
Intel® Quark SoC X1000 Core
Hardware Reference Manual

October 2013
Order Number: 329678-001US

Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
2 Order Number: 329678-001US

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND
ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever
for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design
with this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm
Any software source code reprinted in this document is furnished for informational purposes only and may only be used or copied and no license, express
or implied, by estoppel or otherwise, to any of the reprinted source code is granted by this document.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different
processor families. Go to: http://www.intel.com/products/processor_number/
Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (“products”) in development by Intel that have not been
made commercially available to the public, i.e., announced, launched or shipped. They are never to be used as “commercial” names for products. Also,
they are not intended to function as trademarks.
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2013, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/products/processor%5Fnumber/

Revision History—Intel® Quark Core
Revision History

Date Revision Description

September 2013 001 First external release of document.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 3

Intel® Quark Core—Contents
Contents

1.0 About this Manual ..10
1.1 Manual Contents..10
1.2 Notational Conventions...11
1.3 Special Terminology...12
1.4 Related Documents ..12

2.0 Introduction ..13
2.1 Intel® Quark Core Features...13
2.2 Intel® Quark Core Product ..15

2.2.1 Operating Modes and Compatibility ...15
2.2.2 Memory Management..15
2.2.3 On-chip Cache..15
2.2.4 Floating-Point Unit ..16

2.3 System Components ..16
2.4 System Architecture...16
2.5 Systems Applications ...17

2.5.1 Embedded Personal Computers...17
2.5.2 Embedded Controllers ...18

3.0 Internal Architecture ...19
3.1 Instruction Pipelining..22
3.2 Bus Interface Unit..22

3.2.1 Data Transfers ...23
3.2.2 Write Buffers..23
3.2.3 Locked Cycles ..24
3.2.4 I/O Transfers ...24

3.3 Cache Unit ..25
3.3.1 Cache Structure ...25
3.3.2 Cache Updating ..26
3.3.3 Cache Replacement...27
3.3.4 Cache Configuration..27

3.4 Instruction Prefetch Unit ...28
3.5 Instruction Decode Unit ..28
3.6 Control Unit ..29
3.7 Integer (Datapath) Unit ..29
3.8 Floating-Point Unit ...29

3.8.1 Intel® Quark Core Floating-Point Unit ..29
3.9 Segmentation Unit ...29
3.10 Paging Unit ...30

4.0 Bus Operation ..32
4.1 Data Transfer Mechanism ...32

4.1.1 Memory and I/O Spaces ..32
4.1.1.1 Memory and I/O Space Organization..33

4.1.2 Dynamic Data Bus Sizing ...34
4.1.3 Interfacing with 8-, 16-, and 32-Bit Memories...35
4.1.4 Dynamic Bus Sizing During Cache Line Fills ..39
4.1.5 Operand Alignment ...40

4.2 Bus Arbitration Logic ..41
4.3 Bus Functional Description ..44

4.3.1 Non-Cacheable Non-Burst Single Cycle ..44
4.3.1.1 No Wait States..44
4.3.1.2 Inserting Wait States ...45
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
4 Order Number: 329678-001US

Contents—Intel® Quark Core
4.3.2 Multiple and Burst Cycle Bus Transfers .. 46
4.3.2.1 Burst Cycles... 46
4.3.2.2 Terminating Multiple and Burst Cycle Transfers 47
4.3.2.3 Non-Cacheable, Non-Burst, Multiple Cycle Transfers 48
4.3.2.4 Non-Cacheable Burst Cycles ... 48

4.3.3 Cacheable Cycles ... 49
4.3.3.1 Byte Enables during a Cache Line Fill ... 50
4.3.3.2 Non-Burst Cacheable Cycles ... 51
4.3.3.3 Burst Cacheable Cycles.. 52
4.3.3.4 Effect of Changing KEN# during a Cache Line Fill 53

4.3.4 Burst Mode Details ... 53
4.3.4.1 Adding Wait States to Burst Cycles.. 53
4.3.4.2 Burst and Cache Line Fill Order ... 55
4.3.4.3 Interrupted Burst Cycles .. 56

4.3.5 8- and 16-Bit Cycles ... 57
4.3.6 Locked Cycles .. 59
4.3.7 Pseudo-Locked Cycles... 60

4.3.7.1 Floating-Point Read and Write Cycles... 61
4.3.8 Invalidate Cycles.. 61

4.3.8.1 Rate of Invalidate Cycles ... 63
4.3.8.2 Running Invalidate Cycles Concurrently with Line Fills.................... 63

4.3.9 Bus Hold ... 66
4.3.10 Interrupt Acknowledge.. 67
4.3.11 Special Bus Cycles.. 68

4.3.11.1 HALT Indication Cycle.. 68
4.3.11.2 Shutdown Indication Cycle ... 69
4.3.11.3 Stop Grant Indication Cycle.. 69

4.3.12 Bus Cycle Restart ... 70
4.3.13 Bus States... 72
4.3.14 Floating-Point Error Handling for Intel® Quark Core 73

4.3.14.1 Floating-Point Exceptions ... 73
4.3.15 Intel® Quark Core Floating-Point Error Handling in AT-Compatible Systems.... 74

