

Linearly interpolates and stores in A one of 256 values between a pair of data entrie
and Y2, in a lookup table. Data entries represent y coordinates of line segment endp
Table entries and interpolated results are 8-bit values.

Before executing TBL, point an indexing register at the Y1 value
closest to but less than or equal to the Y value to interpolate. Poin
Y1 using any indexed addressing mode except indirect, 9-bit offs
and 16-bit offset. The next table entry after Y1 is Y2. Load B with
binary fraction (radix point to the left of the MSB) representing the
ratio:

(XL – X1) ÷ (X2 – X1)
where
X1 = Y1 and X2 = Y2
XL is the x coordinate of the value to interpolate

The 8-bit unrounded result, YL, is calculated using the expression:
YL = Y1 + [(B) × (Y2 – Y1)]
where
Y1 = 8-bit data entry pointed to by the effective address
Y2 = 8-bit data entry pointed to by the effective address plus one

The 16-bit intermediate value (B)× (Y2 – Y1) has a radix point between bits 7 and 8. Th
result in A is the sum of the upper 8 bits (the integer part) of the intermediate 16-bit va
and the 8-bit value Y1.

CCR
Effects

Code and
CPU
Cycles

TBL Table Lookup and Interpolate TBL

X1 X2
Y1

Y2

XL

YL

S X H I N Z V C

– – – – ∆ ∆ – ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
C: Set if result can be rounded up; cleared otherwise

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TBL oprx0_xysppc IDX 18 3D xb ORfffP
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he
ard
ress
Operation If (counter)≠ 0, then (PC) + $0003 + Rel⇒ PC

Tests the counter register A, B, D, X, Y, or SP. Branches to a relative destination if t
counter does not reach zero. Rel is a 9-bit two’s complement offset for branching forw
or backward in memory. Branching range is $100 to $0FF (–256 to +255) from the add
following the last byte of object code in the instruction.

CCR
Effects

Code and
CPU
Cycles

TBNE Test and Branch if Not Equal to Zero TBNE

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TBNE abdxysp,rel9
REL
(9-bit)

04 lb rr
PPP (branch)
PPO (no branch)

Loop Primitive Postbyte ( lb ) Coding
Source
Form Postbyte 1

NOTES:
1. Bits 7:6:5 select TBEQ or TBNE; bit 4 is the offset sign bit: bit 3 is not used; bits 2:1:0 select

the counter register.

Object
Code

Counter
Register Offset

TBNE A, rel9
TBNE B, rel9
TBNE D, rel9
TBNE X, rel9
TBNE Y, rel9
TBNE SP, rel9

0110 X000
0110 X001
0110 X100
0110 X101
0110 X110
0110 X111

04 60 rr
04 61 rr
04 64 rr
04 65 rr
04 66 rr
04 67 rr

A
B
D
X
Y

SP

Positive

TBNE A, rel9
TBNE B, rel9
TBNE D, rel9
TBNE X, rel9
TBNE Y, rel9
TBNE SP, rel9

0111 X000
0111 X001
0111 X100
0111 X101
0111 X110
0111 X111

04 70 rr
04 71 rr
04 74 rr
04 75 rr
04 76 rr
04 77 rr

A
B
D
X
Y

SP

Negative
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ister
ola
Operation See the table on the next page.

Transfers the value in a source register A, B, CCR, D, X, Y, or SP to a destination reg
A, B, CCR, D, X, Y, or SP. Transfers involving TMP2 and TMP3 are reserved for Motor
use.

CCR
Effects

Code and
CPU
Cycles

TFR Transfer Register TFR

S X H I N Z V C

– – – – – – – –

or

S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

CCR bits affected only when the CCR is the destination register. The X bit cannot change from 0 to 1.
Software can leave the X bit set, leave it cleared, or change it from 1 to 0, but X can only be set by a reset or
by recognition of an XIRQ interrupt.

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TFR abcdxysp,abcdxysp INH B7 eb P
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TFR Transfer Register
(continued) TFR

Transfer Postbyte ( eb) Coding
Source
Form Postbyte Object

Code Transfer Source
Form Postbyte Object

Code Transfer

TFR A,A
TFR A,B
TFR A,CCR
TFR A,TMP2
TFR A,D
TFR A,X
TFR A,Y
TFR A,SP

0000 X000
0000 X001
0000 X010
0000 X011
0000 X100
0000 X101
0000 X110
0000 X111

B7 00
B7 01
B7 02
B7 03
B7 04
B7 05
B7 06
B7 07

A ⇒ A
A ⇒ B
A ⇒ CCR
sex:A ⇒ TMP2
sex:A ⇒ D
sex:A ⇒ X
sex:A ⇒ Y
sex:A ⇒ SP

TFR B,A
TFR B,B
TFR B,CCR
TFR D,TMP2
TFR D,D
TFR D,X
TFR D,Y
TFR D,SP

0100 X000
0100 X001
0100 X010
0100 X011
0100 X100
0100 X101
0100 X110
0100 X111

B7 40
B7 41
B7 42
B7 43
B7 44
B7 45
B7 46
B7 47

B ⇒ A
B ⇒ B
B ⇒ CCR
D ⇒ TMP2
D ⇒ D
D ⇒ X
D ⇒ Y
D ⇒ SP

TFR B,A
TFR B,B
TFR B,CCR
TFR B,TMP2
TFR B,D
TFR B,X
TFR B,Y
TFR B,SP

0001 X000
0001 X001
0001 X010
0001 X011
0001 X100
0001 X101
0001 X110
0001 X111

B7 10
B7 11
B7 12
B7 13
B7 14
B7 15
B7 16
B7 17

B ⇒ A
B ⇒ B
B ⇒ CCR
sex:B ⇒ TMP2
sex:B ⇒ D
sex:B ⇒ X
sex:B ⇒ Y
sex:B ⇒ SP

TFR X,A
TFR X,B
TFR X,CCR
TFR X,TMP2
TFR X,D
TFR X,X
TFR X,Y
TFR X,SP

0101 X000
0101 X001
0101 X010
0101 X011
0101 X100
0101 X101
0101 X110
0101 X111

B7 50
B7 51
B7 52
B7 53
B7 54
B7 55
B7 56
B7 57

XL ⇒ A
XL⇒ B
XL⇒ CCR
X ⇒ TMP2
X ⇒ D
X ⇒ X
X ⇒ Y
X ⇒ SP

TFR CCR,A
TFR CCR,B
TFR CCR,CCR
TFR CCR,TMP2
TFR CCR,D
TFR CCR,X
TFR CCR,Y
TFR CCR,SP

0010 X000
0010 X001
0010 X010
0010 X011
0010 X100
0010 X101
0010 X110
0010 X111

B7 20
B7 21
B7 22
B7 23
B7 24
B7 25
B7 26
B7 27

CCR ⇒ A
CCR ⇒ B
CCR ⇒ CCR
sex:CCR ⇒ TMP2
sex:CCR ⇒ D
sex:CCR ⇒ X
sex:CCR ⇒ Y
sex:CCR ⇒ SP

TFR Y,A
TFR Y,B
TFR Y,CCR
TFR Y,TMP2
TFR Y,D
TFR Y,X
TFR Y,Y
TFR Y,SP

0110 X000
0110 X001
0110 X010
0110 X011
0110 X100
0110 X101
0110 X110
0110 X111

B7 60
B7 61
B7 62
B7 63
B7 64
B7 65
B7 66
B7 67

YL ⇒ A
YL ⇒ B
YL ⇒ CCR
Y ⇒ TMP2
Y ⇒ D
Y ⇒ X
Y ⇒ Y
Y ⇒ SP

TFR TMP3,A
TFR TMP3,B
TFR TMP3,CCR
TFR TMP3,TMP2
TFR TMP3,D
TFR TMP3,X
TFR TMP3,Y
TFR TMP3,SP

0011 X000
0011 X001
0011 X010
0011 X011
0011 X100
0011 X101
0011 X110
0011 X111

B7 30
B7 31
B7 32
B7 33
B7 34
BY 35
B7 36
B7 37

TMP3L ⇒ A
TMP3L ⇒ B
TMP3L ⇒ CCR
TMP3 ⇒ TMP2
TMP3 ⇒ D
TMP3 ⇒ X
TMP3 ⇒ Y
TMP3 ⇒ SP

TFR SP,A
TFR SP,B
TFR SP,CCR
TFR SP,TMP2
TFR SP,D
TFR SP,X
TFR SP,Y
TFR SP,SP

0111 X000
0111 X001
0111 X010
0111 X011
0111 X100
0111 X101
0111 X110
0111 X111

B7 70
B7 71
B7 72
B7 73
B7 74
B7 75
B7 76
B7 77

SPL ⇒ A
SPL ⇒ B
SPL ⇒ CCR
SP ⇒ TMP2
SP ⇒ D
SP ⇒ X
SP ⇒ Y
SP ⇒ SP
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TFR
Operation (CCR)⇒ A

Transfers the value in CCR to A. The CCR value does not change. TPA assembles as
CCR,A.

CCR
Effects

Code and
CPU
Cycles

TPA Transfer CCR to A
(same as TFR CCR,A) TPA

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TPA INH B7 20 P
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pcode
CPU
p
he

stacks
 each
ction
Operation (SP) – $0002⇒ SP; RTNH:RTNL ⇒ MSP:MSP + 1
(SP) – $0002⇒ SP; (YH):(YL) ⇒ MSP:MSP + 1
(SP) – $0002⇒ SP; (XH):(XL) ⇒ MSP:MSP + 1
(SP) – $0002⇒ SP; (B):(A)⇒ MSP:MSP + 1
(SP) – $0001⇒ SP; (CCR)⇒ MSP
1 ⇒ I
(trap vector)⇒ PC

Traps unimplemented opcodes. There are opcodes in all 256 positions in the page 1 o
map, but only 54 of the 256 positions on page two of the opcode map are used. If the
attempts to execute one of the unimplemented opcodes on page two, an opcode tra
interrupt occurs. Unimplemented opcode traps are essentially interrupts that share t
$FFF8:$FFF9 interrupt vector.

TRAP uses the next address after the unimplemented opcode as a return address. It
the return address, CPU registers Y, X, B, A, and CCR, decrementing the SP before
item is stacked. The I bit is then set, the PC is loaded with the trap vector, and instru
execution resumes at that location. This instruction is not maskable by the I bit.

CCR
Effects

Code and
CPU
Cycles

TRAP Unimplemented Opcode Trap TRAP

S X H I N Z V C

– – – 1 – – – –

I: Set

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TRAP trapnum INH 18 tn 1

NOTES:
1. The value tn  is an unimplemented page two opcode from $30 to $39 or $40 to $FF.

OVSPSSPSsP
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e in

no
an
ting
Operation (M) – $00

Subtracts $00 from the value in M. The condition code bits reflect the result. The valu
M does not change.

The TST instruction provides limited information when testing unsigned values. Since
unsigned value is less than 0, BLO and BLS have no utility following TST. While BHI c
be used after TST, it performs the same function as BNE, which is preferred. After tes
signed values, all signed branches are available.

CCR
Effects

Code and
CPU
Cycles

TST Test M TST

S X H I N Z V C

– – – – ∆ ∆ 0 0

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared
C: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TST opr16a
TST oprx0_xysppc
TST oprx9,xysppc
TST oprx16,xysppc
TST [D,xysppc]
TST [oprx16,xysppc]

EXT
IDX
IDX1
IDX2
[D,IDX]
[IDX2]

F7 hh ll
E7 xb
E7 xb ff
E7 xb ee ff
E7 xb
E7 xb ee ff

rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
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Operation (A) – $00

Subtracts $00 from the value in A. The condition code bits reflect the result. The val
A does not change.

The TSTA instruction provides limited information when testing unsigned values. Sinc
unsigned value is less than 0, BLO and BLS have no utility following TSTA. While B
can be used after TST, it performs the same function as BNE, which is preferred. Af
testing signed values, all signed branches are available.

CCR
Effects

Code and
CPU
Cycles

TSTA Test A TSTA

S X H I N Z V C

– – – – ∆ ∆ 0 0

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared
C: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TSTA INH 97 O
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Operation (B) – $00

Subtracts $00 from the value in B. The condition code bits reflect the result. The val
B does not change.

The TSTB instruction provides limited information when testing unsigned values. Sinc
unsigned value is less than 0, BLO and BLS have no utility following TSTB. While B
can be used after TST, it performs the same function as BNE, which is preferred. Af
testing signed values, all signed branches are available.

CCR
Effects

Code and
CPU
Cycles

TSTB Test B TSTB

S X H I N Z V C

– – – – ∆ ∆ 0 0

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared
C: Cleared

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TSTB INH D7 O
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Operation (SP)⇒ X

Transfers the value in SP to X. The value in SP does not change. After a TSX instruc
X points at the last value that was stored on the stack. TSX assembles as TFR SP,X

CCR
Effects

Code and
CPU
Cycles

TSX Transfer SP to X
(same as TFR SP,X) TSX

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TSX INH B7 75 P
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.

Operation (SP)⇒ Y

Transfers the value in SP to Y. The value in SP does not change. After a TSY instru
Y points at the last value that was stored on the stack. TPY assembles as TFR SP,Y

CCR
Effects

Code and
CPU
Cycles

TSY Transfer SP to Y
(same as TFR SP,Y) TSY

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TSY INH B7 76 P
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 TFR
Operation (X) ⇒ SP

Transfers the value in X to SP. The value in X does not change. TXS assembles as
X,SP.

CCR
Effects

Code and
CPU
Cycles

TXS Transfer X to SP
(same as TFR X,SP) TXS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TXS INH B7 57 P
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 TFR
Operation (Y) ⇒ SP

Transfers the value in Y to SP. The value in Y does not change. TYS assembles as
Y,SP.

CCR
Effects

Code and
CPU
Cycles

TYS Transfer Y to SP
(same as TFR Y,SP) TYS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

TYS INH B7 67 P
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Operation (SP) – $0002⇒ SP, RTNH:RTNL ⇒ MSP:MSP + 1
(SP) – $0002⇒ SP, (YH):(YL) ⇒ MSP:MSP + 1
(SP) – $0002⇒ SP, (XH):(XL) ⇒ MSP:MSP + 1
(SP) – $0002⇒ SP, (B):(A)⇒ MSP:MSP + 1
(SP) – $0001⇒ SP, (CCR)⇒ MSP
Stop CPU clocks

Puts the CPU into a wait state. Uses the address of the instruction following WAI as a re
address. Stacks the return address and CPU registers Y, X, B, A, and CCR, decrem
SP before each item is stacked.

