

EXPANDED INPUT / OUTPUT CARD
FOR THE AXIOM CME11E9-EVBU

DEVELOPMENT BOARD

A Report Presented to the
Faculty of the Computer Engineering Technology Program

University of Southern Mississippi

In Partial Fulfillment of the Requirements for
CET 400

By
Dan Kohn

December 6, 1999

Table of Contents

I. ABSTRACT..1

II. INTRODUCTION..2

III. CIRCUIT DESIGN AND OPERATION ..3

A. SYSTEM OVERVIEW...3
B. CME11E9-EVBU PERIPHERAL ADDRESSING AND THE EXPANDED I/O CARD ..4
C. EXPANDED INPUT / OUTPUT ..8

1. Input Ports...8
2. Output Port..9
3. Motor Control Port ...11
4. Analog Output ...18

D. SMALL C SOFTWARE LIBRARY ...20

REFERENCES..21

APPENDICES ...22

Table of Figures

FIGURE 1. SYSTEM BLOCK DIAGRAM...3
FIGURE 2. CME11E9-EVBU PERIPHERAL ADDRESSING CIRCUIT ...5
FIGURE 3. EXPANDED I/O CARD ADDRESSING DECODER...7
FIGURE 4. INPUT PORT ...8
FIGURE 5. INPUT PORT EXAMPLE ...9
FIGURE 6. OUTPUT PORT..10
FIGURE 7. OUTPUT PORT EXAMPLE ...11
FIGURE 8. MOTOR CONTROL PORT ..12
FIGURE 9. STEPPER MOTOR CONFIGURATION ..13
FIGURE 10. OUTPUT COMPARE ISR ...15
FIGURE 11. DC MOTOR CONFIGURATION ..17
FIGURE 12. D/A CONVERTER ...18

1

I. Abstract

 With the continuing encroachment of computers into all aspects of day-to-day life, the need for

interfacing between the real world and the digital world is on the increase. This paper describes the

circuitry and software for additional input/output capabilities for the CME11E9-EVBU Development

Board. When combined, the system created is a very powerful controller for a wide variety of applications

including industrial control, robotics, data acquisition, and home automation.

2

II. Introduction

 The Expanded Input / Output (I/O) Card is designed to allow the end user the ability to quickly

connect various devices to the Axiom CME11E9-EVBU Development Board by providing the necessary

interfacing hardware for a wide range of applications. The Expanded I/O Card can handle up to sixteen

additional CMOS Level inputs, 4 additional CMOS Level outputs, four transistor switched outputs, four

analog outputs, and two motor control outputs (each capable of controlling either a DC motor or Unipolar

Stepper Motor). When these additional I/O capabilities are combined with the 68HC11’s on board Input

Capture , Output Compare, and Analog to Digital Converter (A/D), there are very few devices that cannot

be interfaced to and controlled by this system.

3

III. Circuit Design and Operation

A. System Overview

 The overall system is comprised of two main parts: the CME11E9-EBVU Development Board and

the Expanded I/O Card. The CME11E9-EBVU Development Board (Appendix A) consists of a 68HC11

Microcontroller Unit – MCU (Appendix B), memory for program storage, addressing hardware for

peripheral hardware, and an RS-232 port (for programming and data exchange). The Expanded I/O Card

receives addressing information and data from the Development Board and uses those signals to control the

additional I/O capabilities. A block diagram of the overall system can be found in Figure 1.

Port APort B Port C Port DPort E

68HC11E9 MCU

BUS Port

Address and Data Bus

MCU PORT

Peripheral Address Decoding

RS-232

Motor ControlsInputsOutputs Analog Output

CME11E9-EBVU

Expanded I/O Card

Memory

Additional Addressing Logic

Figure 1. System Block Diagram

4

Without the Expanded I/O Card, the CME11E9-EVBU Development Board has limited I/O

capabilities. With the 68HC11 on the CME11E9-EVBU in expanded mode [1], parallel Ports B and C are

used for addressing and are unavailable. Port D is partially used for RS-232 communications so only four

pins of that port are available. This leaves only 50% of the 68HC11’s I/O capabilities available for use. Out

of these remaining I/O pins, many have special functions, are unidirectional, or are CMOS level outputs

(Appendix C), putting further limits on the applications of the Development Board. Lastly, the

Development Board has no outputs capable of handling higher current devices (motors, relays, lights ect)

requiring interfacing circuitry for the majority of applications.