4.4 Enhanced Bus Mode Operation (Write-Back Mode) ... 74
4.4.1 Summary of Bus Differences.. 74
4.4.2 Burst Cycles .. 74

4.4.2.1 Non-Cacheable Burst Operation .. 75
4.4.2.2 Burst Cycle Signal Protocol... 75

4.4.3 Cache Consistency Cycles.. 76
4.4.3.1 Snoop Collision with a Current Cache Line Operation 77
4.4.3.2 Snoop under AHOLD.. 78
4.4.3.3 Snoop During Replacement Write-Back .. 80
4.4.3.4 Snoop under BOFF#.. 82
4.4.3.5 Snoop under HOLD ... 84
4.4.3.6 Snoop under HOLD during Replacement Write-Back....................... 86

4.4.4 Locked Cycles .. 86
4.4.4.1 Snoop/Lock Collision ... 88

4.4.5 Flush Operation.. 88
4.4.6 Pseudo Locked Cycles ... 89

4.4.6.1 Snoop under AHOLD during Pseudo-Locked Cycles 89
4.4.6.2 Snoop under Hold during Pseudo-Locked Cycles............................ 90
4.4.6.3 Snoop under BOFF# Overlaying a Pseudo-Locked Cycle 91

5.0 Memory Subsystem Design .. 93
5.1 Introduction ... 93
5.2 Processor and Cache Feature Overview .. 93

5.2.1 The Burst Cycle.. 93
5.2.2 The KEN# Input ... 94
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 5

Intel® Quark Core—Contents
6.0 Cache Subsystem ...97
6.1 Introduction..97
6.2 Cache Memory ..97

6.2.1 What is a Cache? ..97
6.3 Cache Trade-offs ...98

6.3.1 Intel® Quark Core Cache Organization...98
6.3.2 Block/Line Size...99
6.3.3 Replacement Policy ...100

6.4 Updating Main Memory ...100
6.4.1 Write-Through and Buffered Write-Through Systems100
6.4.2 Write-Back System ...101
6.4.3 Cache Consistency ..101

6.5 Non-Cacheable Memory Locations ..103
6.6 Cache and DMA Operations ...103

7.0 Peripheral Subsystem ..105
7.1 Peripheral/Processor Bus Interface ...105

7.1.1 Mapping Techniques..105
7.1.2 Dynamic Data Bus Sizing ...107
7.1.3 Address Decoding for I/O Devices ...108

7.1.3.1 Address Bus Interface..109
7.1.3.2 32-Bit I/O Interface...109

7.2 Basic Peripheral Subsystem...111
7.2.1 Bus Control and Ready Logic ..113
7.2.2 Bus Control Signal Description..114

7.2.2.1 Intel® Quark Core Interface..114
7.2.3 Wait State Generator Logic ..115
7.2.4 Address Decoder ..116
7.2.5 Recovery and Bus Contention ...119
7.2.6 Write Buffers and I/O Cycles ..119

7.2.6.1 Write Buffers and Recovery Time...119
7.2.7 Non-Cacheability of Memory-Mapped I/O Devices......................................120
7.2.8 Intel® Quark Core On-Chip Cache Consistency..120

7.3 I/O Cycles ..120
7.3.1 Read Cycle Timing ..120
7.3.2 Write Cycle Timings ..122

8.0 Local APIC ...125
8.1 Local APIC Overview ..125
8.2 LAPIC Register Structure ..126

8.2.1 APIC Timer ..130
8.2.2 Interrupt Control Register (ICR), Logical Destination Register (LDR),

Destination Format Register (DFR) ..131
8.2.3 Interrupt and Task Priority ...131
8.2.4 Fixed Interrupts..131
8.2.5 End of Interrupt (EOI) ...132

9.0 Clocking Considerations and System Debugging ..133
9.1 Clocking Considerations..133

9.1.1 Intel® Quark Core Clocking Architectures...133
9.1.1.1 Two Phase Flop Design...133
9.1.1.2 LMT Single Phase Flop Design ...134
9.1.1.3 Intel® Quark Core 1-clock Flop Design135

9.1.2 SoC / Intel® Quark Core Clock Architecture..135
9.1.3 Intel® Quark Core Core/Bus/SoC Clock Ratio..136
9.1.4 Clock Skew and Uncertainty ...137
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
6 Order Number: 329678-001US

Contents—Intel® Quark Core
9.1.4.1 Clock Uncertainty Components and Numbers 137
9.2 Building and Debugging a Intel® Quark Core-Based System.................................. 138

9.2.1 Debugging Features of the Intel® Quark Core .. 140
9.2.2 Breakpoint Instruction .. 140
9.2.3 Single-Step Trap .. 140
9.2.4 Debug Registers... 140
9.2.5 Debug Control Register (DR7) .. 142
9.2.6 Debugging Overview... 143