The CPU then enters a wait state for an integer number of bus clock cycles. During the
state, CPU clocks are stopped, but other MCU clocks can continue to run. The CPU le
the wait state when it senses an interrupt that has not been masked.

Upon leaving the wait state, the CPU sets the appropriate interrupt mask bit(s) and fe
the vector corresponding to the interrupt sensed. Program execution continues at th
location to which the vector points.

CCR
Effects

Code and
CPU
Cycles

WAI Wait for Interrupt WAI

S X H I N Z V C

– – – – – – – –

Although the WAI instruction itself does not alter the condition codes, the interrupt that causes the CPU to
resume processing causes the I bit (and the X bit, if the interrupt was XIRQ) to be set as the interrupt vector
is fetched.

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

WAI INH 3E
OSSSSsf (before interrupt)
fVfPPP  (after interrupt)
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Operation Partial product = (M pointed to by X)× (M pointed to by Y)
Sum of products (24-bit SOP) = previous SOP + partial product
Sum of weights (16-bit SOW) = previous SOW + (M pointed to by Y)
(X) + $0001⇒ X; (Y) + $0001⇒ Y, (B) – $01⇒ B
Repeat until B = $00; leave SOP in Y:D, SOW in X

Calculates weighted averages of values in memory. Uses indexed (X) addressing to a
one source operand list, and indexed (Y) addressing mode to access another source o
list. Accumulator B is the counter that controls the number of elements to be include
the weighted average.

For each data point pair, a 24-bit SOP and a 16-bit SOW accumulates in temporary
registers. When B reaches zero (no more data pairs), the SOP goes in Y:D. The SOW
in X. To get the final weighted average, divide (Y):(D) by (X) with an EDIV after the
WAV.

WAV can be interrupted. If an interrupt occurs, the intermediate results (six bytes) a
stacked in the order SOW[15:0], SOP[15:0], $00:SOP[23:16]. The wavr pseudoinstruction
resumes WAV execution. The interrupt mechanism is reentrant; new WAV instructio
can be started and interrupted while a previous WAV instruction is interrupted.

CCR
Effects

Code and
CPU
Cycles

WAV Calculate Weighted Average WAV

S X H I N Z V C

– – ? – ? 1 ? ?

Z: Set
H, N, V, and C may be altered by this instruction.

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

WAV Special 18 3C
OffrrffffO 1

SSS+UUUrr2

NOTES:
1. The 7-cycle loop frrffff  is the loop for one iteration of SOP and SOW accumulation.
2. These are additional cycles caused by interrupt: SSS is a three-cycle exit sequence and

UUUrr is a five-cycle re-entry sequence. Six extra bytes of stack are used for intermediate
values.
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Operation (D) ⇔ (X)

Exchanges the value in D with the value in X. XGDX assembles as EXG D,X.

CCR
Effects

Code and
CPU
Cycles

XGDX Exchange D with X
(same as EXG D,X) XGDX

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

XGDX INH B7 C5 P
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Operation (D) ⇔ (Y)

Exchanges the value in D with the value in Y. XGDY assembles as EXG D,Y.

CCR
Effects

Code and
CPU
Cycles

XGDY Exchange D with Y
(same as EXG D,Y) XGDY

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

XGDY INH B7 C6 P
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Appendix B  Fuzzy Logic Support

B.1  General

This section describes the use of fuzzy logic in control systems, discusses the fuzzy logic instruction
provides examples of fuzzy logic programs.

B.2  Introduction

There are four instructions that perform fuzzy logic tasks. Several other instructions are also usefu
fuzzy logic programs.

This section explains the basic fuzzy logic algorithm for which the four fuzzy logic instructions are
intended. Each fuzzy logic instruction is then explained in detail. Finally, other custom fuzzy logic
algorithms are discussed, with emphasis on other useful instructions.

The four fuzzy logic instructions are:

• MEM — evaluates trapezoidal membership functions

• REV and REVW — perform unweighted or weighted MIN-MAX rule evaluation

• WAV — performs weighted average defuzzification on singleton output membership functio

Other instructions that are useful for custom fuzzy logic programs include MINA, EMIND, MAXM,
EMAXM, TBL, ETBL, and EMACS. For higher resolution fuzzy programs, the extended math
instructions are also useful. Indexed addressing modes help simplify access to fuzzy logic data stru
stored as lists or tabular data structures in memory.

B.3  Fuzzy Logic Basics

This overview of basic fuzzy logic concepts is the background for a detailed explanation of the fuzzy
instructions.

In general, fuzzy logic provides for definitions of sets that have fuzzy boundaries rather than the c
boundaries of Aristotelian logic. The sets can overlap so that, for a particular input value, one or mor
may be true at the same time. As the input varies out of the range of one set and into the range o
adjacent set, the first set becomes progressively less true while the second set becomes progressiv
true.

Fuzzy logic has membership functions that emulate human perceptions such as “temperature is wa
which humans recognize gradual boundaries. This perception seems to be important to the human
to solve certain types of complex problems that elude traditional control methods.

Fuzzy sets are a means of using linguistic expressions such as “temperature is warm” as labels in ru
can be evaluated with a high degree of numerical precision and repeatability. A specific set of inp
conditions always produces the same result, just as a conventional control system does.
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A microcontroller-based fuzzy logic control system has two parts:

• A fuzzy inference kernel which is executed periodically to determine system outputs based 
current system inputs

• A knowledge base which contains membership functions and rules

Figure B-1  is a block diagram of this kind of fuzzy logic system.

The knowledge base can be developed by an application expert without any microcontroller program
experience. Membership functions are simply expressions of the expert’s understanding of the lin
terms that describe the system to be controlled. Rules are ordinary language statements that des
actions a human expert would take to solve the application problem.

Rules and membership functions can be reduced to relatively simple data structures (the knowledg
stored in nonvolatile memory. A fuzzy inference kernel can be written by a programmer who does
know how the application system works. All that the programmer needs to do with knowledge bas
information is store it in the memory locations used by the kernel.

Figure B-1  Block Diagram of a Fuzzy Logic System

One execution pass through the fuzzy inference kernel generates system output signals in respon
current input conditions. The kernel is executed as often as needed to maintain control. If the kern
executed more often than needed, processor bandwidth and power are wasted. On the other hand,
too long between passes can cause the system to get too far out of control. Choosing a periodic ra
fuzzy control system is the same as it would be for a conventional control system.

INPUT

RULE LIST

OUTPUT

FUZZIFICATION

RULE EVALUATION

DEFUZZIFICATION

KNOWLEDGE BASE

SYSTEM

SYSTEM

FUZZY INPUTS

FUZZY OUTPUTS

• • •

MEMBERSHIP
RULES

MEMBERSHIP
FUNCTIONS

FUZZY INFERENCE KERNEL

• • •(IN RAM)

(IN RAM)

OUTPUTS

INPUTS
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B.3.1  Fuzzification (MEM)

During the fuzzification step, the current system input values are compared to stored input memb
functions to determine the degree to which each label of each system input is true. This is accom
by finding the y-value for the current input value on a trapezoidal membership function for each la
each system input. The MEM instruction performs this calculation for one label of one system inpu
perform the complete fuzzification task for a system, several MEM instructions must be executed, u
in a program loop structure.

Figure B-2 shows a system of three input membership functions, one for each label of the system
The x-axis of all three membership functions represents the range of possible values of the system
The vertical line through all three membership functions represents a specific system input value.
y-axis represents degree of truth and varies from completely false ($00 or 0%) to completely true ($
100%). The y-value where the vertical line intersects each of the membership functions is the deg
which the current input value matches the associated label for this system input. For example, the
expression “temperature is warm” is 25% true ($40). The value $40 is stored to a RAM location, a
called a fuzzy input (in this case, the fuzzy input for “the temperature is warm”). There is a RAM loca
for each fuzzy input (for each label of each system input).

When the fuzzification step begins, the current value of the system input is in an accumulator, one
register points to the first membership function definition in the knowledge base, and a second ind
register points to the first fuzzy input in RAM. As each fuzzy input is calculated by executing a ME
instruction, the result is stored to the fuzzy input and both pointers are updated automatically to p
the locations associated with the next fuzzy input. The MEM instruction takes care of everything e
counting the number of labels per system input and loading the current value of any subsequent s
inputs.

The end result of the fuzzification step is a table of fuzzy inputs representing current system cond
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Figure B-2  Fuzzification Using Membership Functions

B.3.2  Rule Evaluation (REV and REVW)

Rule evaluation is the central element of a fuzzy logic inference program. This step processes a list o
from the knowledge base using current fuzzy input values from RAM to produce a list of fuzzy outpu
RAM. These fuzzy outputs can be thought of as raw suggestions for what the system output should
response to the current input conditions. Before the results can be applied, the fuzzy outputs mus
further processed, or defuzzified, to produce a single output value that represents the combined e
all of the fuzzy outputs.

There are two variations of the rule evaluation instruction. The REV instruction provides for unweig
rules that are considered to be equally important. The REVW instruction is similar but allows each r
have a weighting factor which is stored in a separate parallel data structure in the knowledge bas
and REVW also differ in the way rules are encoded into the knowledge base.

An understanding of the structure and syntax of rules is needed to understand how a microcontro
performs the rule evaluation task. The following is an example of a typical rule.

If temperature is warm and pressure is high then heat is (should be) off.

$00

$80

$FF

0˚F 32˚F 64˚F 96˚F 128˚F

$40

$C0

HOT

$00

$80

$FF

0˚F 32˚F 64˚F 96˚F 128˚F

$40

$C0

WARM

$00

$80

$FF

0˚F 32˚F 64˚F 96˚F 128˚F

$40

$C0

COLD

CURRENT

MEMBERSHIP FUNCTIONS

FUZZY INPUTS

TEMPERATURE IS HOT

TEMPERATURE IS WARM

TEMPERATURE IS COLD

$00

$40

$C0

FOR TEMPERATURE

TEMPERATURE
IS 64 °F
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At first glance, it seems that encoding this rule in a compact form understandable to the microcon
would be difficult, but it is actually simple to reduce the rule to a small list of memory pointers. The
portion of the rule is a statement of input conditions and the right portion of the rule is a statement of o
actions.

The left portion of a rule is made up of one or more (in this case two) antecedents connected by a
andoperator. Each antecedent expression consists of the name of a system input, followed byis, followed
by a label name. The label must be defined by a membership function in the knowledge base. Ea
antecedent expression corresponds to one of the fuzzy inputs in RAM. Sinceand is the only operator
allowed to connect antecedent expressions, there is no need to include these in the encoded rule
antecedents can be encoded as a simple list of pointers to (or addresses of) the fuzzy inputs to whi
refer.

The right portion of a rule is made up of one or more (in this case one) consequents. Each conseq
expression consists of the name of a system output, followed byis, followed by a label name. Each
consequent expression corresponds to a specific fuzzy output in RAM. Consequents for a rule ca
encoded as a simple list of pointers to (or addresses of) the fuzzy outputs to which they refer.

The complete rules are stored in the knowledge base as a list of pointers or addresses of fuzzy inp
fuzzy outputs. In order for the rule evaluation logic to work, there must be some means of knowing w
pointers refer to fuzzy inputs, and which refer to fuzzy outputs. There also must be a way to know
the last rule in the system has been reached.

One method of organization is to have a fixed number of rules with a specific number of anteceden
consequents. A second method, employed in Motorola Freeware M68HC11 kernels, is to mark the
the rule list with a reserved value, and use a bit in the pointers to distinguish antecedents from conse
A third method of organization, used in the HCS12 CPU, is to mark the end of the rule list with a rese
value, and separate antecedents and consequents with another reserved value. This permits any n
rules, and allows each rule to have any number of antecedents and consequents, subject to availa
system memory.

Each rule is evaluated sequentially, but the rules as a group are treated as if they were all evalua
simultaneously. Two mathematical operations take place during rule evaluation. The fuzzyand operator
corresponds to the mathematical minimum operation and the fuzzyor operation corresponds to the
mathematical maximum operation. The fuzzyandis used to connect antecedents within a rule. The fuz
or is implied between successive rules. Before evaluating any rules, all fuzzy outputs are cleared, m
not true at all. As each rule is evaluated, the smallest (minimum) antecedent is taken to be the overa
of the rule. This rule truth value is applied to each consequent of the rule (by storing this value to 
corresponding fuzzy output) unless the fuzzy output is already larger (maximum). If two rules affe
same fuzzy output, the rule that is most true governs the value in the fuzzy output because the ru
connected by an implied fuzzyor.

In the case of rule weighting, the truth value for a rule is determined as usual by finding the smalles
antecedent. Before applying this truth value to the consequents for the rule, the value is multiplied
fraction from zero (rule disabled) to one (rule fully enabled). The resulting modified truth value is t
applied to the fuzzy outputs.

The end result of the rule evaluation step is a table of suggested or raw fuzzy outputs in RAM. These
were obtained by plugging current conditions (fuzzy input values) into the system rules in the know
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base. The raw results cannot be supplied directly to the system outputs because they may be am
For instance, one raw output can indicate that the system output should be medium with a degree o
of 50% while, at the same time, another indicates that the system output should be low with a deg
truth of 25%. The defuzzification step resolves these ambiguities.

B.3.3  Defuzzification (WAV)

The final step in the fuzzy logic program combines the raw fuzzy outputs into a composite system o
Instead of the trapezoidal shapes used for inputs, singletons are typically used for output member
functions. As with the inputs, the x-axis represents the range of possible values for a system outp
Singleton membership functions consist of the x-axis position for a label of the system output. Fuz
outputs correspond to the y-axis height of the corresponding output membership function.

The WAV instruction calculates the numerator and denominator sums for weighted average of the
outputs according to the formula:

where:

n is the number of labels of a system output
Si are the singleton positions from the knowledge base
Fi are the fuzzy outputs from RAM

For a common fuzzy logic program, n is eight or less (though this instruction can handle any value to
and Si and Fi are 8-bit values. The final divide is performed with a separate EDIV instruction placed
immediately after the WAV instruction.