 The Expanded I/O Card solves these problems. With the addition of sixteen CMOS level inputs,

four CMOS Level outputs, and four high voltage/current outputs, the Expanded I/O Card can be connected

to any number of devices. The inclusion of the two Motor control ports increases the usefulness of the

Expanded I/O Card while reducing software overhead by allowing hardware to handle the majority of the

motor controls without extensive processor supervision. The inclusion of a Digital to Analog converter

adds additional functionality unavailable without the Expanded I/O Card. Detailed specifications and full

schematics for the Expanded I/O Card are available in Appendix D.

B. CME11E9-EVBU Peripheral Addressing and the Expanded I/O Card

 Before discussing the I/O circuitry, it is important to develop and understanding of the method

used for addressing for each of the additional ports. The responsibility for addressing these ports is shared

by the CME11E9-EVBU Development Board and the Expanded I/O Card.

The CME11E9-EVBU Development Board handles preliminary addressing for the Expanded I/O

Card. U2 and U10 as seen in Figure 2 handle this task. U2 is a Programmable Array Logic (PAL) IC. This

16V8 (Appendix E) is programmed with the necessary logic for all the addressing needs of the

5

Figure 2. CME11E9-EVBU Peripheral Addressing Circuit [2]

CME11E9-EVBU Development Board as well as the Peripheral Addressing Area. Only the P output is

used for the Peripheral Addressing. The other outputs are used for memory addressing and will not be

covered in this report. The P line goes LOW when the address bus contains an address in the Peripheral

Area (addresses $B580 to $B5FF). The logic for the P is:

(Equation 1)

)&7&8&9&10&11&12&13&14&15(EAAAAAAAAANOTP =

 where: A0..A15 are address lines

 E is the bus clock

 P is the output (active low)

The Development board then uses this signal, along with others, to generate 8 lines (CS0..CS7) indicating

which subdivision of the Peripheral Address Area is being addressed. These subdivisions are shown below:

6

Table I. Subdivisions of Peripheral Address Area

CS0 – $B580 - $B58F CS4 – $B5C0 - $B5CF
CS1 – $B590 - $B59F CS5 – $B5D0 - $B5DF
CS2 – $B5A0 - $B5AF CS6 – $B5E0 - $B5EF
CS3 – $B5B0 - $B5BF CS7 - $B5F0 - $B5FF*

*note: $B5F0 and $B5F1 are reserved for the LCD Port

The determination of the subdivision being addressed is the responsibility of U10 in Figure 2. This

inverting 3-to-8 line decoder/demultiplexer (74HC138 Appendix F) receives P (Peripheral Area Address

Selected), A4..A6, AS (Address Strobe), and E (Bus Clock) and generates 0CS .. 7CS indicating the

subdivision being addressed. The logic is shown in the Truth Table below:

Table II. 74HC138 Truth Table

A
(A4)

B
(A5)

C
(A6)

G1
(E)

AG2
(AS)

BG2
(P)

OUTPUT*

0 0 0 1 0 0 0CS
1 0 0 1 0 0 1CS
0 1 0 1 0 0 2CS
1 1 0 1 0 0 3CS
0 0 1 1 0 0 4CS
1 0 1 1 0 0 5CS
0 1 1 1 0 0 6CS
1 1 1 1 0 0 7CS

* - all outputs and possible states not shown are 1’s

The 0CS .. 7CS lines, along with other lines are then made available via connector J1 (Bus_Port) on the

CME11E9-EVBU Development Board.