Figures
1 Intel® Quark SoC X1000 Core used in Intel® Quark SoC X1000................................... 17
2 Embedded Personal Computer and Embedded Controller Example................................ 18
3 Intel® Quark Core Block Diagram .. 20
4 Internal Pipelining ... 22
5 Intel® Quark SoC X1000 Core Cache Organization ... 26
6 Segmentation and Paging Address Formats... 30
7 Translation Lookaside Buffer ... 31
8 Physical Memory and I/O Spaces ... 33
9 Physical Memory and I/O Space Organization.. 34
10 Intel® Quark Core with 32-Bit Memory... 36
11 Addressing 16- and 8-Bit Memories ... 36
12 Logic to Generate A1, BHE# and BLE# for 16-Bit Buses.. 38
13 Data Bus Interface to 16- and 8-Bit Memories ... 39
14 Single Master Intel® Quark Core System .. 41
15 Single Master Intel® Quark Core with DMA ... 42
16 Single Master Intel® Quark Core with Multiple Secondary Masters................................ 43
17 Basic 2-2 Bus Cycle ... 45
18 Basic 3-3 Bus Cycle ... 46
19 Non-Cacheable, Non-Burst, Multiple-Cycle Transfers .. 48
20 Non-Cacheable Burst Cycle... 49
21 Non-Burst, Cacheable Cycles .. 51
22 Burst Cacheable Cycle.. 52
23 Effect of Changing KEN# .. 53
24 Slow Burst Cycle ... 54
25 Burst Cycle Showing Order of Addresses... 55
26 Interrupted Burst Cycle.. 56
27 Interrupted Burst Cycle with Non-Obvious Order of Addresses..................................... 57
28 8-Bit Bus Size Cycle... 58
29 Burst Write as a Result of BS8# or BS16#.. 59
30 Locked Bus Cycle .. 60
31 Pseudo Lock Timing ... 61
32 Fast Internal Cache Invalidation Cycle.. 62
33 Typical Internal Cache Invalidation Cycle .. 62
34 System with Second-Level Cache .. 64
35 Cache Invalidation Cycle Concurrent with Line Fill .. 65
36 HOLD/HLDA Cycles.. 66
37 HOLD Request Acknowledged during BOFF# ... 67
38 Interrupt Acknowledge Cycles ... 68
39 Stop Grant Bus Cycle ... 69
40 Restarted Read Cycle... 70
41 Restarted Write Cycle .. 71
42 Bus State Diagram .. 72
43 Basic Burst Read Cycle... 75
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 7

Intel® Quark Core—Contents
44 Snoop Cycle Overlaying a Line-Fill Cycle ...79
45 Snoop Cycle Overlaying a Non-Burst Cycle ..80
46 Snoop to the Line that is Being Replaced...81
47 Snoop under BOFF# during a Cache Line-Fill Cycle ...83
48 Snoop under BOFF# to the Line that is Being Replaced ...84
49 Snoop under HOLD during Cache Line Fill..85
50 Snoop using HOLD during a Non-Cacheable, Non-Burstable Code Prefetch.....................86
51 Locked Cycles (Back-to-Back) ...87
52 Snoop Cycle Overlaying a Locked Cycle ..88
53 Flush Cycle ...89
54 Snoop under AHOLD Overlaying Pseudo-Locked Cycle...90
55 Snoop under HOLD Overlaying Pseudo-Locked Cycle ..91
56 Snoop under BOFF# Overlaying a Pseudo-Locked Cycle ..92
57 Typical Burst Cycle...95
58 Burst Cycle: KEN# Normally Active ..96
59 Cache Data Organization for the Intel® Quark Core On-Chip Cache99
60 Bus Watching/Snooping for Shared Memory Systems ...102
61 Hardware Transparency..102
62 Non-Cacheable Share Memory...103
63 Mapping Scheme ...106
64 Intel® Quark Core Interface to I/O Devices ...109
65 32-Bit I/O Interface ...110
66 System Block Diagram ...112
67 Basic I/O Interface Block Diagram..113
68 PLD Equations for Basic I/O Control Logic ...116
69 I/O Address Example ...117
70 Internal Logic and Truth Table of 74S138..118
71 I/O Read Timing Analysis..121
72 I/O Read Timings...121
73 I/O Write Cycle Timings..122
74 I/O Write Cycle Timing Analysis ...123
75 Posted Write Circuit ...123
76 Timing of a Posted Write...124
77 LAPIC Diagram..125
78 Two phase flop based Intel® Quark Core design...133
79 Clock waveforms for a two phase clock design ...134
80 Single phase flop based Intel® Quark Core design..134
81 Clock Waveforms for Single Phase flop based Intel® Quark Core design134
82 Intel® Quark Core 1-Clock Flop Based Design..135
83 Intel® Quark Core Clocking Architecture Block Diagram for two-phase clock135
84 Intel® Quark Core Clocking Architecture Block Diagram for single-phase clock136
85 Intel® Quark Core Clocking Architecture Block Diagram for 1-clock design...................136
86 Intel® Quark Core Clock Zones..137
87 Intel® Quark SoC X1000 Core used in Intel® Quark SoC X1000139
88 Debug Registers ..141

Tables
1 Intel® Quark Core Functional Units ..19
2 Cache Configuration Options ...27
3 Byte Enables and Associated Data and Operand Bytes ..32
4 Generating A31–A0 from BE3#–BE0# and A31–A2...33
5 Next Byte Enable Values for BSx# Cycles..35
6 Data Pins Read with Different Bus Sizes..35
7 Generating A1, BHE# and BLE# for Addressing 16-Bit Devices.....................................37
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
8 Order Number: 329678-001US

Contents—Intel® Quark Core
8 Generating A0, A1 and BHE# from the Intel® Quark Core Byte Enables 39
9 Transfer Bus Cycles for Bytes, Words and Dwords.. 40
10 Burst Order (Both Read and Write Bursts) .. 55
11 Special Bus Cycle Encoding... 69
12 Bus State Description .. 72
13 Snoop Cycles under AHOLD, BOFF#, or HOLD ... 76
14 Various Scenarios of a Snoop Write-Back Cycle Colliding with an On-Going