Before executing WAV, an accumulator must be loaded with the number of iterations (n), one inde
register must be pointed at the list of singleton positions in the knowledge base, and a second index r
must be pointed at the list of fuzzy outputs in RAM. If the system has more than one system outpu
WAV instruction is executed once for each system output.

B.4  Example Inference Kernel

Figure B-3  is a complete fuzzy inference kernel written in assembly language. Numbers in square
brackets are cycle counts. The kernel uses two system inputs with seven labels each and one system
with seven labels. The program assembles to 57 bytes. It executes in about 54µs at an 8-MHz bus rate.
The basic structure can easily be extended to a general-purpose system with a larger number of inp
outputs.

Lines 1 to 3 set up pointers and load the system input value into the A accumulator.

Line 4 sets the loop count for the loop in lines 5 and 6.

System Output

SiFi

i 1=

n

∑

Fi

i 1=

n

∑
-------------------=
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Lines 5 and 6 make up the fuzzification loop for seven labels of one system input. The MEM instru
finds the y-value on a trapezoidal membership function for the current input value, for one label of
current input, and then stores the result to the corresponding fuzzy input. Pointers in X and Y are
automatically updated by four and one so they point at the next membership function and fuzzy in
respectively.

Line 7 loads the current value of the next system input. Pointers in X and Y already point to the right p
as a result of the automatic update function of the MEM instruction in line 5.

Line 8 reloads a loop count.

Lines 9 and 10 form a loop to fuzzify the seven labels of the second system input. When the program
to line 11, the Y index register is pointing at the next location after the last fuzzy input, which is the
fuzzy output in this system.

*
01 [2] FUZZIFY LDX #INPUT_MFS;Point at MF definitions
02 [2] LDY #FUZ_INS ;Point at fuzzy input table
03 [3] LDAA CURRENT_INS;Get first input value
04 [1] LDAB #7 ;7 labels per input
05 [5] GRAD_LOOP MEM ;Evaluate one MF
06 [3] DBNE B,GRAD_LOOP;For 7 labels of 1 input
07 [3] LDAA CURRENT_INS+1;Get second input value
08 [1] LDAB #7 ;7 labels per input
09 [5] GRAD_LOOP1MEM ;Evaluate one MF
10 [3] DBNE B,GRAD_LOOP1;For 7 labels of 1 input

11 [1] LDAB #7 ;Loop count
12 [2] RULE_EVAL CLR 1,Y+ ;Clr a fuzzy out & inc ptr
13 [3] DBNE b,RULE_EVAL;Loop to clr all fuzzy outs
14 [2] LDX #RULE_START;Point at first rule element
15 [2] LDY #FUZ_INS ;Point at fuzzy ins and outs
16 [1] LDAA #$FF ;Init A (and clears V-bit)
17 [3n+4] REV ;Process rule list

18 [2] DEFUZ LDY #FUZ_OUT ;Point at fuzzy outputs
19 [1] LDX #SGLTN_POS;Point at singleton positions
20 [1] LDAB #7 ;7 fuzzy outs per COG output
21 [8b+9] WAV ;Calculate sums for wtd av
22 [11] EDIV ;Final divide for wtd av
23 [1] TFR Y D ;Move result to A:B
24 [3] STAB COG_OUT ;Store system output

*
***** End

Figure B-3  Fuzzy Inference Engine

Line 11 sets the loop count to clear seven fuzzy outputs.

Lines 12 and 13 form a loop to clear all fuzzy outputs before rule evaluation starts.

Line 14 initializes the X index register to point at the first element in the rule list for the REV instruct
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Line 15 initializes the Y index register to point at the fuzzy inputs and outputs in the system. The rul
(for REV) consists of 8-bit offsets from this base address to particular fuzzy inputs or fuzzy outputs
special value $FE is interpreted by REV as a marker between rule antecedents and consequents

Line 16 initializes the A accumulator to the highest 8-bit value in preparation for finding the smallest f
input referenced by a rule antecedent. The LDAA #$FF instruction also clears the V bit in the con
code register so the REV instruction knows it is processing antecedents. During rule list processing
bit is toggled each time an $FE is detected in the list. The V bit indicates whether REV is process
antecedents or consequents.

Line 17 is the REV instruction, a self-contained loop to process successive elements in the rule lis
an $FF character is found. For a system of 17 rules with two antecedents and one consequent ea
REV instruction takes 259 cycles, but it is interruptible so it does not cause a long interrupt latenc

Lines 18 through 20 set up pointers and an iteration count for the WAV instruction.

Line 21 is the beginning of defuzzification. The WAV instruction calculates a sum-of-products and
sum-of-weights.

Line 22 completes defuzzification. The EDIV instruction performs a 32-bit by 16-bit divide on the
intermediate results from WAV to get the weighted average.

Line 23 moves the EDIV result into the double accumulator.

Line 24 stores the low 8-bits of the defuzzification result.

This example inference program shows how easy it is to incorporate fuzzy logic into general applica
using the HCS12 CPU. Code space and execution time are no longer serious factors in the decision
fuzzy logic. The next section begins a much more detailed look at the fuzzy logic instructions.

B.5  MEM Instruction Details

This section provides a more detailed explanation of the membership function evaluation instructi
(MEM), including details about abnormal special cases for improperly defined membership functio

B.5.1  Membership Function Definitions

Figure B-4  shows how a normal membership function is specified. Typically a software tool is use
input membership functions graphically, and the tool generates data structures for the target proces
software kernel. Alternatively, points and slopes for the membership functions can be determined
stored in memory with define-constant assembler directives.

An internal CPU algorithm calculates the y-value where the current input intersects a membership
function. This algorithm assumes the membership function obeys some common-sense rules. If th
membership function definition is improper, the results may be unusual.B.5.2 Abnormal Membership
Function Definitions discusses these cases. The following rules apply to normal membership func

• $00≤ point1< $FF

• $00< point2≤ $FF
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• point1< point2

• The sloping sides of the trapezoid meet at or above $FF

Each system input such as temperature has several labels such as cold, cool, normal, warm, and h
label of each system input must have a membership function to describe its meaning in an unamb
numerical way. Typically, there are three to seven labels per system input, but there is no practica
restriction on this number as far as the fuzzification step is concerned.

B.5.2  Abnormal Membership Function Definitions

In the HCS12 CPU, it is possible (and proper) to define crisp membership functions. A crisp membe
function has one or both sides vertical (infinite slope). Since the slope value $00 is not used otherw
is assigned to mean infinite slope to the MEM instruction.

Although a good fuzzy development tool does not allow the user to specify an improper members
function, it is possible to have program errors or memory errors which result in erroneous abnorm
membership functions. Although these abnormal shapes do not correspond to any working system
understanding how the HCS12 CPU treats these cases can be helpful for debugging.

Figure B-4  Defining a Normal Membership Function

A close examination of the MEM instruction algorithm shows how such membership functions are
evaluated.Figure B-5  is a complete flow diagram for the execution of a MEM instruction. Each
rectangular box represents one CPU bus cycle. The number in the upper left corner corresponds 
cycle number and the letter corresponds to the cycle type (refer toAppendix A Instruction Set and
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Commands for details). The upper portion of the box includes information about bus activity, if any
during this cycle. The lower portion of the box, which is separated by a dashed line, includes inform
about internal CPU processes. It is common for several internal functions to take place during a singl
cycle. In cycle 3, for example, two 8-bit subtractions take place and a flag is set based on the resu

Figure B-5  MEM Instruction Flow Diagram

Consider 4a: If (((slope_2 = 0) or (grade_2 > $FF)) and (flag_d12n = 0)).

The flag_d12n is zero as long as the input value in accumulator A is within the trapezoid. Everywh
outside the trapezoid, one or the other delta term is negative, and the flag equals one. Slope_2 equ
indicates the right side of the trapezoid has infinite slope, so the resulting grade should be $FF every
in the trapezoid, including at point_2, as far as this side is concerned. The term grade_2 greater th
means the value is far enough into the trapezoid that the right sloping side of the trapezoid has cr
above the $FF cutoff level and the resulting grade should be $FF as far as the right sloping side is
concerned. 4a decides if the value is left of the right sloping side (grade = $FF), or on the sloping p
of the right side of the trapezoid (grade = grade_2). 4b could still override this tentative value in gr

In 4b, slope_1 is zero if the left side of the trapezoid has infinite slope (vertical). If so, the result (g
should be $FF at and to the right of point_1 everywhere within the trapezoid as far as the left side
concerned. The grade_1 greater than $FF term corresponds to the input being to the right of where
sloping side passes the $FF cutoff level. If either of these conditions is true, the result (grade) is left

1-R Read word @ 0,X — point_1 and point_2

2-R Read word @ 0,X — slope_1 and slope_2

3a — delta_1 = ACCA – point_1
3b — delta_2 = point_2 – ACCA
3c — If (delta_1 or delta_2) < 0 then flag_d12n = 1 else flag_d12n = 0

4-O If misaligned then read program word to fill instruction queue else no bus access

4a — If (((slope_2 = 0) or (grade_2 > $FF)) and (flag_d12n = 0)) then member_init = $FF
else member_init = grade_2

4b — If (((slope_1 = 0) or (grade_1 > $FF)) and (flag_d12n = 0)) then membership = member_init
else membership = grade_1

START

END

X = X + 2

grade_1 = slope_1 × delta_1
grade_2 = slope_2 × delta_2

Y0 = Y, Y = Y0 + 1
X = X + 2

3-f

If flag_d12n = 1 then write $00 @ 0, Y0

No bus access

5-w
else write membership @ 0,Y0 — fuzzy input result (grade)
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value it got from 4a. The else condition in 4b corresponds to the input falling on the sloping portion o
left side of the trapezoid or possibly outside the trapezoid, so the result is grade equals grade_1. If th
is outside the trapezoid, flag_d12n is one and grade_1 and grade_2 would have been forced to $00
3. The else condition of 4b sets the result to $00.

The following special cases represent abnormal membership function definitions. The explanation
describe how the specific algorithm in the HCS12 CPU resolves these unusual cases. The results
all intuitively obvious, but rather fall out from the specific algorithm. Remember, these cases shou
occur in a normal system.

B.5.2.1  Abnormal Membership Function Case 1

This membership function is abnormal because the sloping sides cross below the $FF cutoff leve
flag_d12n signal forces the membership function to evaluate to $00 everywhere except from poin
point_2. Within this interval, the tentative values for grade_1 and grade_2 calculated in cycle 3 fall o
crossed sloping sides. In step 4a, grade gets set to the grade_2 value, but in 4b this is overridden
grade_1 value, which ends up as the result of the MEM instruction. One way to say this is that the
follows the left sloping side until the input passes point_2, where the result goes to $00.

Figure B-6  Abnormal Membership Function Case 1

If point_1 was to the right of point_2, flag_d12n would force the result to be $00 for all input value
fact, flag_d12n always limits the region of interest to the space greater than or equal to point_1 an
than or equal to point_2.

B.5.2.2  Abnormal Membership Function Case 2

Like the previous example, the membership function in case 2 is abnormal because the sloping side
below the $FF cutoff level, but the left sloping side reaches the $FF cutoff level before the input g
point_2. In this case, the result follows the left sloping side until it reaches the $FF cutoff level. At 
point, the (grade_1 > $FF) term of 4b kicks in, making the expression true so grade equals grade
overwrite). The result from here to point_2 becomes controlled by the else part of 4a (grade = gra
and the result follows the right sloping side.

Memory Definition: $60, $80, $04, $04; Point_1, Point_2, Slope_1, Slope_2

Graphical Representation: How Interpreted:

P1 P2 P1 P2
ABN MEM 1
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Figure B-7  Abnormal Membership Function Case 2

B.5.2.3  Abnormal Membership Function Case 3

The membership function in case 3 is abnormal because the sloping sides cross below the $FF cuto
and the left sloping side has infinite slope. In this case, 4a is not true, so grade equals grade_2. 4
because slope_1 is zero, so 4b does not overwrite grade.

Figure B-8  Abnormal Membership Function Case 3

B.6  REV, REVW Instruction Details

This section provides a more detailed explanation of the rule evaluation instructions, REV and RE
The data structures that specify rules are somewhat different for the weighted versus unweighted v
of the instruction. One uses 8-bit offsets in the encoded rules, while the other uses full 16-bit addr
This affects the size of the rule data structure and execution time.

B.6.1  Unweighted Rule Evaluation (REV)

This instruction implements basic min-max rule evaluation. CPU registers are used for pointers an
intermediate calculation results.

Since the REV instruction is essentially a list-processing instruction, execution time is dependent 
number of elements in the rule list. The REV instruction is interruptible, typically within three bus cyc
so it does not adversely affect worst-case interrupt latency. Since all intermediate results and inst
status are held in stacked CPU registers, the interrupt service code can even include independent R
REVW instructions.

Memory Definition: $60, $C0, $04, $04; Point_1, Point_2, Slope_1, Slope_2

Graphical Representation How Interpreted

P1 P2 P1 P2Left Side
Crosses $FF

ABN MEM 2

Memory Definition: $60, $80, $00, $04; Point_1, Point_2, Slope_1, Slope_2

Graphical Representation How Interpreted

P1 P2 P1 P2
ABN MEM 3
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B.6.1.1  Initialization Prior to Executing REV

Some CPU registers and memory locations need to be initialized before executing the REV instruct
and Y index registers are index pointers to the rule list and the fuzzy inputs and outputs. The A accum
holds intermediate calculation results and needs to be initially set to $FF. The V bit is an instruction
indicator showing whether antecedents or consequents are being processed. Initially, the V bit is 
to indicate antecedents are being processed. The fuzzy outputs in working RAM locations need to
cleared to $00. Improper initialization produces erroneous results.

The X index register is set to the address of the first element in the rule list (in the knowledge base
REV instruction automatically updates this pointer so that the instruction can resume correctly if it
interrupted. After the REV instruction finishes, X points at the next address past the $FF separato
character that marks the end of the rule list.