 The Expanded I/O Card connects to the Bus_Port and uses A0, A1, A2, A3 , WR , and CSn to

complete the addressing. As shown in Figure 3, a rotary switch is used to select the Peripheral Address line

(0CS .. 7CS) to be used.

7

 Figure 3. Expanded I/O Card Addressing Decoder

This was done to allow the Expanded I/O Card to be connected to Development Boards that already have

some of the peripheral addresses in use. The selected peripheral address line (CSn) (where n is the CS line

selected by the rotary switch) along with A0..A3 and WR are then used as inputs to U5 in Figure 3. This

PAL22V10 is programmed to produce the necessary outputs required for each I/O sub-circuit. Table III

contains the truth table used to create the combinational logic.

Table III. Addressing PAL Truth Table

ADDR CSn WR A3 A2 A1 A0 Output Port Type

$B5n0 0 1 0 0 0 0 IO0 Input
$B5n1 0 1 0 0 0 1 IO1 Input
$B5n2 0 0 0 0 1 0 2IO Output
$B5n3 0 0 0 0 1 1 3IO Motor
$B5n4 0 0 0 1 0 0 special D/A – OUTA
$B5n5 0 0 0 1 0 1 special D/A – OUTB
$B5n6 0 0 0 1 1 0 special D/A – OUTC
$B5n7 0 0 0 1 1 1 special D/A - OUTD
$B5n8 0 0 1 0 0 0 4IO LDAC

$B5n4..$B5n7 generate special outputs needed to control the multiplexed data inputs of the D/A,

and will therefore be covered in detail with that device. The PAL programming file along with further

documentation is available in Appendix G.

IO5

!CS5

IO4
IO3

!CS4

SW1

SW ROTARY 1P-10W

11

12345
6 7 8 9 10

IO7

A2

!CS3

Bus_Port

NOTE: !CS7 cannot be used if LDC port on CME11E9-EVBU is in use.

A3

IO2

!CS1

IO0

!CS6

!CS2

!CS0

R/W

A1

IO1

IO6

A0
U5

22V10

1
2
3
4
5
6
7
8
9

10
11
13

23
22
21
20
19
18
17
16
15
14

I1/CLK
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12

O1
O2
O3
O4
O5
O6
O7
O8
O9

O10

!CS7

8

C. Expanded Input / Output

1. Input Ports

a. Hardware

 The Expanded I/O Card is equipped with two input ports. These ports use a 74HC244 Octal

Figure 4. Input Port

buffer / line driver IC (Appendix H) to transfer the data on the input lines (JP1 in Figure 4) onto the data

bus when the Address line (IO0 or IO1 in Figure 3) goes low. This makes the data on JP1 directly

accessible to the software by the use of memory fetching commands.

b. Software

To read in data from either of the Input Ports on the Expanded I/O Card, the programmer must

read from the proper address. As shown in Table III, the address for the two input ports are $B5n0 and

$B5n1. Using Small C’s peek() function, or assembly’s LDA instruction, the port can be read. The value

returned can be evaluated by breaking the value to it’s binary equivalent to obtain the status of each input

line. An example is as follows:

D2

Address
U7

74HC244

2
4
6
8

11
13
15
17

1
19

18
16
14
12
9
7
5
3

1A1
1A2
1A3
1A4
2A1
2A2
2A3
2A4

1G
2G

1Y1
1Y2
1Y3
1Y4
2Y1
2Y2
2Y3
2Y4

D1

D5

D3

D6

JP1

8 HEADER

1
2
3
4
5
6
7
8

D0

D[0..7]

D7

D4

9

var = peek($B5n0)

$B5n0

Data read time

1
1
1

1

0
0

0
0

$E4
228

MSB

LSB

Figure 5. Input Port Example

As seen in Figure 5, the input port at $B5n0 is read using peek($B5n0). The value $E4 (228 dec) is read

from the hardware and the data is placed into the variable “var”. This variable can then be evaluated

further to determine the status of each input line using any number of techniques.