Cache Fill or Replacement Cycle .. 77
15 Access Length of Typical CPU Functions.. 94
16 Next Byte-Enable Values for the BSx# Cycles.. 107
17 Valid Data Lines for Valid Byte Enable Combinations .. 108
18 32-Bit to 32-Bit Bus Swapping Logic Truth Table ... 110
19 Bus Cycle Definitions ... 114
20 LAPIC Register Address Map and Fields .. 126
21 Intel® Quark Core Supported Clock Ratios .. 137
22 Intel® Quark Core Clock Uncertainty Numbers .. 138
23 LENi Fields ... 142

§ §
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 9

Intel® Quark Core—About this Manual
1.0 About this Manual

This manual describes the embedded Intel® Quark Core. It is intended for use by
hardware designers familiar with the principles of embedded microprocessors and with
the Intel® Quark Core architecture.

1.1 Manual Contents
This section summarizes the contents of the chapters in this manual. The remainder of
this chapter describes conventions and special terminology used throughout the
manual and provides references to related documentation.

Chapter Description

Chapter 2.0,
“Introduction”

This chapter provides an overview of the embedded Intel® Quark Core, including
product features, system components, system architecture, and applications. This
chapter also lists product frequency, voltage and package offerings.

Chapter 3.0, “Internal
Architecture”

This chapter describes the Intel® Quark Core internal architecture, with a
description of the processor’s functional units.

Chapter 4.0, “Bus
Operation”

This chapter describes the features of the Intel® Quark Core bus, including bus
cycle handling, interrupt and reset signals, cache control, and floating-point error
control.

Chapter 5.0, “Memory
Subsystem Design”

This chapter designing a memory subsystem that supports features of the Intel®
Quark Core such as burst cycles and cache. This chapter also discusses using
write-posting and interleaving to reduce bus cycle latency.

Chapter 6.0, “Cache
Subsystem”

This chapter discusses cache theory and the impact of caches on performance.
This chapter details different cache configurations, including direct-mapped, set
associative, and fully associative. In addition, write-back and write-through
methods for updating main memory are described.

Chapter 7.0, “Peripheral
Subsystem”

This chapter describes the connection of peripheral devices to the Intel® Quark
Core bus. Design techniques are discussed for interfacing a variety of devices,
including a LAN controller and an interrupt controller.

Chapter 8.0, “Local APIC”

This chapter lists Local APIC (advanced programmable interrupt controller)
registers.
The local APIC (LAPIC) receives interrupts from the processor’s interrupt pins,
from internal sources, and SoC and sends these to the CPU for handling the
interrupts. The LAPIC currently does not support sending/receiving inter
processor interrupt (IPI) messages to and from other processors on the system
bus. The local APIC consists of a set of APIC registers and associated hardware
that control the delivery of interrupts to the processor core.

Chapter 9.0, “Clocking
Considerations and
System Debugging”

This chapter describes clocking design guidelines and system debugging issues.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
10 Order Number: 329678-001US

About this Manual—Intel® Quark Core
1.2 Notational Conventions
The following notations are used throughout this manual.

The pound symbol (#) appended to a signal name indicates that
the signal is active low.

Variables Variables are shown in italics. Variables must be replaced with
correct values.

New Terms New terms are shown in italics. See the Glossary for a brief
definition of commonly used terms.

Instructions Instruction mnemonics are shown in uppercase. When you are
programming, instructions are not case-sensitive. You may use
either upper- or lowercase.

Numbers Hexadecimal numbers are represented by a string of
hexadecimal digits followed by the character H. A zero prefix is
added to numbers that begin with A through F. (For example, FF
is shown as 0FFH.) Decimal and binary numbers are
represented by their customary notations. (That is, 255 is a
decimal number and 1111 1111 is a binary number. In some
cases, the letter B is added for clarity.)

Units of Measure The following abbreviations are used to represent units of
measure:

Register Bits When the text refers to more that one bit, the range of bits is
represented by the highest and lowest numbered bits,
separated by a long dash (example: A15–A8). The first bit
shown (15 in the example) is the most-significant bit and the
second bit shown (8) is the least-significant bit.

A amps, amperes
Gbyte gigabytes
Kbyte kilobytes
KΩ kilo-ohms
mA milliamps, milliamperes
Mbyte megabytes
MHz megahertz
ms milliseconds
mW milliwatts
ns nanoseconds
pF picofarads
W watts
V volts
μA microamps,

microamperes
μF microfarads
μs microseconds
μW microwatts
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 11

Intel® Quark Core—About this Manual
Register Names Register names are shown in uppercase. If a register name
contains a lowercase italic character, it represents more than
one register. For example, PnCFG represents three registers:
P1CFG, P2CFG, and P3CFG.

Signal Names Signal names are shown in uppercase. When several signals
share a common name, an individual signal is represented by
the signal name followed by a number, while the group is
represented by the signal name followed by a variable (n). For
example, the lower chip-select signals are named CS0#, CS1#,
CS2#, and so on; they are collectively called CSn#. A pound
symbol (#) appended to a signal name identifies an active-low
signal. Port pins are represented by the port abbreviation, a
period, and the pin number (e.g., P1.0, P1.1).