The Y index register is set to the base address for the fuzzy inputs and outputs in working RAM. Eac
antecedent is an unsigned 8-bit offset from this base address to the referenced fuzzy input. Each 
consequent is an unsigned 8-bit offset from this base address to the referenced fuzzy output. The Y
register remains constant throughout execution of the REV instruction.

The 8-bit A accumulator is used to hold intermediate calculation results during execution of the RE
instruction. During antecedent processing, A starts out at $FF and is replaced by any smaller fuzzy
that is referenced by a rule antecedent (MIN). During consequent processing, A holds the truth va
the rule. This truth value is stored to any fuzzy output that is referenced by a rule consequent, unle
fuzzy output is already larger (MAX).

Before execution of REV begins, A must be set to $FF (the largest 8-bit value) because rule evalu
always starts with processing of the antecedents of the first rule. For subsequent rules in the list, 
automatically set to $FF when the instruction detects the $FE marker character between the last
consequent of the previous rule, and the first antecedent of a new rule.

The instruction LDAA #$FF clears the V bit at the same time it initializes A to $FF. This satisfies the R
setup requirement to clear the V bit as well as the requirement to initialize A to $FF. Once the RE
instruction starts, the value in the V bit is automatically maintained as $FE separator characters a
detected.

The final requirement to clear all fuzzy outputs to $00 is part of the MAX algorithm. Each time a ru
consequent references a fuzzy output, that fuzzy output is compared to the truth value for the curre
If the current truth value is larger, it is written over the previous value in the fuzzy output. After all ru
have been evaluated, the fuzzy output contains the truth value for the most-true rule that referenc
fuzzy output.

After REV finishes, A holds the truth value for the last rule in the rule list. The V bit should be one bec
the last element before the $FF end marker should have been a rule consequent. If V is zero after ex
REV, it indicates the rule list was structured incorrectly.

B.6.1.2  Interrupt Details

The REV instruction includes a three-cycle processing loop for each byte in the rule list including
antecedents, consequents, and special separator characters. Within this loop, a check is perform
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if any qualified interrupt request is pending. If an interrupt is detected, the current CPU registers a
stacked and the interrupt is serviced. When the interrupt service routine finishes, an RTI instruction c
the CPU to recover its previous context from the stack, and the REV instruction is resumed as if it ha
been interrupted.

When a REV instruction is interrupted, the stacked value of the program counter, PC, points to th
instruction rather than the instruction that follows. This causes the CPU to try to execute a new RE
instruction upon return from the interrupt. Since the CPU registers, including the V bit in the condi
code register, indicate the current status of the interrupted REV instruction, the rule evaluation ope
resumes where it was interrupted.

B.6.1.3  Cycle-by-Cycle REV Details

The central element of the REV instruction is a three-cycle loop that is executed once for each byte
rule list. There is a small amount of housekeeping activity to get this loop started as REV begins, 
small sequence to end the instruction. If an interrupt comes, there is a special small sequence to sa
status on the stack before servicing the requested interrupt.

Figure B-9  is a REV instruction flow diagram. Each box represents one CPU clock cycle. Decisio
blocks and connecting arrows are considered to take no time at all. The letters in the upper left co
each box are execution cycle codes (refer toAppendix A Instruction Set and Commands for details).

When a value is read from memory, it cannot be used by the CPU until the second cycle after the rea
place. This is due to access and propagation delays.

Since there is more than one flow path through the REV instruction, cycle numbers have a decimal
This decimal place indicates which of several possible paths is being used. The CPU normally mo
forward by one digit at a time within the same flow. The flow number is indicated after the decimal p
in the cycle number. There are two exceptions possible to this orderly sequence through an instru
The first is a branch back to an earlier cycle number to form a loop as in 6.0 to 4.0. The second ty
sequence change is from one flow to a parallel flow within the same instruction such as 4.0 to 5.2,
occurs if the REV instruction senses an interrupt. In this second type of sequence branch, the wh
number advances by one and the flow number, the digit after the decimal point, changes to a new

In cycle 1.0, the CPU does an optional program word access to replace the $18 prebyte of the RE
instruction. Notice that cycle 7.0 is also an O cycle. One of these cycles is a program word fetch, wh
other is a free cycle in which the CPU does not access the bus. Although the $18 page prebyte is
the REV instruction, the CPU treats it as a separate single-cycle instruction.
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Figure B-9  REV Instruction Flow Diagram

Rule evaluation begins at cycle 2.0 with a byte read of the first element in the rule list. Usually this i
first antecedent of the first rule, but the REV instruction can be interrupted, so this could be a read o
byte in the rule list. The X index register is incremented so it points to the next element in the rule
Cycle 3.0 satisfies the required delay between a read and when data is valid to the CPU. Some in

Interrupt pending?

1.0-O Read program word if $18 misaligned

2.0-r Read byte @ 0,X (rule element RX)

X = X + 1 (point at next rule element)

START

END

4.0-t

then read byte @ RX,Y (fuzzy in or out FY)
If RX ≠ $FE or $FF

No

Yes

Continue to interrupt stacking

Yes

No

3.0-f No bus access

If RX = $FE and V was 1, reset ACCA to $FF
If RX = $FE toggle V bit

else no bus access

Update RX with value read in cycle 2 or 5

RX = $FF (end of rules)?

5.0-t RX = $FF, other?
$FF

Other
Read byte @ 0,X (rule element RX)

X = X + 1 point at next rule element

V bit = ?
1 (max)

0 (min)

6.0-x Update FY with value read in cycle 4.0

If RX ≠ $FE, then A = min(A, FY)
else A = A (no change to A)

7.0-O Read program word if $3A misaligned

5.2-f No bus access

Adjust PC to point at current REV instruction

6.2-f No bus access

Adjust X = X – 1

6.1-x

then write byte @ RX,Y
If RX ≠ $FE or $FF and ACCA > FY

else no bus access

Update FY with value read in cycle 4.0
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CPU housekeeping activity takes place during this cycle, but there is no bus activity. By cycle 4.0, th
element that was read in cycle 2.0 is available to the CPU.

Cycle 4.0 is the first cycle of the main three-cycle rule evaluation loop. Depending on whether rule
antecedents or consequents are being processed, the loop consists of cycles 4.0, 5.0, and 6.0 or 
and 6.1. This loop is executed once for every byte in the rule list, including the $FE separators and th
end-of-rules marker.

At each cycle 4.0, a fuzzy input or fuzzy output is read, except during the loop passes associated w
$FE and $FF marker bytes, in which no bus access takes place during cycle 4.0. The read access
Y index register as the base address and the previously read rule byte, RX, as an unsigned offset from Y.
The fuzzy input or output value read here is used during the next cycle 6.0 or 6.1. Besides being the
from Y for this read, the previously read RX can be a separator character, $FE. If RX is $FE and the V bit
was one, this indicates a switch from processing consequents of one rule to processing anteceden
next rule. At this transition, the A accumulator is initialized to $FF to prepare for the min operation to
the smallest fuzzy input. Also, if RX is $FE, the V bit toggles to indicate the change from antecedent
consequents, or consequents to antecedents.

During cycle 5.0, a new rule byte is read unless this is the last loop pass, and RX is $FF, marking the end
of the rule list. This new rule byte is not used until cycle 4.0 of the next pass through the loop.

Between cycle 5.0 and 6.x, the V bit determines which of two paths to take. If V is zero, antecede
being processed and the CPU progresses to cycle 6.0. If V is one, consequents are being processe
CPU goes to cycle 6.1.

During cycle 6.0, the min operation compares the current value in the A accumulator to the fuzzy 
that was read in the previous cycle 4.0 and puts the lower value in the A accumulator. If RX is $FE, this is
the transition between rule antecedents and rule consequents, and the min operation is skipped a
the cycle is still used. Cycle 6.0/6.1 is an x cycle because it could be a byte write or a free cycle.

If an interrupt arrives while the REV instruction is executing, REV can break between cycles 4.0 an
in an orderly fashion so that the rule evaluation operation can resume after the interrupt service. Cyc
and 6.2 adjust the PC and X index register so the REV operation can recover after the interrupt. I
5.2, PC is decremented so that it points to the currently-running REV instruction. After the interrupt
evaluation resumes, but the stacked values for the index registers, accumulator A, and CCR caus
operation to pick up where it left off. In cycle 6.2, the X index register is decremented by one becaus
last rule byte needs to be refetched when the REV instruction resumes.

After cycle 6.2, the REV instruction is finished, and execution continues with the normal interrupt
processing flow.

B.6.2  Weighted Rule Evaluation (REVW)

This instruction implements a weighted variation of min-max rule evaluation. The weighting factor
stored in a table with one 8-bit entry per rule. The weight is used to multiply the truth value of the 
(minimum of all antecedents) by a value from zero to one to get the weighted result. This weighted
is then applied to the consequents, just as it would be for unweighted rule evaluation.
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Since the REVW instruction is essentially a list-processing instruction, execution time depends on
number of rules and the number of elements in the rule list. The REVW instruction is interruptible,
typically within three to five bus cycles, so it does not adversely affect worst-case interrupt latency. S
intermediate results and instruction status are held in stacked CPU registers, the interrupt service c
even include independent REV and REVW instructions.

The rule structure is different for REVW than for REV. For REVW, the rule list is made up of 16-bi
elements rather than 8-bit elements. Each antecedent is represented by the full 16-bit address of 
corresponding fuzzy input. Each rule consequent is represented by the full address of the corresp
fuzzy output.

The marker separating antecedents from consequents is the reserved 16-bit value $FFFE, and th
the last rule is marked by the reserved 16-bit value $FFFF. Since $FFFE and $FFFF are the addr
the reset vector, there is never a fuzzy input or output at either of these locations.

B.6.2.1  Initialization Prior to Executing REVW

Some CPU registers and memory locations need to be initialized before executing the REVW instru
X and Y index registers are index pointers to the rule list and the list of rule weights. The A accumu
holds intermediate calculation results and needs to be initialized to $FF. The V bit is an instruction
indicator that shows whether antecedents or consequents are being processed. Initially the V bit is
to indicate antecedent processing. The C bit enables (1) or disables (0) rule weighting. The fuzzy o
in working RAM locations need to be cleared to $00. Improper initialization produces erroneous re

Initialize the X index register with the address of the first element in the rule list (in the knowledge b
The REVW instruction automatically updates this pointer so that the instruction can resume correct
is interrupted. After the REVW instruction finishes, X points at the next address past the $FFFF sep
word that marks the end of the rule list.

Initialize the Y index register with the starting address of the list of rule weights. Each rule weight 
8-bit value. The weighted result is the truncated upper eight bits of the 16-bit result, which is deriv
multiplying the minimum rule antecedent value ($00–$FF) by the weight plus one ($001–$100). T
method of weighting rules allows an 8-bit weighting factor to represent a value between zero and 
inclusive.

The 8-bit A accumulator holds intermediate calculation results during execution of the REVW instruc
During antecedent processing, A starts out at $FF and is replaced by any smaller fuzzy input that
referenced by a rule antecedent. If the C bit is one, rule weights are enabled, and the rule truth va
multiplied by the rule weight just before consequent processing starts. During consequent proces
holds the weighted or unweighted truth value for the rule. This truth value is stored to any fuzzy o
that is referenced by a rule consequent, unless that fuzzy output is already larger (MAX).

Before executing REVW, initialize A with $FF (the largest 8-bit value) because rule evaluation alw
starts with processing of the antecedents of the first rule. For subsequent rules in the list, A is automa
set to $FF when the instruction detects the $FFFE marker word between the last consequent of the p
rule, and the first antecedent of a new rule.
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Both the C and V bits must be initialized before starting a REVW instruction. Once the REVW instruc
starts, the C bit remains constant and the value in the V bit is automatically maintained as $FFFE sep
words are detected.

The final requirement to clear all fuzzy outputs to $00 is part of the MAX algorithm. Each time a ru
consequent references a fuzzy output, the fuzzy output is compared to the weighted truth value fo
current rule. If the current truth value is larger, it is written over the previous value in the fuzzy out
After all rules are evaluated, the fuzzy output contains the truth value for the most-true rule refere
that fuzzy output.

After REVW finishes, accumulator A holds the weighted truth value for the last rule in the rule list.
V bit should be one because the last element before the $FFFF end marker should be a rule conseq
V is zero after executing REVW, it indicates the rule list is structured incorrectly.

B.6.2.2  Interrupt Details

The REVW instruction includes a three-cycle processing loop for each word in the rule list. This lo
expands to five cycles between antecedents and consequents to allow time for multiplication by th
weight. Within this loop is a check to see if any qualified interrupt request is pending. If an interrup
detected, the CPU registers are stacked and the interrupt request is serviced. When the interrupt 
routine finishes, an RTI instruction causes the CPU to recover its previous context from the stack, a
REVW instruction resumes as if it had not been interrupted.

When a REVW instruction is interrupted, the stacked value of the program counter, PC, points to 
REVW instruction rather than the instruction that follows. This causes the CPU to try to execute a
REVW instruction upon return from the interrupt. Since the CPU registers, including the C and V bi
the condition code register, indicate the status of the interrupted REVW instruction, the rule evalu
operation resumes where it was interrupted.

B.6.2.3  Cycle-by-Cycle REVW Details

The central element of the REVW instruction is a three-cycle loop that is executed once for each w
the rule list. This loop takes five cycles in the special-case pass in which weights are enabled (C =
the $FFFE separator word is read between the rule antecedents and the rule consequents. There i
amount of housekeeping activity to get this loop started as REVW begins and a small sequence to e
instruction. If an interrupt request comes, there is a special small sequence to save CPU status on th
before the interrupt is serviced.

Figure B-10  is a detailed flow diagram for the REVW instruction. Each rectangular box represent
CPU clock cycle. Decision blocks and connecting arrows are considered to take no time at all. The
in the small rectangles in the upper left corner of each box correspond to the execution cycle codes
to Appendix A Instruction Set and Commands for details).

In cycle 2.0, the first element of the rule list, a 16-bit address, is read from memory. Due to propag
delays, this value cannot be used for calculations until two cycles later in cycle 4.0. The X index re
is incremented by two to point to the next element of the rule list.