 It should also be noted that writing to an input port address, by use of poke() or STA, will have no

effect on that address.

2. Output Port

a. Hardware

 Figure 6 shows the configuration of the output port. The 74HC374 is an Octal D-type flip-flop;

positive edge-trigger; 3-state (Appendix I). When triggered via the IO2 line from the PALCE22V10, the

information on the data bus will be latched onto the outputs (Q0..Q7).

10

Figure 6. Output Port

 To allow for higher voltage and/or current devices to be interfaced to the board, output Q4..Q7 are

connected to TIP120s (Appendix J). These are Medium-Power Complementary Silicon Transistors

arranged in a Darlington configuration. This IC was chosen for its high input impedance, high current gain,

and low output impedance. Since the base current needed for saturation is dependent on the load

connected, variable resistors were used to permit adjustment to insure proper operation. The TIP120’s

collectors and emitters are brought directly to a connector so that any connection configuration can be

achieved.

b. Software

Data can be placed on the Output Port of the Expanded I/O Card by use of Small C’s poke()

function or assembly’s STA instruction. In the example in Figure 7,

R4

1-100K

Q2
NPN DAR

R1

1-100K

R3

1-100K

D4

D0
D1

D7

J2

CON14

1
2
3
4
5
6
7
8
9
10
11
12
13
14

U12

74HC374

3
4
7
8

13
14
17
18

1
11

2
5
6
9
12
15
16
19

D0
D1
D2
D3
D4
D5
D6
D7

OC
CLK

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

R2

1-100K

D5

Q1
NPN DAR

D6

Q4
NPN DAR

Q3
NPN DAR

D[0..7]

D3

IO2

D2

11

$B5n2
1
0
0

0

1
1

1
0

MSB

LSB

poke($B5n2, 9A)

$9A

outputs

Figure 7. Output Port Example

the output port ($B5n2) has a HEX 9A written to it, the individual output lines then become a 1 (TRUE,

+5v) or a 0 (False, 0v) based on the binary equivalent .

It should be noted that reading this port using LDA or peek() functions will not result in the ports

current output. Therefore it is imperative that the current output be stored by some other means.

3. Motor Control Port

 The motor control port (Figure 8) uses the 74HC374 for the same application as in the output port

discussed above. This provides a latched output to the two PALCE22V10s (Appendix K). These

Programmable Array Logic IC (PAL) are programmed to allow the CME11E9-EVBU Development Board

to control either a DC motor or Unipolar Stepper motor with minimal software overhead. Full

documentation of the DC/Stepper motor control PAL is available in Appendix L.

12

Figure 8. Motor Control Port

a. Stepper Motor Control

i. Hardware

 For Unipolar Stepper Motor control, the selector switch (Motor1-Sel and/or Motor2-Sel) is switch

to the left (as show in Figure 8). This connects Pin 1 of the PAL to the 68H811 clock pulse (square wave)

will be generated by the MCU’s Output Compare (OC) facility and disables the DC motor’s PWM output

to/from the PAL. This prevents possible problems that can arise when the motor type and software driver

do not match. The switch also sets pin 3 of the respective PAL to a LOW state. This is used by the PAL

logic to select stepper motor sequential logic instead of DC motor combinational logic.