1.3 Special Terminology
The following terms have special meanings in this manual.

Assert and Deassert The terms assert and deassert refer to the acts of making a
signal active and inactive, respectively. The active polarity
(high/low) is defined by the signal name. Active-low signals are
designated by the pound symbol (#) suffix; active-high signals
have no suffix. To assert RD# is to drive it low; to assert HOLD
is to drive it high; to deassert RD# is to drive it high; to deassert
HOLD is to drive it low.

DOS I/O Address Peripherals that are compatible with PC/AT system architecture
can be mapped into DOS (or PC/AT) addresses 0H–03FFH. In
this manual, the terms DOS address and PC/AT address are
synonymous.

Expanded I/O Address All peripheral registers reside at I/O addresses 0F000H–
0FFFFH. PC/AT-compatible integrated peripherals can also be
mapped into DOS (or PC/AT) address space (0H–03FFH).

PC/AT Address Integrated peripherals that are compatible with PC/AT system
architecture can be mapped into PC/AT (or DOS) addresses 0H–
03FFH. In this manual, the terms DOS address and PC/AT
address are synonymous.

Set and Clear The terms set and clear refer to the value of a bit or the act of
giving it a value. If a bit is set, its value is “1”; setting a bit gives
it a “1” value. If a bit is clear, its value is “0”; clearing a bit gives
it a “0” value.

1.4 Related Documents
The following Intel documents contain additional information on designing systems that
incorporate the Intel® Quark Core.

Document Name Number

Intel® Quark SoC X1000 Core Developer’s Manual 329679

Intel® 64 and IA-32 Architectures Software Developer’s Manual
Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C

325462
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
12 Order Number: 329678-001US

Introduction—Intel® Quark Core
2.0 Introduction

The Intel® Quark Core enables a range of low-cost, high-performance embedded
system designs capable of running applications written for IA-32 architecture.

The Intel® Quark Core integrates a 16-Kbyte unified cache and floating-point hardware
on-chip for improved performance.

The Intel® Quark Core can be configured to have a write-back on-chip cache for
improved entry-level performance.

The Intel® Quark Core incorporates energy efficient “SL Technology” for mobile and
fixed embedded computing. SL Technology enables system designs that exceed the
Environmental Protection Agency’s (EPA) Energy Star program guidelines without
compromising performance. It also increases system design flexibility and improves
battery life in all Intel® Quark Core-based hand-held applications. SL Technology allows
system designers to differentiate their power management schemes with a variety of
energy efficient, battery life enhancing features.

The Intel® Quark Core provides power management features that are transparent to
application and operating system software. Stop Clock, Auto HALT Power Down, and
Auto Idle Power Down allow software-transparent control over processor power
management.

Equally important is the capability of the processor to manage system power
consumption. Intel® Quark Core System Management Mode (SMM) incorporates a non-
maskable System Management Interrupt (SMI#), a corresponding Resume (RSM)
instruction and a new memory space for system management code. Although
transparent to any application or operating system, Intel's SMM ensures seamless
power control of the processor core, system logic, main memory, and one or more
peripheral devices.

2.1 Intel® Quark Core Features
The Intel® Quark Core consists of a 32-bit integer processing unit, an on-chip cache,
and a memory management unit. The Intel® Quark Core offers the following features:

• 32-bit RISC integer core — The Intel® Quark Core performs a complete set of
arithmetic and logical operations on 8-, 16-, and 32-bit data types using a full-
width ALU and eight general purpose registers.

• Single Cycle Execution — Many instructions execute in a single clock cycle.
• Instruction Pipelining — The fetching, decoding, address translation, and execution

of instructions are overlapped within the Intel® Quark Core.
• On-Chip Floating-Point Unit — The Intel® Quark Core supports the 32-, 64-, and

80-bit formats specified in IEEE standard 754. The unit is binary compatible with
the 8087, Intel287, and Intel387 coprocessors, and with the Intel OverDrive®
processor.

• On-Chip Cache with Cache Consistency Support — A 16-Kbyte internal cache is
used for both data and instructions. Cache hits provide zero wait state access times
for data within the cache. Bus activity is tracked to detect alterations in the
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 13

Intel® Quark Core—Introduction
memory represented by the internal cache. The internal cache can be invalidated or
flushed so that an external cache controller can maintain cache consistency.

• External Cache Control — Write-back and flush controls for an external cache are
provided so the processor can maintain cache consistency.
Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does

not support external cache control.
• On-Chip Memory Management Unit — Address management and memory space

protection mechanisms maintain the integrity of memory in a multi-tasking and
virtual memory environment. The memory management unit supports both
segmentation and paging.

• Burst Cycles — Burst transfers allow a new doubleword to be read from memory on
each bus clock cycle. This capability is especially useful for instruction prefetch and
for filling the internal cache.

• Write Buffers — The processor contains four write buffers to enhance the
performance of consecutive writes to memory. The processor can continue internal
operations after a write to these buffers, without waiting for the write to be
completed on the external bus.

• Bus Backoff — If another bus master needs control of the bus during a processor-
initiated bus cycle, the Intel® Quark Core floats its bus signals, then restarts the
cycle when the bus becomes available again.

• Instruction Restart — Programs can continue execution following an exception that
is generated by an unsuccessful attempt to access memory. This feature is
important for supporting demand-paged virtual memory applications.