The operations performed in cycle 4.0 depend on the value of the word read from the rule list. $FFF
special token that indicates a transition from antecedents to consequents, or from consequents to
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antecedents of a new rule. The V bit toggles at every $FFFE encountered and indicates which trans
taking place. If V is zero, a change from antecedents to consequents is taking place, and it is time to
weighting if weighting is enabled. The address in TMP2, derived from Y, is used to read the weight
from memory. In this case, there is no bus access in cycle 5.0, but the index into the rule list is upda
point to the next rule element.

The old value of X (X0) is temporarily held on internal nodes, so it can be used to access a rule wo
cycle 7.2. The read of the rule word is timed to start two cycles before it is used in cycle 4.0 of the
loop pass. The multiply takes place in cycles 6.2 through 8.2. The 8-bit weight from memory is
incremented, possibly overflowing to $100, before the multiply, and the upper eight bits of the 16-
internal result are the weighted result. By using weight + 1, the result can range from 0.0× A to 1.0× A.
After 8.2, flow continues to the next loop pass at cycle 4.0.

At cycle 4.0, if RX is $FFFE and V was one, a change from consequents to antecedents of a new 
taking place, so accumulator A must be reinitialized to $FF. During processing of rule antecedent
updated with the smaller of A and the current fuzzy input (cycle 6.0). Cycle 5.0 usually reads the nex
word and updates the pointer in X. This read is skipped if the current RX is the end of rules mark, $FFFF.
If this is a weight multiply pass, the read is delayed until cycle 7.2. During processing of conseque
cycle 6.1 optionally updates a fuzzy output if the value in accumulator A is larger.
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re
Figure B-10  REVW Instruction Flow Diagram

After all rules are processed, cycle 7.0 updates the PC to point at the next instruction. If weights a
enabled, Y is updated to point at the location that immediately follows the last rule weight.

Interrupt pending?

1.0-O Read program word if $18 misaligned

2.0-r Read byte @ 0,X (rule element RX)

X = X + 2 (point at next rule element)

START

END

4.0-t

If V = 0 and C = 1, then read rule weight @,TMP2
If RX = $FFFE, then TMP2 = TMP2 + 1

No Yes

Continue to interrupt stacking

Yes

No

else no bus access

Update RX with value read in cycle 2 or 5

RX = $FF (end of rules)?

min/max/mul?

mul, V = C = 1

5.0-T If RX ≠ $FFFF, then read rule word @,X0

X0 = X, X = X0 + 2

5.3-f No bus access

Adjust PC to point at current REVW instruction

6.3-f No bus access

Adjust X = X – 2 (pointer to rule list)

3.0-f No bus access

TMP2 = Y – 1 (weight pointer kept in TMP2)

Toggle V bit; if V now 0, A = $FF

then no bus access
If RX = $FFFF

then read byte @,RX fuzzy in/out FRX

If RX = other

7.3-f No bus access

If RX = $FFFE and V = 0 and C = 1
then TMP2 = TMP2 – 1

8.3-f No bus access

Y = TMP2 + 1

6.2-f No bus access

Begin multiply of (wt + 1) × A ⇒ A:B

7.2-R Read rule word @,X0

Continue multiply

8.2-f No bus access

Finish multiply

RX ≠ $FFFE or $FFFF

6.1-x If A > FRX, write A to RX, else no bus access

and RX = $FFFEmin or default

6.0-x A = min(A, FRX)

max, V = 1 and

7.0-O Read program word if $3B misaligned

Adjust PC to point at next instruction
If C = 1 (weights enabled) Y = TMP2 +1
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B.7  WAV Instruction Details

The WAV instruction performs weighted average calculations used in defuzzification. The
pseudoinstruction wavr resumes an interrupted weighted average operation. WAV calculates the
numerator and denominator sums using:

where
n is the number of labels of a system output
Si are the singleton positions from the knowledge base (8-bit values)
Fi are the fuzzy outputs from RAM (8-bit values)

The 8-bit B accumulator holds the iteration count n. Internal temporary registers hold intermediate
24 bits for the numerator and 16 bits for the denominator. This makes this instruction suitable for n v
up to 255 although eight is a more typical value. The final long division is performed with a separate E
instruction immediately after the WAV instruction. The WAV instruction returns the numerator and
denominator sums in the correct registers for the EDIV. EDIV performs the unsigned division Y = Y÷
X, remainder in D.

Execution time for this instruction depends on the number of iterations which equals the number of
for the system output. WAV is interruptible so that worst-case interrupt latency is not affected by t
execution time for the complete weighted average operation. WAV includes initialization for the 24
and 16-bit partial sums so the first entry into WAV looks different than a resume-from-interrupt opera
The CPU handles this difficulty with a pseudo-instruction, wavr, which is specifically intended to res
an interrupted weighted average calculation. Refer toB.7.3 Cycle-by-Cycle Details for WAV and
wavr  for details.

B.7.1  Initialization Prior to Executing WAV

Before executing the WAV instruction, index registers X and Y and accumulator B must be initializ
Index register X is a pointer to the Si singleton list; X must have the address of the first singleton value
the knowledge base. Index register Y is a pointer to the fuzzy outputs Fi. Y must have the address of the
first fuzzy output for this system output. Accumulator B contains the iteration count n and must be
initialized with the number of labels for this system output.

B.7.2  WAV Interrupt Details

The WAV instruction includes an 8-cycle processing loop for each label of the system output. Within
loop, the CPU checks to see whether a qualified interrupt request is pending. If an interrupt reque
detected, the CPU registers and the current values of the internal temporary registers for the 24-b
16-bit sums are stacked, and the interrupt is serviced.

system output

SiFi

i 1=

n

∑

Fi

i 1=

n

∑
-------------------=
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A special processing sequence is executed when an interrupt is detected during a weighted avera
calculation. This exit sequence adjusts the PC so that it points to the second byte of the WAV objec
($3C) before the PC is stacked. Upon return from the interrupt, the $3C value is interpreted as a w
pseudoinstruction. The wavr pseudoinstruction causes the CPU to execute a special WAV resum
sequence. The wavr recovery sequence adjusts the PC so that it looks as it did during execution 
original WAV instruction, then jumps back into the WAV processing loop. If another interrupt requ
occurs before the weighted average calculation finishes, the PC is adjusted again as it was for the
interrupt. WAV can be interrupted any number of times, and additional WAV instructions can be exec
while a WAV instruction is interrupted.

B.7.3  Cycle-by-Cycle Details for WAV and wavr

The WAV instruction is unusual in that the logic flow has two separate entry points. The first entry p
is the normal start of a WAV instruction. The second entry point resumes the weighted average ope
after a WAV instruction has been interrupted. This recovery operation is called the wavr
pseudoinstruction.

Figure B-11 is a flow diagram of the WAV instruction including the wavr pseudoinstruction. Each b
in this figure represents one CPU clock cycle. Decision blocks and connecting arrows are conside
take no time at all. The letters in the small rectangles in the upper left corner of the boxes are exe
cycle codes (refer toAppendix A Instruction Set and Commands for details).

In terms of cycle-by-cycle bus activity, the $18 page select prebyte is treated as a one-byte instruct
cycle 1.0 of the WAV instruction, one word of program information is fetched into the instruction qu
if the $18 is located at an odd address. If the $18 is at an even address, the instruction queue cannot
so there is no bus access in this cycle.

Cycle 2.0 clears three internal 16-bit temporary registers in preparation for summation operations
WAV instruction maintains a 32-bit sum-of-products in TMP3:TMP2 and a 16-bit sum-of-weights i
TMP1. Keeping these sums inside the CPU reduces bus accesses and optimizes the WAV opera
high speed.

Cycles 3.0 through 9.0 form the seven-cycle main loop for WAV. The value in the 8-bit B accumul
counts the number of loop iterations. B is decremented at the top of the loop in cycle 3.0, and the te
zero is located at the bottom of the loop after cycle 9.0. Cycles 4.0 and 5.0 fetch the 8-bit operands f
iteration of the loop. The X and Y index registers are used to access these operands. The index r
are incremented as the operands are fetched. Cycle 6.0 accumulates the current fuzzy output into
Cycles 7.0 and 8.0 perform the eight-by-eight multiply of Fi times Si. TMP1:TMP2 accumulates the
product during cycles 8.0 and 9.0. Even though the sum-of-products does not exceed 24 bits, the
maintained in the 32-bit combined TMP1:TMP2 register because it is easier to use existing 16-bit
operations than to create a new smaller operation to handle the high bits of this sum.

Since the weighted average operation could be quite long, it is made to be interruptible. The usual l
latency path is from very early in cycle 6.0 through cycle 9.0 to the top of the loop in cycle 3.0, and thr
cycle 5.0 to the interrupt check. The three-cycle (6.1 through 8.1) exit sequence gives this latency
total of 10 cycles.
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If the WAV instruction is interrupted, the internal temporary registers TMP3, TMP2, and TMP1 ne
be stored on the stack so that the operation can be resumed. Since the WAV instruction includes
initialization in cycle 2.0, the recovery path after an interrupt needs to be different. The wavr
pseudoinstruction has the same opcode as WAV, but it is on the first page of the opcode map so it d
have the $18 page 2 prebyte that WAV has. When WAV is interrupted, the PC is adjusted to point
second byte of the WAV object code, so that it is interpreted as the wavr pseudoinstruction on return
the interrupt, rather than the WAV instruction. During the recovery sequence, the PC is readjusted i
another interrupt comes before the weighted average operation finishes.
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Figure B-11  WAV and wavr Instruction Flow Diagram

The resume sequence includes recovery of the temporary registers from the stack (1.1 through 5.
reads to get the operands for the current iteration. The normal WAV flow is then rejoined at cycle 

Upon normal completion of the instruction (cycle 10.0), the PC is adjusted so it points to the next
instruction. The results transfer from the TMP registers into CPU registers in such a way that the 

Interrupt pending?

1.0-O Read program word if $18 misaligned

2.0-f No bus access

TMP1 = TMP2 = TMP3 = $0000

WAV

END

No

Yes

Continue to interrupt stacking

6.0-f No bus access

TMP3 = TMP3 + Fi

8.1-S Write word @ –2,SP (stack TMP1)

SP = SP – 2
Adjust PC to point at $3C wavr pseudoinstruction

3.0-f No bus access

B = B – 1 (decrement iteration counter)

4.0-r Read byte @ 0,Y (fuzzy output Fi)

Y = Y + 1 (point at next fuzzy output)

5.0-r Read byte @ 0,X (singleton Si)

X = X + 1 (point at next singleton)

1.1-U Read word @ 0,SP (unstack TMP1)

SP = SP + 2

WAVr

2.1-U Read word @ 0,SP (unstack TMP2)

SP = SP + 2

3.1-U Read word @ 0,SP (unstack TMP3)

SP = SP + 2

4.1-r Read byte @ –1,Y (fuzzy output Fi)

5.1-r Read byte @ –1,X (singleton Si)

7.0-f No bus access

Start multiply, PPROD = Si × Fi

8.0-f No bus access

Finish multiply, TMP2 = TMP2 + PPROD

9.0-f No bus access

TMP1 = TMP1 + carry from PPROD add

B = 0?
No

10.0 –O Read program word if $3C misaligned

Adjust PC to point at next instruction
Y:D = TMP1:TMP2
X = TMP3

6.1-S Write word @ –2,SP (stack TMP3)

SP = SP – 2

7.1-S Write word @ –2,SP (stack TMP2)

SP = SP – 2

Yes
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instruction can divide the sum-of-products by the sum-of-weights. TMP1:TMP2 transfers into Y:D 
TMP3 transfers into X.

B.8  Custom Fuzzy Logic Programming

The basic fuzzy logic inference techniques described above are suitable for a broad range of applic
but some systems may require customization. The built-in fuzzy instructions use 8-bit resolution and
systems may require finer resolution. The rule evaluation instructions support only variations of
MIN-MAX rule evaluation. Other methods have been discussed in fuzzy logic literature. The weigh
average of singletons is not the only defuzzification technique. The HCS12 CPU has several instru
and addressing modes that can be helpful in developing custom fuzzy logic systems.

B.8.1  Fuzzification Variations

The MEM instruction supports trapezoidal and several other membership functions, including func
with vertical (infinite slope) sides. Triangular membership functions are a subset of trapezoidal func
Some practitioners refer to s-, z-, andπ-shaped membership functions. These refer to trapezoids butt
against the right, left, or neither end of the x-axis. Many other membership function shapes are po
with sufficient memory space and processing bandwidth.

Tabular membership functions offer total flexibility in shape and very fast evaluation time. Howeve
tables take as many as 256 bytes of memory space per system input label. This makes them imprac
most microcontroller-based fuzzy systems. The HCS12 instruction set includes two instructions, TB
ETBL, for lookup and interpolation of compressed tables.

The TBL instruction uses 8-bit table entries (y-values) and returns an 8-bit result. The ETBL instru
uses 16-bit table entries (y-values) and returns a 16-bit result. Indexed addressing identifies the e
address of the data point at the beginning of the line segment. The data value for the end point of th
segment is the next consecutive memory location. The data values are bytes for TBL and words for E
In both cases, the B accumulator contains the ratio

The value in B is treated as an 8-bit binary fraction with radix point left of the MSB, so each line segm
can effectively be divided into 256 pieces. During execution of the TBL or ETBL instruction, the
difference between the end point y-value and the beginning point y-value (a signed byte-TBL or
word-ETBL) is multiplied by the B accumulator to get an intermediate delta-y term. The result is th
y-value of the beginning point, plus this signed intermediate delta-y value.

Because indexed addressing identifies the starting point of the line segment of interest, there is a gre
of flexibility in constructing tables. A common method is to break the x-axis range into 256 equal w
segments and store the y value for each of the resulting 257 endpoints. The 16-bit D accumulator
the x input to the table. The upper eight bits in A are used as a coarse lookup to find the line segm
interest, and the lower eight bits in B are used to interpolate within this line segment.

In the program sequence:

x-distance from beginning of line segment to lookup point
x-distance from beginning to end of line segment

-------------------------------------------------------------------------------------------------------------------------------------------------------
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LDX #TBL_START
LDD DATA_IN
TBL A,X

The notation A,X causes the TBL instruction to use the Ath line segment in the table. The low half of D
(B) is used by TBL to calculate the exact data value from this line segment. This type of table use
257 entries to approximate a table with 16 bits of resolution. This type of table has the disadvanta
equal width line segments, which means that just as many points are needed to describe a flat po
the desired function as are needed for the most active portions.