U13

74HC374

3
4
7
8

13
14
17
18

1
11

2
5
6
9
12
15
16
19

D0
D1
D2
D3
D4
D5
D6
D7

OC
CLK

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

R9

1-100K

U15

22V10

123456789101113

23222120191817161514

I1
/C

LKI2I3I4I5I6I7I8I9I1
0

I1
1

I1
2

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
10

D4

R12

1-100K

SW4

Motor1-Sel

5 46

1 2 3

U16

22V10

123456789101113

23222120191817161514

I1
/C

LKI2I3I4I5I6I7I8I9I1
0

I1
1

I1
2

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
10

R14

1-100K

R6

1-100K

Q18

NPN DAR

Q17

NPN DAR

R7

1-100K

Q20

NPN DAR

D5

JP6

HEADER 10

12345678910

D2

R5

1-100K

Motor1-clk

Q12

NPN DAR

D0

Motor2-clk

D3

Q14

NPN DAR

Q19

NPN DAR

R10

1-100K

Q15

NPN DAR

IO3

Q16

NPN DAR

R8

1-100K

SW3

Motor2-Sel

5 46

1 2 3

VCC

D[0..7]

D6

Q21

NPN DAR

D1

R13

1-100K

JP7

HEADER 10

12345678910

R11

1-100K

Q13

NPN DAR

VCC

D7

13

 The stepper motor(s) will be connected to JP6 and/or JP7 as per Figure 9

Figure 9. Stepper Motor Configuration

The diagram just shows the last stage of the Darlington Transistor pair (Numbers are from JP6 and/or JP7).

External diodes are added to prevent back Electro-motive force (EMF) from damaging the transistors. The

diodes chosen should be of sufficient size for the motor chosen. More on this topic can be found in

Appendix K.

The PAL is programmed so that the motor can work in three different modes of operation. These

are selected via 2 lines going into the PAL. See Table IV for bit settings

Table 1V. Stepper Motor Mode Select

HT SS Stepper Motor Mode of operation

0 0 Half Step
0 1 Single Step
1 1 High Torque
1 0 Not Used (defaults to single step)

The SS and HT pins select the step sequence to be executed by the PAL and can be switch at any time via

the Motor Control Port. This allows for the motor to use different modes if more positional accuracy or

14

higher torque is needed. Additional information on stepper motors and their modes of operations, see

Appendix M.

ii. Software

 The stepper motor is controlled by a number of distinct software routines. The first is very similar

to the output software already discussed, but in the case of the motor control port, the low and high four

bits (also known as nibbles) control Motor 2 and Motor 1 respectively.

 For Stepper Motor operation, the nibble is defined as follows:

Table V. Stepper Motor Control Nibble Definitions

BIT Description

MSB 2n+3 SS Bit (See Table IV for more information)
 2n+2 HT BIT (See Table IV for more information)
 2n+1 Coils ON Bit (1 = on, 0 = off)
LSB 2n Direction (1 = forward, 0 = reverse)

As stated in the hardware section, bits SS and HT select the mode of operation (High Torque, Single Step

or Half Step, see Table IV for settings). The Coils On bit gives the programmer the ability to turn off the

stepper motor coils. Normally, even when the motor is not turning, at least one coil is on to hold the stepper

motor in position. In the majority of applications, this is a desirable trait, but in some instances, like when

power consumption is a concern or when the rotor must be able to spin freely, the ability to turn off all the

coils is desirable, hence the inclusion of this feature.

If, for example, a %1011 is written to the motor control nibble, the motor’s coils will be on, the

motor would turn in the forward direction, and it would be in single step mode.

 The second routine required generates a clock signal for the stepper motor. This clock determines

the speed of the motor rotation. For this the 68HC11’s Output Compare (OC) function is be utilized. The

OC function uses the Timer Counter Register (TCNT). This register holds a count that is updated at each

clock pulse. The OC uses this value and compares it to the value in its own register (TOCx were x is 1 – 5).

When properly set up, an interrupt is triggered when TCNT reaches TOCx and runs the interrupt service

routine for that OC. In this case the Interrupt Service Routine (ISR) then sets up for the next pulse edge.

The flowchart for the ISR is as follows:

15

Decrement count

START OC ISR

Is
Output
pin
high

Set output low

load off time

Set output high

load on time
to Reg D

to Reg D

Add Reg D to
TOCx

Clear OCx
Flag

Return From
Interrupt

YES

NO

MODE

Step Count

Free Run
Mode

Mode

Is
count
0

Clear OCx
Interrup Mask

Is
stop
flag
set

yes yes

nono

Figure 10. Output Compare ISR

Since the ISR is very time critical, assembly language is preferred for this section of code to minimize any

latency caused by code delays. A full description of the OC can be found in Appendix N.