• Dynamic Bus Sizing — External controllers can dynamically alter the effective width
of the data bus. Bus widths of 8, 16, or 32 bits can be used.
Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does

not support dynamic bus sizing. Bus width is fixed at 32 bits.

SL Technology provides the following features:
• Intel System Management Mode — A unique Intel architecture operating mode

provides a dedicated special purpose interrupt and address space that can be used
to implement intelligent power management and other enhanced functions in a
manner that is completely transparent to the operating system and applications
software.

• I/O Restart — An I/O instruction interrupted by a System Management Interrupt
(SMI#) can automatically be restarted following the execution of the RSM
instruction.

• Auto HALT Power Down — After the execution of a HALT instruction, the Intel®
Quark Core issues a normal Halt bus cycle and the clock input to the Intel® Quark
Core is automatically stopped, causing the processor to enter the Auto HALT Power
Down state.

Enhanced Bus Mode Features (for the Write-Back Enhanced Intel® Quark Core
processor only):

• Write Back Internal Cache — The Write-Back Enhanced Intel® Quark Core adds
write-back support to the unified cache. The on-chip cache is configurable to be
write-back or write-through on a line-by-line basis. The internal cache implements
a modified MESI protocol, which is most applicable to single processor systems.

• Enhanced Bus Mode — The definitions of some signals have been changed to
support the new Enhanced Bus Mode (Write-Back Mode).

• Write Bursting — Data written from the processor to memory can be burst to
provide zero wait state transfers.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
14 Order Number: 329678-001US

Introduction—Intel® Quark Core
2.2 Intel® Quark Core Product
Intel® Quark Cores are available in a full range of speeds (up to 533 MHz).

2.2.1 Operating Modes and Compatibility

The Intel® Quark Core supports several operating modes. The operating mode
determines which instructions and architectural features are accessible. The operating
mode is set in software as one of the following:

• Real Mode: When the processor is powered up or reset, it is initialized in Real Mode.
This mode allows access to the 32-bit register set of the Intel® Quark Core. Nearly
all Intel® Quark Core instructions are available, but the default operand size is 16
bits; in order to use the 32-bit registers and addressing modes, override instruction
prefixes must be used. The primary purpose of Real Mode is to set up the processor
for Protected Mode operation.

• Protected Mode (also called Protected Virtual Address Mode): The complete
capabilities of the Intel® Quark Core become available when programs are run in
Protected Mode. In addition to segmentation protection, paging can be used in
Protected Mode. The linear address space is four gigabytes and virtual memory
programs of up to 64 terabytes can be run. The addressing mechanism is more
sophisticated in Protected Mode than in Real Mode.

• Virtual 8086 Mode, a sub-mode of Protected Mode, allows programs to be run with
the segmentation and paging protection mechanisms of Protected Mode. This mode
offers more flexibility for running programs. Using this mode, the Intel® Quark
Core can execute operating systems and applications simultaneously.

The hardware offers additional modes, which are described in greater detail in the
Intel® Quark SoC X1000 Core Developer’s Manual.

2.2.2 Memory Management

The memory management unit supports both segmentation and paging. Segmentation
provides several independent, protected address spaces. This security feature limits
the damage a program error can cause. For example, a program's stack space should
be prevented from growing into its code space. The segmentation unit maps the
separate address spaces seen by programmers into one unsegmented, linear address
space.

Paging provides access to data structures larger than the available memory space by
keeping them partly in memory. Paging breaks the linear address space into units of
4 Kbytes called pages. When a program makes its first reference to a page, the
program can be stopped, the new page copied from disk, and the program restarted.
Programs tend to use only a few pages at a time, so a processor with paging can
simulate a large address space in RAM using a small amount of RAM plus storage on a
disk.

2.2.3 On-chip Cache

A software-transparent 16-Kbyte cache on the Intel® Quark Core stores recently
accessed information on the processor. Both instructions and data can be cached. If the
processor needs to read data that is available in the cache, the cache responds,
thereby avoiding a time-consuming external memory cycle. This allows the processor
to complete transfers faster and reduces traffic on the processor bus.

The Intel® Quark Core can be configured to implement a write-back protocol. With a
write-through protocol, all writes to the cache are immediately written to the external
memory that the cache represents. With a write-back protocol, writes to the cache are
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 15

Intel® Quark Core—Introduction
stored for future memory updating. To reduce the impact of writes on performance, the
processor can buffer its write cycles; an operation that writes data to memory can
finish before the write cycle is actually performed on the processor bus.

The processor performs a cache line fill to place new information into the on-chip
cache. This operation reads four doublewords into a cache line, the smallest unit of
storage that can be allocated in the cache. Most read cycles on the processor bus result
from cache misses, which cause cache line fills.

The Intel® Quark Core provides mechanisms to maintain cache consistency.

2.2.4 Floating-Point Unit

The internal floating-point unit performs floating-point operations on the 32-, 64- and
80-bit arithmetic formats as specified in IEEE Standard 754. Like the integer processing
unit, the floating-point unit architecture is binary-compatible with the 8087 and 80287
coprocessors.

Floating-point instructions execute fastest when they are entirely internal to the
processor. This occurs when all operands are in the internal registers or cache. When
data needs to be read from or written to external locations, burst transfers minimize
the time required and a bus locking mechanism ensures that the bus is not relinquished
to other bus masters during the transfer. Bus signals are provided to monitor errors in
floating-point operations and to control the processor's response to such errors.