Another type of table stores x:y coordinate pairs for the endpoints of each linear segment. This ty
table may reduce the table storage space compared to the previous fixed-width segments because f
of the functions can be specified with a single pair of endpoints. This type of table is a little harder to
with the TBL and ETBL instructions because the table instructions expect y-values for segment end
to be in consecutive memory locations.

Consider a table made up of an arbitrary number of x:y coordinate pairs, in which all values have 
bits. The table is entered with the x-coordinate of the desired point to lookup in the A accumulator. W
the table is exited, the corresponding y-value is in the A accumulator.Figure B-12  shows one way to
work with this type of table.

BEGIN LDY #TABLE_START-2 ;setup initial table pointer
FIND_LOOP CMPA 2,+Y ;find first Xn > XL

;(auto pre-inc Y by 2)
BLS FIND_LOOP ;loop if XL .le. Xn

* on fall thru, XB@-2,Y YB@-1,Y XE@0,Y and YE@1,Y
TFR D,X ;save XL in high half of X
CLRA ;zero upper half of D
LDAB 0,Y ;D = 0:XE
SUBB -2,Y ;D = 0:(XE-XB)
EXG D,X ;X = (XE-XB).. D = XL:junk
SUBA -2,Y ;A = (XL-XB)
EXG A,D ;D = 0:(XL-XB), uses trick of EXG
FDIV ;X reg = (XL-XB)/(XE-XB)
EXG D,X ;move fractional result to A:B
EXG A,B ;byte swap - need result in B
TSTA ;check for rounding
BPL NO_ROUND
INCB ;round B up by 1

NO_ROUND LDAA 1,Y ;YE
PSHA ;put on stack for TBL later
LDAA -1,Y ;YB
PSHA ;now YB@0,SP and YE@1,SP
TBL 2,SP+ ;interpolate and deallocate

;stack temps

Figure B-12  Endpoint Table Handling

The basic idea is to find the segment of interest, temporarily build a one-segment table of the corr
format on the stack, then use TBL with stack-relative indexed addressing to interpolate. The most di
part of the routine is calculating the proportional distance from the beginning of the segment to the lo
point versus the width of the segment ((XL–XB)/(XE–XB)). With this type of table, this calculation m
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be done at run time. In the previous type of table, this proportional term is an inherent part (the lowest
bits) of the data input to the table.

Some fuzzy theorists have suggested that membership functions should be shaped like normal distr
curves or other mathematical functions. This may be correct, but the processing requirements to so
an intercept on such a function would be unacceptable for most microcontroller-based fuzzy systems
a function could be encoded into a table of one of the previously described types.

For many common systems, the thing that is most important about membership function shape is tha
is a gradual transition from nonmembership to membership as the system input value approaches
central range of the membership function. Let us examine the human problem of stopping a car a
intersection. We might use rules like “If intersection is close and speed is fast, apply brakes.” The me
of the labels “close” and “fast”, reflected in membership function shape and position, is different fo
teenager than it is for a grandmother, but both can accomplish the goal of stopping. It makes intuitive
that the exact shape of a membership function is much less important than the fact that it has gra
boundaries.

B.8.2  Rule Evaluation Variations

The REV and REVW instructions expect fuzzy input and fuzzy output values to be 8-bit values. In
custom fuzzy inference program, higher resolution may be desirable, although this is not a comm
requirement. The HCS12 CPU includes variations of minimum and maximum operations that work
the fuzzy MIN-MAX inference algorithm. The problem with the fuzzy inference algorithm is that the m
and max operations need to store their results differently, so the min and max instructions must w
differently or more than one variation of these instructions is needed.

The HCS12 CPU has min and max instructions for 8- or 16-bit operands, with one operand in an
accumulator and the other in a referenced memory location. There are separate variations that rep
accumulator or the memory location with the result. While processing rule antecedents in a fuzzy infe
program, a reference value must be compared to each of the referenced fuzzy inputs, and the smalle
must end up in an accumulator. The instruction:

EMIND 2,X+ ;process one rule antecedent

automates the central operations needed to process rule antecedents. The E stands for extended
instruction compares 16-bit operands. The D at the end of the mnemonic stands for the D accumu
which is both the first operand for the comparison and the destination of the result. The 2,X+ is an ind
addressing specification that says X points to the second operand for the comparison.

When processing rule consequents, the operand in the accumulator must remain constant in case
more than one consequent in the rule, and the result of the comparison must replace the reference
output in RAM. To do this, use the instruction:

EMAXM 2,X+ ;process one rule consequent

The M at the end of the mnemonic indicates that the result replaces the referenced memory opera
Again, indexed addressing is used. These two instructions can form the working part of a 16-bit reso
fuzzy inference routine.
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There are many other methods of performing inference, but the min-max method is most widely u
Since the HCS12 is a general-purpose microcontroller, the programmer has complete freedom to p
any algorithm desired. A custom algorithm would typically take more code space and execution time
a routine that used the built-in REV or REVW instructions.

B.8.3  Defuzzification Variations

There are two main areas where other HCS12 instructions can help with custom defuzzification rou
The first case is working with operands with more than eight bits. The second case involves using
entirely different approach than weighted average of singletons.

The primary part of the WAV instruction is a multiply and accumulate operation to get the numerato
the weighted average calculation. When working with operands as large as 16 bits, the EMACS instr
could at least automate the multiply and accumulate function. The HCS12 CPU has extended ma
capabilities, including 32-bit by 16-bit divide instructions and the EMACS instruction which uses 1
input operands and accumulates the sum to a 32-bit memory location.

One benefit of the WAV instruction is that both a sum of products and a sum of weights are maint
while the fuzzy output operand is only accessed from memory once. Since memory access time is
significant part of execution time, this provides a speed advantage over conventional instructions.

The weighted average of singletons is the most commonly used technique in microcontrollers bec
is computationally less difficult than most other methods. The simplest method is called max
defuzzification, which simply uses the largest fuzzy output as the system result. However, this app
does not take into account any other fuzzy outputs, even when they are almost as true as the cho
output. Max defuzzification is not a good general choice because it only works for a subset of fuzzy
applications.

The HCS12 CPU is well suited for more computationally challenging algorithms than weighted ave
A 32-bit by 16-bit divide instruction takes eleven or twelve 8-MHz cycles for unsigned or signed
variations. A 16-bit by 16-bit multiply with a 32-bit result takes only three 8-MHz cycles. The EMA
instruction uses 16-bit operands and accumulates the result in a 32-bit memory location, taking on
twelve 8-MHz cycles per iteration, including accessing all operands from memory and storing the 
to memory.
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Appendix C  M68HC11 to HCS12 Upgrade

C.1  General

This appendix discusses aspects of upgrading system software from one based upon the Motorola 6
to one using the HCS12 CPU. In general, the HCS12 is a proper superset of the M68HC11 instruct
(as was the HC12 CPU prior to the HCS12).

C.2  Source Code Compatibility

Every M68HC11 instruction mnemonic and source code statement can be assembled directly with
HCS12 assembler with no modifications.

The HCS12 supports all M68HC11 addressing modes and includes several new variations of inde
addressing. HCS12 instructions affect condition code bits in the same way as M68HC11 instructio

HCS12 object code is similar to but not identical to M68HC11 object code. Some primary objectives,
as the elimination of the penalty for using Y, could not be achieved without object code differences. W
the object code has been changed, the majority of the opcodes are identical to those of the M6800
was developed more than 20 years earlier.

The HCS12 assembler automatically translates a few M68HC11 instruction mnemonics into functio
equivalent HCS12 instructions. For example, the HCS12 does not have an increment stack pointe
instruction, so the INS mnemonic is translated to LEAS 1,S. The HCS12 does provide single-byte
DEY, INX, and INY instructions because the LEAX and LEAY instructions do not affect the condit
codes, while the M68HC11 instructions update the Z bit according to the result of the decrement o
increment.

Table C-1  shows M68HC11 instruction mnemonics that are automatically translated into equivale
HCS12 instructions. This translation is performed by the assembler so there is no need to modify 
M68HC11 program in order to assemble it for the HCS12. In fact, the M68HC11 mnemonics can be
in new HCS12 programs.

Table C-1  Translated M68HC11 Mnemonics

M68HC11
Mnemonic

Equivalent
HCS12 Instruction Comments

ABX
ABY

LEAX B,X
LEAY B,Y

Since HCS12 has accumulator offset indexing, ABX and ABY are
rarely used in new HCS12 programs. ABX was one byte on
M68HC11 but ABY was two bytes. The LEA substitutes are two
bytes.

CLC
CLI
CLV
SEC
SEI
SEV

ANDCC #$FE
ANDCC #$EF
ANDCC #$FD
ORCC #$01
ORCC #$10
ORCC #$02

ANDCC and ORCC now allow more control over the CCR,
including the ability to set or clear multiple bits in a single
instruction. These instructions took one byte each on M68HC11
while the ANDCC and ORCC equivalents take two bytes each.
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All of the translations produce the same amount of or slightly more object code than the original
M68HC11 instructions. However, there are offsetting savings in other instructions. Y-indexed instruc
in particular assemble into one byte less object code than the same M68HC11 instruction.

The HCS12 has a two-page opcode map, rather than the four-page M68HC11 map. This is largely
redesign of the indexed addressing modes. Most of pages 2, 3, and 4 of the M68HC11 opcode m
required because Y-indexed instructions use different opcodes than X-indexed instructions.
Approximately two-thirds of the M68HC11 page 1 opcodes are unchanged in HCS12, and some
M68HC11 opcodes have been moved to page 1 of the HCS12 opcode map. Object code for each
moved instructions is one byte smaller than object code for the equivalent M68HC11 instruction.Table
C-2 shows instructions that assemble to one byte less object code on the HCS12.

Instruction set changes offset each other to a certain extent. Programming style also affects the ra
which instructions appear. As a test, the BUFFALO monitor, an 8K byte M68HC11 assembly code
program, was reassembled for the HCS12. The resulting object code is six bytes smaller than the
M68HC11 code. It is fair to conclude that M68HC11 code can be reassembled with very little chan
size.

DES
INS

LEAS –1,S
LEAS 1,S

Unlike DEX and INX, DES and INS did not affect CCR bits in the
M68HC11, so the LEAS equivalents in HCS12 duplicate the
function of DES and INS. These instructions were one byte on
M68HC11 and two bytes on HCS12.

TAP
TPA
TSX
TSY
TXS
TYS
XGDX
XGDY

TFR A,CCR
TFR CCR,A
TFR S,X
TFR S,Y
TFR X,S
TFR Y,S
EXG D,X
EXG D,Y

The M68HC11 had a small collection of specific transfer and
exchange instructions. HCS12 expanded this to allow transfer or
exchange between any two CPU registers. For all but TSY and
TYS (which take two bytes on either CPU), the HCS12
transfer/exchange costs one extra byte compared to the
M68HC11. The substitute instructions execute in one cycle rather
than two.

Table C-2  Instructions with Smaller Object Code

Instruction Comments

DEY
INY

Page 2 opcodes in M68HC11 but page 1 in HCS12.

INST n,Y

For values of n less than 16 (the majority of cases). Were on page 2, now are on page 1.
Applies to BSET, BCLR, BRSET, BRCLR, NEG, COM, LSR, ROR, ASR, ASL, ROL, DEC,
INC, TST, JMP, CLR, SUB, CMP, SBC, SUBD, ADDD, AND, BIT, LDA, STA, EOR, ADC,
ORA, ADD, JSR, LDS, and STS. If X is the index reference and the offset is greater than 15
(much less frequent than offsets of 0, 1, and 2), the HCS12 instruction assembles to one
byte more of object code than the equivalent M68HC11 instruction.

PSHY
PULY

Were on page 2, now are on page 1.

LDY
STY
CPY

Were on page 2, now are on page 1.

Table C-1  Translated M68HC11 Mnemonics

M68HC11
Mnemonic

Equivalent
HCS12 Instruction Comments
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The relative size of code for M68HC11 vs. code for HCS12 has also been tested by rewriting seve
smaller programs from scratch. In these cases, the HCS12 code is typically about 30% smaller. T
savings are mostly due to improved indexed addressing. A C program compiled for the HCS12 is
30% smaller than the same program compiled for the M68HC11. The savings are largely due to b
indexing.

C.3  Programmer’s Model and Stacking

The HCS12 programming model and stacking order are identical to those of the M68HC11.

C.4  True 16-Bit Architecture

The M68HC11 is a direct descendant of the M6800, one of the first microprocessors, which was
introduced in 1974. The M6800 was strictly an 8-bit machine, with 8-bit data buses and 8-bit instruc
As Motorola devices evolved from the M6800 to the M68HC11, a number of 16-bit instructions we
added, but the data buses remained eight bits wide, so these instructions were performed as sequ
8-bit operations. The HCS12 is a true 16-bit implementation, but it retains the ability to work with t
mostly 8-bit M68HC11 instruction set. The larger ALU of the HCS12 is used to calculate 16-bit poin
and to speed up math operations.

C.4.1  Bus Structures

The HCS12 is a 16-bit processor with 16-bit data paths. Typical HCS12 devices have internal and ex
16-bit data paths, but some derivatives incorporate operating modes that allow for an 8-bit data bus,
a system can be built with low-cost 8-bit program memory. HCS12 based systems include an on-
block in the Core that manages the external bus interface. When the CPU makes a 16-bit access
resource that is served by an 8-bit bus, the Core performs two 8-bit accesses, freezes the CPU cl
part of the sequence, and assembles the data into a 16-bit word. As far as the CPU is concerned,
no difference between this access and a 16-bit access to an internal resource via the 16-bit data b
is similar to the way an M68HC11 can stretch clock cycles to accommodate slow peripherals.

C.4.2  Instruction Queue

The CPU has a three-word instruction queue for storing program information. All program informati
fetched from memory as aligned 16-bit words, even though there is no requirement for instruction
begin or end on even word boundaries. There is no penalty for misaligned instructions. If a program b
on an odd boundary (if the reset vector is an odd address), program information is fetched to fill th

CPY n,Y
LDY n,Y
STY n,Y

For values of n less than 16 (the majority of cases). Were on page 3, now are on page 1.