The on and off times are calculated by separate routine that does the following computations:

(Equation 2a)

cycledutytimetotalTimeOn _*100/__ =

(Equation 2b)

)_100(*100/__ cycledutytimetotalTimeOff −=

Where: On_Time = number of counts representing on time

 Total_time = is 1/frequency (in clock counts)

 Duty_cycle = duty cycle of the pulse (for stepper motors this should be 50)

 Off_Time = number of counts representing off time

16

To convert clock counts to time, the prescaler (Bits PR1 and PR0 of TMSK2 register) and the crystal

frequency are used. For the CME11E9-EVBU the prescaler is 00 (Prescale Factor of 1) and the crystal

frequency is 8 MHz give a time per count of 500ns [3].

(Equation 3)

countpertimecountsTime __*=

 Where: Time = Time in seconds

 time_per_count = 500ns

Appendix O contains some sample problems using these equations. Since these calculations will be done

outside the ISR, the speed of the motor can be changed at any time by manipulating the

timetotal _ value.

A section of the ISR is also responsible for stopping the motor. The programmer has the ability to

set the stepper motor to a free run or step count mode of operation. In free run mode, the stepper motor will

continue to run until told to stop via an external flag. In step count mode, the ISR is told how many steps to

execute and stops when completed. In both cases the ISR turns itself off by clearing it’s interrupt mask bit

to stop the clock, hence stopping the motor.

b. DC Motor Control

i. Hardware

 For DC Motor control, the selector switch (Motor1-Sel and/or Motor2-Sel) is switched to the right

as show in Figure 8. This connects Pin 2 of the PAL to the 68HC11’s Pulse Width Modulated (PWM)

signal that is being generated by the MCU’s Output Compare (OC) facility. This also disables the clock for

the stepper motor to prevent possible problems caused by mismatches between the hardware and software

driver. The switch also sets pin 3 of the respective PAL to a HIGH state. This is used by the PAL logic to

select the combinational logic for DC Motors instead of the sequential logic for the Stepper motors.

DC Motor(s) are connected to the Expanded I/O Card in the following manner:

17

Figure 11. DC Motor Configuration

Once again, the diagram just shows the last stage of the Darlington Transistor pair Numbers are from JP6

and/or JP7. The PAL receives the direction control bit from the 68HC11 and then sends out the proper bit

pattern allowing current flow in the proper transistors. Q1 and Q4 allow current flow for the forward

direction, Q2 and Q3 for the reverse direction. Q5 is used to control speed.

ii. Software

DC motors are controlled by the routines for the Stepper Motors discussed above. The same nibble

is used to control the DC motor, but in this case the nibble only uses two of the four bits. These bits control

on/off and direction only. The control nibble is shown in Table VI.

Table VI. DC Motor Control Nibble Definitions

BIT Description

MSB 2n+3 Not Used
 2n+2 Not Used
 2n+1 ON Bit (1 = on, 0 = off)
LSB 2n Direction (1 = forward, 0 = reverse)

For example: writing a %0010 to the nibble would turn the motor on in the reverse direction.

18

 To control speed, the same clock pulse generator software used for the stepper motor is utilized

once again, but this time the programmer will manipulate the duty_cycle of the pulse instead of the

frequency to control the speed. This type of speed control is known as Pulse Width Modulation (PWM).

The concept is to turn the motor on and off at different rates, the more on time the motor has, the faster it

will go, the more off time, the slower it will go. Each motor will have a limit to the minimum duty cycle

required for the motor to generate enough torque to rotate. This will have to be found via testing of the

individual motor.