2.3 System Components
The remaining chapters of this manual detail the Intel® Quark Core’s architecture,
hardware functions, and interfacing. For more information on the architecture and
software interface, see Section 1.4, “Related Documents” on page 12.

2.4 System Architecture
Figure 1 shows how the Intel® Quark Core is implemented in the Intel® Quark SoC
X1000.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
16 Order Number: 329678-001US

Introduction—Intel® Quark Core
2.5 Systems Applications
Most Intel® Quark Core systems can be grouped as one of these types:

• Embedded Personal Computer
• Embedded Controller

Each type of system has distinct design goals and constraints, as described in the
following sections. Software running on the processor, even in stand-alone embedded
applications, should use a standard operating system such as Linux*, to facilitate
debugging, documentation, and transportability.

2.5.1 Embedded Personal Computers

In single-processor embedded systems, the processor interacts with I/O devices and
DRAM memory. Conventional personal computer architecture puts most peripherals on
separate plug-in boards. Expansion is typically limited to memory boards and I/O
boards. A standard I/O architecture such as MCA or EISA is used. System cost and size
are very important. Figure 2 shows an example of an embedded personal computer or
an embedded controller application.

Figure 1. Intel® Quark SoC X1000 Core used in Intel® Quark SoC X1000
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 17

Intel® Quark Core—Introduction
2.5.2 Embedded Controllers

Most embedded controllers perform real-time tasks. Embedded controllers are usually
implemented as stand-alone systems, with less expansion capability than other
applications because they are tailored specifically to a single environment.

If code must be stored in EPROM, ROM, or Flash for non-volatility, but performance is
also a critical issue, then the code should be copied into RAM provided specifically for
this purpose. Frequently used routines and variables, such as interrupt handlers and
interrupt stacks, can be locked in the processor's internal cache so they are always
available quickly.

Embedded controllers usually require less memory than other applications, and control
programs are usually tightly written machine-level routines that need optimal
performance in a limited variety of tasks. The processor typically interacts directly with
I/O devices and DRAM memory. Other peripherals connect to the system bus.

Figure 2. Embedded Personal Computer and Embedded Controller Example

Processor

Bus

Processor Bus

System Bus

Optional Local

MemoryLevel-2 Cache

Local
Peripheral
Controller

Controller

Other
Peripheral

“Slow”
Memory
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
18 Order Number: 329678-001US

Internal Architecture—Intel® Quark Core
3.0 Internal Architecture

The Intel® Quark Core has a 32-bit architecture with on-chip memory management
and cache and add clock multiplier and floating-point units. The Intel® Quark Core also
supports dynamic bus sizing for the external data bus; that is, the bus size can be
specified as 8-, 16-, or 32-bits wide.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
dynamic bus sizing. Bus width is fixed at 32 bits.

Table 1 lists the functional units.

Table 1. Intel® Quark Core Functional Units

Functional Unit Intel® Quark Core

Bus Interface •

Cache (L1) •

Instruction Prefetch •

Instruction Decode •

Control •

Integer and Datapath •

Segmentation •

Paging •

Floating-Point •

Clock Control
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 19

Intel® Quark Core—Internal Architecture
Figure 3 is a block diagram of the Intel® Quark Core. Note that the cache unit is
16 Kbytes for the Intel® Quark Core.

Signals from the external 32-bit processor bus reach the internal units through the bus
interface unit. On the internal side, the bus interface unit and cache unit pass
addresses bi-directionally through a 32-bit bus. Data is passed from the cache to the
bus interface unit on a 32-bit data bus. The closely coupled cache and instruction
prefetch units simultaneously receive instruction prefetches from the bus interface unit
over a shared 32-bit data bus, which the cache also uses to receive operands and other
types of data. Instructions in the cache are accessible to the instruction prefetch unit,
which contains a 32-byte queue of instructions waiting to be executed.

The on-chip cache is 16 Kbytes for the Intel® Quark Core. It is 4-way set associative
and follows a write-through policy. The Write-Back Enhanced Intel® Quark Core can be
set to use an on-chip write-back cache policy. The on-chip cache includes features to
provide flexibility in external memory system design. Individual pages can be
designated as cacheable or non-cacheable by software or hardware. The cache can also
be enabled and disabled by software or hardware.

Figure 3. Intel® Quark Core Block Diagram
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
20 Order Number: 329678-001US

Internal Architecture—Intel® Quark Core
Internal cache memory allows frequently used data and code to be stored on-chip,
reducing accesses to the external bus. A burst bus feature enables fast cache fills.

When internal requests for data or instructions can be satisfied from the cache, time-
consuming cycles on the external processor bus are avoided. The bus interface unit is
only involved when an operation needs access to the processor bus. Many internal
operations are therefore transparent to the external system.

The instruction decode unit translates instructions into low-level control signals and
microcode entry points. The control unit executes microcode and controls the integer,
floating-point, and segmentation units. Computation results are placed in internal
registers within the integer or floating-point units, or in the cache. Internal storage
locations (datapaths) are kept in the integer unit.

The cache shares two 32-bit data buses with the segmentation, integer, and floating-
point units. These two buses can be used together as a 64-bit inter-unit transfer bus.
When 64-bit segment descriptors are passed from the cache to the segmentation unit,
32 bits are passed directly over one data bus and the other 32 bits are passed through
the integer unit, so that all 64 bits reach the segmentation unit simultaneously.