CPD
Was on page 2, 3, or 4, now on page 1. In the case of indexed with offset greater than 15,
HCS12 and M68HC11 object code are the same size.

Table C-2  Instructions with Smaller Object Code

Instruction Comments
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instruction queue, beginning with an aligned word read at the natural boundary of the misaligned 
vector. The instruction queue logic starts execution with the opcode in the low half of this word.

The instruction queue makes three bytes of program information (starting with the instruction opco
directly available to the CPU at the beginning of every instruction. As each instruction executes, it
performs enough additional program fetches to refill the space it took up in the queue. Alignment
information is maintained by logic in the instruction queue. The CPU provides signals that tell the q
logic when to advance a word of program information, and when to toggle the alignment status.

The CPU is not aware of instruction alignment. The queue logic sorts out the information in the que
present the opcode and additional bytes of information as CPU inputs. A control algorithm determ
whether the opcode is in the even or odd half of the word at the head of the queue. The execution se
for all instructions is independent of the alignment of the instruction.

The only situation in which alignment can affect the number of cycles an instruction takes occurs 
devices that have a narrow (8-bit) external data bus, and is related to optional program fetch cycle
Optional cycles are always performed, but serve different purposes determined by instruction size
alignment.

Each instruction includes one program fetch cycle for every two bytes of object code. Instructions w
odd number of bytes can use an optional cycle to fetch an extra word of object code. If the queue is a
at the start of an instruction with an odd byte count, the last byte of object code shares a queue wor
the opcode of the next instruction. Since this word holds part of the next instruction, the queue ca
advance after the odd byte executes, or the first byte of the next instruction would be lost. In this cas
optional cycle appears as a free cycle since the queue is not ready to accept the next word of pro
information. If this same instruction had been misaligned, the queue would be ready to advance a
optional cycle would be used to perform a program word fetch.

In a single-chip system or in a system with the program in 16-bit memory, both the free cycle and
program fetch cycle take one bus cycle. In a system with the program in an external 8-bit memory
optional cycle takes one bus cycle when it appears as a free cycle, but it takes two bus cycles wh
to perform a program fetch. In this case, the on-chip integration module freezes the CPU clocks lo
enough to perform the cycle as two smaller accesses. The CPU handles only 16-bit data, and is no
that the 16-bit program access is split into two 8-bit accesses.

In order to allow development systems to track events in the HCS12 instruction queue, two status s
(IPIPE[1:0]) provide information about data movement in the queue and about the start of instruct
execution. A development system can use this information along with address and data informatio
externally reconstruct the queue. This representation of the queue can also track both the data and
buses.

C.4.3  Stack Function

Both the M68HC11 and the HCS12 stack nine bytes for interrupts. Since this is an odd number of
there is no practical way to assure that the stack will stay aligned. To assure that instructions take a
number of cycles regardless of stack alignment, the internal RAM in HCS12 systems is designed to
single-cycle 16-bit accesses to misaligned addresses. As long as the stack is located in this specia
stacking and unstacking operations take the same amount of execution time, regardless of stack alig
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If the stack is located in an external 16-bit RAM, a PSHX instruction can take two or three cycles
depending on the alignment of the stack. This extra access time is transparent to the CPU becaus
integration module freezes the CPU clocks while it performs the extra 8-bit bus cycle required for 
misaligned stack operation.

The HCS12 has a last-used stack rather than a next-available stack like the M68HC11 CPU. Tha
stack pointer points to the last 16-bit stack address used, rather than to the address of the next av
stack location. This generally has very little effect, because it is very unusual to access stacked inform
using absolute addressing. The change allows a 16-bit word of data to be removed from the stack w
changing the value of the SP twice.

To illustrate, consider the operation of a PULX instruction. With the next-available M68HC11 stack, i
SP = $01F0 when execution begins, the sequence of operations is: SP = SP + 1; load X from $01F1
SP = SP + 1; and the SP ends up at $01F2. With the last-used HCS12 stack, if the SP = $01F0 w
execution begins, the sequence is: load X from $01F0:01F1; SP = SP + 2; and the SP again ends
$01F2. The second sequence requires one less stack pointer adjustment.

The stack pointer change also affects operation of the TSX and TXS instructions. In the M68HC11,
increments the SP by one during the transfer. This adjustment causes the X index to point to the las
location used. The TXS instruction operates similarly, except that it decrements the SP by one duri
transfer. HCS12 TSX and TXS instructions are ordinary transfers — the HCS12 stack requires no
adjustment.

For ordinary use of the stack, such as pushes, pulls, and even manipulations involving TSX and TXS
are no differences in the way the M68HC11 and the HCS12 stacks look to a programmer. Howev
stack change can affect a program algorithm in two subtle ways.

The LDS #$xxxx instruction is normally used to initialize the stack pointer at the start of a program. In
M68HC11, the address specified in the LDS instruction is the first stack location used. In the HCS
however, the first stack location used is one address lower than the address specified in the LDS
instruction. Since the stack builds downward, M68HC11 programs reassembled for the HCS12 op
normally, but the program stack is one physical address lower in memory.

In very uncommon situations, such as test programs used to verify CPU operation, a program cou
initialize the SP, stack data, and then read the stack via an extended mode read (it is normally impro
read stack data from an absolute extended address). To make an M68HC11 source program that c
such a sequence work on the HCS12, change either the initial LDS #$xxxx, or the absolute exten
address used to read the stack.

C.5  Improved Indexing

The HCS12 has significantly improved indexed addressing capability, yet retains compatibility wit
M68HC11. The one-cycle and one-byte cost of doing Y-related indexing in the M68HC11 has bee
eliminated. In addition, high level language requirements, including stack-relative indexing and the a
to perform pointer arithmetic directly in the index registers, have been accommodated.

The M68HC11 has one variation of indexed addressing that works from X or Y as the reference p
For X indexed addressing, an 8-bit unsigned offset in the instruction is added to the index pointer to
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at the address of the operand for the instruction. A load accumulator instruction assembles into two
of object code, the opcode and a one-byte offset. Using Y as the reference, the same instruction ass
into three bytes (a page prebyte, the opcode, and a one-byte offset.) Analysis of M68HC11 sourc
indicates that the offset is most frequently zero and very seldom greater than four.

The HCS12 indexed addressing scheme uses a postbyte plus 0, 1, or 2 extension bytes after the ins
opcode. These bytes specify which index register is used, determine whether an accumulator is use
offset, implement automatic pre/post increment/decrement of indices, and allow a choice of 5-, 9-
16-bit signed offsets. This approach eliminates the differences between X and Y register use and
dramatically enhances indexed addressing capabilities.

Major improvements that result from this new approach are:

• Stack pointer can be used as an index register in all indexed operations

• Program counter can be used as index register in all but autoinc/dec modes

• Accumulator offsets allowed using A, B, or D accumulators

• Automatic pre- or post-, increment or decrement (by –8 to +8)

• 5-bit, 9-bit, or 16-bit signed constant offsets

• 16-bit offset indexed-indirect and accumulator D offset indexed-indirect

The change completely eliminates pages three and four of the M68HC11 opcode map and elimin
almost all instructions from page two of the opcode map. For offsets of +0 to +15 from the X index reg
the object code is the same size as it was for the M68HC11. For offsets of +0 to +15 from the Y in
register, the object code is one byte smaller than it was for the M68HC11.

C.5.1  Constant Offset Indexing

The HCS12 offers three variations of constant offset indexing in order to optimize the efficiency of o
code generation.

The most common constant offset is zero. Offsets of 1, 2,…4 are used fairly often, but with less freq
than zero.

The 5-bit constant offset variation covers the most frequent indexing requirements by including the
in the postbyte. This reduces a load accumulator indexed instruction to two bytes of object code, 
matches the object code size of the smallest M68HC11 indexed instructions, which can only use X
index register. The HCS12 can use X, Y, SP, or PC as the index reference with no additional objec
size cost.

The signed 9-bit constant offset indexing mode covers the same positive range as the M68HC11 
unsigned offset. The size was increased to nine bits with the sign bit (ninth bit) included in the pos
and the remaining 8-bits of the offset in a single extension byte.

The 16-bit constant offset indexing mode allows indexed access to the entire normal 64K byte ad
space. Since the address consists of 16 bits, the 16-bit offset can be regarded as a signed (–32,7
+32767) or unsigned (0 to 65,535) value. In 16-bit constant offset mode, the offset is supplied in t
extension bytes after the opcode and postbyte.
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C.5.2  Autoincrement/Autodecrement Indexing

The HCS12 provides greatly enhanced autoincrement and autodecrement modes of indexed addre
the HCS12, the index modification may be specified before the index is used (pre), or after the ind
used (post), and the index can be incremented or decremented by any amount from one to eight,
independent of the size of the operand accessed. X, Y, and SP can be used as the index reference
mode does not allow PC to be the index reference. Modifying PC would interfere with proper prog
execution.

This addressing mode can be used to implement a software stack structure, or to manipulate data st
in lists or tables, rather than manipulating bytes or words of data. Anywhere an M68HC11 program h
increment or decrement index register operation near an indexed mode instruction, the increment
decrement operation can be combined with the indexed instruction with no cost in object code siz
shown in the following code comparison.

The M68HC11 object code takes seven bytes, while the HCS12 takes only two bytes to accompli
same functions. Three bytes of M68HC11 code are due to the page prebyte for each Y-related inst
($18). HCS12 postincrement indexing capability allows the two INY instructions to be absorbed int
LDAA indexed instruction. The replacement code is not identical to the original three-instruction
sequence because the Z bit is affected by the M68HC11 INY instructions, while the Z bit in the HCS
determined by the value loaded into A.

C.5.3  Accumulator Offset Indexing

This indexed addressing variation allows the programmer to use either an 8-bit accumulator (A or
the 16-bit D accumulator as the offset for indexed addressing. This allows for a program-generated
which is more difficult to achieve in the M68HC11. The following code compares the M68HC11 an
HCS12 operations.

The HCS12 object code is only one byte smaller, but the LDX # instruction is outside the loop. It i
necessary to reload the base address in the index register on each pass through the loop because th
B,X instruction does not alter the index register. This reduces the loop execution time from 15 cyc
six cycles.

18A600
1808
1808

LDAA0,Y
INY
INY

A671 LDAA2,Y+

C6 05 LDAB #$05 [2]

CE 10 00 LOOP LDX #$1000 [3] C6 05 LDAB #$05 [1]

3A ABX [3] CE 10 00 LDX #$1000 [2]

A6 00 LDAA 0,X [4] A6 E5 LOOP LDAA B,X [3]

5A DECB [2] 04 31 FB DBNE B,LOOP [3]

26 F7 BNE LOOP [3]
537



Core User Guide — S12CPU15UG V1.2

ation
red to
set
as in

on uses
nters.
irect
g can

e
e size.

at take
ral
 the

uch of

s to
C.5.4  Indirect Indexing

The HCS12 allows some forms of indexed indirect addressing in which the instruction points to a loc
in memory where the address of the operand is stored. This is an extra level of indirection compa
ordinary indexed addressing. The two forms of indexed-indirect addressing are 16-bit constant off
indexed-indirect and accumulator D indexed-indirect. The indexing register can be X, Y, SP, or PC
other HCS12 indexed addressing modes. PC-relative indirect addressing is one of the more comm
of indexed indirect addressing. The indirect variations of indexed addressing help to implement poi
Accumulator D indexed-indirect addressing can implement a runtime-computed GOTO function. Ind
addressing is also useful in high level language compilers. For instance, PC-relative indirect indexin
efficiently implement some C case statements.

C.6  Improved Performance

HCS12 based systems provide a number of performance improvements over the M68HC11. Thes
improvements include cycle count reduction, faster math instruction execution and reduction of cod
Each of these aspects is discussed in the subsections below.

C.6.1  Reduced Cycle Counts

No M68HC11 instruction takes less than two cycles, but the HCS12 has more than 50 opcodes th
only one cycle. Some of the reduction comes from the instruction queue, which assures that seve
program bytes are available at the start of each instruction. Other cycle reductions occur because
HCS12 can fetch 16 bits of information at a time, rather than eight bits at a time.

C.6.2  Fast Math

The HCS12 has some of the fastest math ever designed into a Motorola general-purpose Core. M
the speed is due to an execution unit that can perform several operations simultaneously.Table C-3
compares the speed of HCS12 and M68HC11 math instructions. The HCS12 requires fewer cycle
perform an operation, and the cycle time is half that of the M68HC11.
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The IDIVS instruction is included specifically for C compilers, where word-sized operands are divide
produce a word-sized result (unlike the 32÷ 16 = 16 EDIV). The EMUL and EMULS instructions place
the result in registers so a C compiler can choose to use only 16 bits of the 32-bit result.

C.6.3  Code Size Reduction

HCS12 assembly language programs written from scratch tend to be 30% smaller than equivalen
programs written for the M68HC11. This figure has been independently qualified by Motorola
programmers and an independent C compiler vendor. The major contributors to the reduction appea
improved indexed addressing and the universal transfer/exchange instruction.

In some specialized areas, the reduction is much greater. A fuzzy logic inference kernel requires abo
bytes in the M68HC11, and the same program for the HCS12 requires about 50 bytes. The HCS12
logic instructions replace whole subroutines in the M68HC11 version. Table lookup instructions al
greatly reduce code space.

Other HCS12 code space reductions are more subtle. Memory to memory moves are one examp
HCS12 move instruction requires almost as many bytes as an equivalent sequence of M68HC11
instructions, but the move operations themselves do not require the use of an accumulator. This me
the accumulator often need not be saved and restored, which saves instructions.