 Unlike the Stepper motor, who’s clock has to be turned off to stop the motor, the DC motor is

stopped by changing the ON bit (2n+1) to a 0. Since this is the case, there is no need to turn off the PWM

signal, therefor the ISR should be in free run mode for DC motor control.

4. Analog Output

a. Hardware

 The analog output circuit is based around the TLC7225C Quadruple 8-Bit Digital-to-Analog

Converter (Appendix P), as shown in Figure 12.

Figure 12. D/A Converter

D[0..7]

D4 D3

IO4
D1

IO6

D7 IO5

IO7

D5

U11

TLC7225

1
2
3
4
5
6
7
8
9

10
11
12 13

14
15
16
17
18
19
20
21
22
23
24

OUTB
OUTA
Vss
REFB
REFA
AGND
DGND
!LDAC
DB7
DB6
DB5
DB4 DB3

DB2
DB1
DB0
!WR

A1
A0

REFD
REFC

Vdd
OUTD
OUTC

JP3
8 HEADER

1 2 3 4 5 6 7 8

D2

D0
D6

19

Since it is a multiplexed device, the IC receives four control inputs from the PAL22V10 used for

addressing. For this IC, the PAL really does not supply an address signal, but it supplies a series of control

lines. IO6 and IO7 direct the incoming data D[0..7] to the converter for the proper output (OUTA..OUTD).

This is shown below:

Table VII. Definition of Outputs from Addressing PAL To D/A Converter

Peripheral Port
Address

RW
(IO5)

A0
(IO6)

A1
(IO7)

Output

$B5n4 1 0 0 OUTA
$B5n5 1 0 1 OUTB
$B5n6 1 1 0 OUTC
$B5n7 1 1 1 OUTD

IO6 (D/A WR) indicates that data is available on the data bus for the D/A. The last line controlled by IO4

of the Addressing PAL is the LDAC line. This line will be sent low while address $B5n8 is being

accessed. This line places the new analog values on the output pins of the D/A converter.

b. Software

 To write a value to D/A output pin, the 8 bit representation of the required output must be

sent to one of the four addresses shown in Table VII. This can be accomplished using the poke() command

in Small C or via a STAA or STAB in assembly language. The formula for the conversion from the 8 bit

value to the voltage is as follows:

(Equation 4)

)256/(* xVrefVout =

where: Vout = D/A voltage output

 Vref = Reference Voltage

 x = value sent

20

Once the value is sent to the D/A, an additional write must be performed to address $B5n7 to update the

output. If this is not done, the output voltage will not change. The value sent is of no significance since this

line is derived from addressing only.

D. Small C Software Library

 All the aforementioned software routines will be part of a Small C library that will be included

with the Expanded I/O Card. The library will allow end users to quickly utilize all the features of the

Expanded I/O Card by use of modular programming techniques. This will allow for faster development

time of software for a wide variety of complex control tasks.

21

References

[1] Motorola Inc. M68HC11 Reference Manual, Motorola Inc. 1991 Section 2-6.

[2] Axiom Manufacturing Inc. CME11E9-EBVU Drawing AX-SCH-0221 Rev B. August 16, 1999

[3] Motorola Inc. M68HC11 Reference Manual, Motorola Inc. 1991 Table 10-1 page 10-9

22

Appendices

Appendix A Axiom CME11E9-EVBU Documentation

Appendix B 68HC11 Overview

Appendix C CMOS Design Considerations

Appendix D Expanded I/O Card Schematics and Specifications

Appendix E PALCE16V8

Appendix F 74HC138

Appendix G PLD Code File for Addressing IC

Appendix H 74HC244

Appendix I 74HC374

Appendix J TIP120

Appendix K PAL-22V10

Appendix L DC/Stepper Motor Control IC

Appendix M Stepper Motors

Appendix N Output Compare in the 68HC11

Appendix O Sample Clock/PWM Calculations

Appendix P TLC7225 (D/A Converter)

Appendix Q Project Cost Analysis and Schedule