Arithmetic on index pointers is another example. The M68HC11 usually requires that the content 
index register be moved into accumulator D, where calculations are performed, then back to the i
register before indexing can take place. In the HCS12, the LEAS, LEAX, and LEAY instructions per

Table C-3  Comparison of Math Instruction Speeds

Instruction
Mnemonic

Math
Operation

M68HC11
1 Cycle =

250 ns

M68HC11
w/Coprocessor
1 Cycle = 250 ns

HCS12
1 Cycle = 125 ns

MUL
8 × 8 = 16
(signed)

10 cycles — 1 cycle

EMUL
16 × 16 = 32
(unsigned)

— 20 cycles 3 cycles

EMULS
16 × 16 = 32

(signed)
— 20 cycles 3 cycles

IDIV
16 ÷ 16 = 16
(unsigned)

41 cycles — 12 cycles

FDIV
16 ÷ 16 = 16
(fractional)

41 cycles — 12 cycles

EDIV
32 ÷ 16 = 16
(unsigned)

— 33 cycles 11 cycles

EDIVS
32 ÷ 16 = 16

(signed)
— 37 cycles 12 cycles

IDIVS
16 ÷ 16 = 16

(signed)
— — 12 cycles

EMACS
32 × (16 × 16) ⇒ 32

(signed MAC)
— 20 cycles 13 cycles
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arithmetic operations directly on the index pointers. The pre-/post-increment/decrement variations
indexed addressing also allow index modification to be incorporated into an existing indexed instr
rather than performing the index modification as a separate operation.

Transfer and exchange operations often allow register contents to be temporarily saved in another r
rather than having to save the contents in memory. Some HCS12 instructions such as MIN and M
combine the actions of several M68HC11 instructions into a single operation.

C.7  Additional Functions

The HCS12 offers many new functions over that of the M68HC11. These new features are discus
the subsections below,

C.7.1  New Instructions

The HCS12 incorporates a number of new instructions that provide added functionality and code
efficiency. Among other capabilities, these new instructions allow efficient processing for fuzzy log
applications and support subroutine processing in extended memory beyond the standard 64K byte
map for HCS12 systems incorporating this feature.Table C-4  is a summary of these new instructions.
Subsequent paragraphs discuss significant enhancements.

Table C-4  New HCS12 Instructions

Mnemonic Addressing Modes Brief Functional Description
ANDCC Immediate AND CCR with mask; replaces CLC, CLI, and CLV
BCLR Extended Bit(s) clear; added extended mode
BGND Inherent Enter background debug mode, if enabled
BRCLR Extended Branch if bit(s) clear; added extended mode
BRSET Extended Branch if bit(s) set; added extended mode
BSET Extended Bit(s) set; added extended mode

CALL Extended, indexed
Similar to JSR except also stacks PPAGE value
With RTC instruction, allows easy access to >64K byte space

CPS
Immediate, direct,

extended, and indexed
Compare stack pointer

DBNE Relative Decrement and branch if equal to zero; looping primitive
DBEQ Relative Decrement and branch if not equal to zero; looping primitive
EDIV Inherent Extended divide Y:D/X = Y(Q) and D(R); unsigned

EDIVS Inherent Extended divide Y:D/X = Y(Q) and D(R); signed
EMACS Special Multiply and accumulate 16 × 16 ⇒ 32; signed
EMAXD Indexed Maximum of two unsigned 16-bit values
EMAXM Indexed Maximum of two unsigned 16-bit values
EMIND Indexed Minimum of two unsigned 16-bit values
EMINM Indexed Minimum of two unsigned 16-bit values
EMUL Special Extended multiply 16 × 16 ⇒ 32; M(idx) ∗ D ⇒ Y:D

EMULS Special Extended multiply 16 × 16 ⇒ 32 (signed); M(idx) ∗ D ⇒ Y:D
ETBL Special Extended table lookup and interpolate; 16-bit entries
EXG Inherent Exchange register contents
IBEQ Relative Increment and branch if equal to zero; looping primitive
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IBNE Relative Increment and branch if not equal to zero; looping primitive
IDIVS Inherent Signed integer divide D/X ⇒ X(Q) and D(R); signed
LBCC Relative Long branch if carry clear; same as LBHS
LBCS Relative Long branch if carry set; same as LBLO
LBEQ Relative Long branch if equal (if Z=1)
LBGE Relative Long branch if greater than or equal to zero
LBGT Relative Long branch if greater than zero
LBHI Relative Long branch if higher
LBHS Relative Long branch if higher or same; same as LBCC
LBLE Relative Long branch if less than or equal to zero
LBLO Relative Long branch if lower; same as LBCS
LBLS Relative Long branch if lower or same
LBLT Relative Long branch if less than zero
LBMI Relative Long branch if minus
LBNE Relative Long branch if not equal to zero
LBPL Relative Long branch if plus
LBRA Relative Long branch always
LBRN Relative Long branch never
LBVC Relative Long branch if overflow clear

LBVS Relative Long branch if overflow set
LEAS Indexed Load stack pointer with effective address
LEAX Indexed Load X index register with effective address
LEAY Indexed Load Y index register with effective address
MAXA Indexed Maximum of two unsigned 8-bit values
MAXM Indexed Maximum of two unsigned 8-bit values
MEM Special Determine grade of fuzzy membership
MINA Indexed Minimum of two unsigned 8-bit values
MINM Indexed Minimum of two unsigned 8-bit values
MOVB
MOVW

Combinations of immediate,
extended and indexed

Move byte from one memory location to another
Move word from one memory location to another

ORCC Immediate OR CCR with mask; replaces SEC, SEI, and SEV
PSHC Inherent Push CCR onto stack
PSHD Inherent Push double accumulator onto stack
PULC Inherent Pull CCR from stack
PULD Inherent Pull double accumulator from stack
REV Special Fuzzy logic rule evaluation
REVW Special Fuzzy logic rule evaluation with weights

RTC Inherent
Restore program page and return address from stack; used with
CALL instruction, allows easy access to extended space

SEX Inherent Sign-extend 8-bit register into 16-bit register
TBEQ Relative Test and branch if equal to zero; looping primitive
TBL Inherent Table lookup and interpolate; 8-bit entries
TBNE Relative Test register and branch if not equal to zero; looping primitive
TFR Inherent Transfer register contents to another register
WAV Special Weighted average; fuzzy logic support

Table C-4  New HCS12 Instructions

Mnemonic Addressing Modes Brief Functional Description
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C.7.2  Memory-to-Memory Moves

The HCS12 has both 8- and 16-bit variations of memory-to-memory move instructions. The sourc
address can be specified with immediate, extended, or indexed addressing modes. The destination
can be specified by extended or indexed addressing mode. Indexed addressing for move instruct
limited to direct indexing modes that require no extension bytes (9- and 16-bit constant offsets are
allowed). This leaves the 5-bit signed constant offset, accumulator offset, and the
autoincrement/decrement modes. The following simple loop is a block move routine capable of m
up to 256 words of information from one memory area to another:

LOOP MOVW 2,X+ , 2,Y+ ;move a word and update pointers
DBNE B,LOOP ;repeat B times

The move immediate to extended is a convenient way to initialize a register without using an accum
or affecting condition codes.

C.7.3  Universal Transfer and Exchange

The M68HC11 has only eight transfer instructions and two exchange instructions. The HCS12 ha
universal transfer/exchange instruction that can be used to transfer or exchange data between any t
registers. The operation is obvious when the two registers are the same size, and some of the oth
combinations provide very useful results. For example when an 8-bit register is transferred to a 16
register, a sign-extend operation is performed. Other combinations can be used to perform a zero
operation.

These instructions are used often in HCS12 assembly language programs. Transfers can be used
extra copies of data in another register, and exchanges can be used to temporarily save data dur
to a routine that expects data in a specific register. This is sometimes faster and produces more c
object code than saving data to memory with pushes or stores.

C.7.4  Loop Construct

The HCS12 instruction set includes a new family of six loop primitive instructions. These instructio
decrement, increment, or test a loop count in a CPU register and then branch based on a zero or 
test result. The CPU registers that can be used for the loop count are A, B, D, X, Y, or SP. The br
range is a 9-bit signed value (–512 to +511) which gives these instructions twice the range of a short
instruction.

C.7.5  Long Branches

All of the branch instructions from the M68HC11 are also available with 16-bit offsets which allows th
to reach any location in the 64K byte address space.
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C.7.6  Minimum and Maximum Instructions

Control programs often need to restrict data values within upper and lower limits. The HCS12 facili
this function with 8- and 16-bit versions of MIN and MAX instructions. Each of these instructions h
version that stores the result in either the accumulator or in memory.

For example, in a fuzzy logic inference program, rule evaluation consists of a series of MIN and M
operations. The MIN operation determines the smallest rule input and stores the running result in 
accumulator. The MAX operation stores the largest rule truth value in an accumulator or stores th
previous fuzzy output value from a RAM location in the fuzzy output in RAM. The following code
demonstrates how MIN and MAX instructions can be used to evaluate a rule with four inputs and 
outputs.

LDY #OUT1 ;Point at first output
LDX #IN1 ;Point at first input value
LDAA #$FF ;start with largest 8-bit number in A
MINA 1,X+ ;A=MIN(A,IN1)
MINA 1,X+ ;A=MIN(A,IN2)
MINA 1,X+ ;A=MIN(A,IN3)
MINA 1,X+ ;A=MIN(A,IN4) so A holds smallest input
MAXM 1,Y+ ;OUT1=MAX(A,OUT1) and A is unchanged
MAXM 1,Y+ ;OUT1=MAX(A,OUT2) A still has min input

Before this sequence is executed, the fuzzy outputs must be cleared to zeros (not shown). M68HC1
or MAX operations are performed by executing a compare followed by a conditional branch around a
or store operation.

These instructions can also be used to limit a data value prior to using it as an input to a table loo
other routine. Suppose a table is valid for input values between $20 and $7F. An arbitrary input valu
be tested against these limits and be replaced by the largest legal value if it is too big, or the smalles
value if too small using the following two HCS12 instructions.

HILIMIT FCB $7F ;comparison value needs to be in mem
LOWLIMIT FCB $20 ;so it can be referenced via indexed
MINA HILIMIT,PCR ;A=MIN(A,$7F)
MAXA LOWLIMIT,PCR ;A=MAX(A,$20)

;A now within the legal range $20 to $7F

The “,PCR” notation is also new for the HCS12. This notation indicates the programmer wants an
appropriate offset from the PC reference to the memory location (HILIMIT or LOWLIMIT in this
example), and then to assemble this instruction into a PC-relative indexed MIN or MAX instruction

C.7.7  Fuzzy Logic Support

The HCS12 includes four instructions (MEM, REV, REVW, and WAV) specifically designed to supp
fuzzy logic programs. These instructions have a very small impact on the size of the CPU, and ev
impact on the cost of a complete MCU. At the same time these instructions dramatically reduce the
code size and execution time for a fuzzy logic inference program. A kernel written for the M68HC1
required about 250 bytes. The HCS12 kernel uses about 50 bytes.
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C.7.8  Table Lookup and Interpolation

The HCS12 instruction set includes two instructions (TBL and ETBL) for lookup and interpolation 
compressed tables. Consecutive table values are assumed to be the x coordinates of the endpoints
segment. The TBL instruction uses 8-bit table entries (y-values) and returns an 8-bit result. The E
instruction uses 16-bit table entries (y-values) and returns a 16-bit result.

An indexed addressing mode is used to identify the effective address of the data point at the beginn
the line segment, and the data value for the end point of the line segment is the next consecutive m
location (byte for TBL and word for ETBL). In both cases, the B accumulator represents the ratio of
x-distance from the beginning of the line segment to the lookup point) to (the x-distance from the
beginning of the line segment to the end of the line segment). B is treated as an 8-bit binary fraction
radix point left of the MSB, so each line segment is effectively divided into 256 pieces. During execu
of the TBL or ETBL instruction, the difference between the end point y-value and the beginning po
y-value (a signed byte for TBL or a signed word for ETBL) is multiplied by the B accumulator to ge
intermediate delta-y term. The result is the y-value of the beginning point, plus this signed interme
delta-y value.

C.7.9  Extended Bit Manipulation

The M68HC11 CPU only allows direct or indexed addressing. This typically causes the programm
dedicate an index register to point at some memory area such as the on-chip registers. The HCS12
all bit-manipulation instructions to work with direct, extended or indexed addressing modes.

C.7.10  Push and Pull D and CCR

The HCS12 includes instructions to push and pull the D accumulator and the CCR. It is interesting to
that the order in which 8-bit accumulators A and B are stacked for interrupts is the opposite of what w
be expected for the upper and lower bytes of the 16-bit D accumulator. The order used originated
M6800, an 8-bit microprocessor developed long before anyone thought 16-bit single-chip devices
be made. The interrupt stacking order for accumulators A and B is retained for code compatibility.

C.7.11  Compare SP

This instruction was added to the HCS12 instruction set to improve orthogonality and high-level lang
support. One of the most important requirements for C high-level language support is the ability to
arithmetic on the stack pointer for such things as allocating local variable space on the stack. The
–5,SP instruction is an example of how the compiler could easily allocate five bytes on the stack for
variables. LDX 5,SP+ loads X with the value on the bottom of the stack and deallocates five bytes
the stack in a single operation that takes only two bytes of object code.

C.7.12  Support for Memory Expansion

Bank switching is a common method of expanding memory beyond the 64K byte limit of a CPU w
64K byte physical address space, but there are some known difficulties associated with bank swit
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One problem is that interrupts cannot take place during the bank-switching operation. This increases
case interrupt latency and requires extra programming space and execution time.

Some HCS12 Core includes a built-in bank switching scheme that eliminates many of the problem
associated with external switching logic. The HCS12 includes CALL and return from call (RTC)
instructions that manage the interface to the bank-switching system. These instructions are analo
the JSR and RTS instructions, except that the bank page number is saved and restored automaticall
execution. Since the page change operation is part of an uninterruptable instruction, many of the
difficulties associated with bank switching are eliminated. On HCS12 systems with expanded mem
capability, bank numbers are specified by on-chip control registers. Since the addresses of these 
registers may not be the same in all systems, the HCS12 has a dedicated control line to the on-ch
integration module that indicates when a memory-expansion register is being read or written. This a
the CPU to access the PPAGE register without knowing the register address.

The indexed-indirect versions of the CALL instruction access the address of the called routine and
destination page value indirectly. For other addressing mode variations of the CALL instruction, th
destination page value is provided as immediate data in the instruction object code. CALL and RT
execute correctly in the normal 64K byte address space, thus providing for portable code.
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