The memory management unit (MMU) consists of a segmentation unit and a paging
unit which perform address generation. The segmentation unit translates logical
addresses and passes them to the paging and cache units on a 32-bit linear address
bus. Segmentation allows management of the logical address space by providing easy
relocation of data and code and efficient sharing of global resources.

The paging mechanism operates beneath segmentation and is transparent to the
segmentation process. The paging unit translates linear addresses into physical
addresses, which are passed to the cache on a 20-bit bus. Paging is optional and can be
disabled by system software. To implement a virtual memory system, the Intel® Quark
Core supports full restartability for all page and segment faults.

Memory is organized into one or more variable length segments, each up to four
Gbytes (232 bytes). A segment can have attributes associated with it that include its
location, size, type (i.e., stack, code, or data), and protection characteristics. Each task
on an Intel® Quark Core can have a maximum of 16,381 segments and each are up to
four Gbytes in size. Thus, each task has a maximum of 64 terabytes (trillion bytes) of
virtual memory.

The segmentation unit provides four levels of protection for isolating and protecting
applications and the operating system from each other. The hardware-enforced
protection allows the design of systems with a high degree of software integrity.

The Intel® Quark Core has four modes of operation: Real Address Mode (Real Mode),
Protected Mode, Virtual Mode (within Protected Mode), and System Management Mode
(SMM). Real Mode is required primarily to set up the Intel® Quark Core for Protected
Mode operation.

Protected Mode provides access to the sophisticated memory management paging and
privilege capabilities of the processor. Within Protected Mode, software can perform a
task switch to enter into tasks designated as Virtual 8086 Mode tasks.

System Management Mode (SMM) provides system designers with a means of adding
new software-controlled features to their computer products that always operate
transparently to the operating system (OS) and software applications. SMM is intended
for use only by system firmware, not by applications software or general purpose
systems software.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 21

Intel® Quark Core—Internal Architecture
3.1 Instruction Pipelining
Not every instruction involves all internal units. When an instruction needs the
participation of several units, each unit operates in parallel with others on instructions
at different stages of execution. Although each instruction is processed sequentially,
several instructions are at varying stages of execution in the processor at any given
time. This is called instruction pipelining. Instruction prefetch, instruction decode,
microcode execution, integer operations, floating-point operations, segmentation,
paging, cache management, and bus interface operations are all performed
simultaneously. Figure 4 shows some of this parallelism for a single instruction: the
instruction fetch, two-stage decode, execution, and register write-back of the execution
result. Each stage in this pipeline can occur in one clock cycle.

Figure 4. Internal Pipelining

The internal pipelining on the Intel® Quark Core offers an important performance
advantage over many single-clock RISC processors: in the Intel® Quark Core, data can
be loaded from the cache with one instruction and used by the next instruction in the
next clock. This performance advantage results from the stage-1 decode step, which
initiates memory accesses before the execution cycle. Because most compilers and
application programs follow load instructions with instructions that operate on the
loaded data, this method optimizes the execution of existing binary code.

The method has a performance trade-off: an instruction sequence that changes
register contents and then uses that register in the next instruction to access memory
takes three clocks rather than two. This trade-off is only a minor disadvantage,
however, since most instructions that access memory use the stable contents of the
stack pointer or frame pointer, and the additional clock is not used very often.
Compilers often place an unrelated instruction between one that changes an addressing
register and one that uses the register. Such code is compatible with the Intel® Quark
Core provides special stack increment/decrement hardware and an extra register port
to execute back-to-back stack push/pop instructions in a single clock.

3.2 Bus Interface Unit
The bus interface unit prioritizes and coordinates data transfers, instruction prefetches,
and control functions between the processor's internal units and the outside system.
Internally, the bus interface unit communicates with the cache and the instruction
prefetch units through three 32-bit buses, as shown in Figure 3. Externally, the bus

 A5140-01

CLK

Instruction
Fetch

Stage-1
Decode

Stage-2
Decode

Execution

Register
Write-back
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
22 Order Number: 329678-001US

Internal Architecture—Intel® Quark Core
interface unit provides the processor bus signals, described in Chapter 3. Except for
cycle definition signals, all external bus cycles, memory reads, instruction prefetches,
cache line fills, etc., look like conventional microprocessor cycles to external hardware,
with all cycles having the same bus timing.

The bus interface unit contains the following architectural features:
• Address Transceivers and Drivers — The A31–A2 address signals are driven on the

processor bus, together with their corresponding byte-enable signals, BE3#–BE0#.
The high-order 28 address signals are bidirectional, allowing external logic to drive
cache invalidation addresses into the processor.

• Data Bus Transceivers — The D31–D0 data signals are driven onto and received
from the processor bus.

• Bus Size Control — Three sizes of external data bus can be used: 32, 16, and 8 bits
wide. Two inputs from external logic specify the width to be used. Bus size can be
changed on a cycle-by-cycle basis.

• Write Buffering — Up to four write requests can be buffered, allowing many internal
operations to continue without waiting for write cycles to be completed on the
processor bus.

• Bus Cycles and Bus Control — A large selection of bus cycles and control functions
are supported, including burst transfers, non-burst transfers (single- and multiple-
cycle), bus arbitration (bus request, bus hold, bus hold acknowledge, bus locking,
bus pseudo-locking, and bus backoff), floating-point error signalling, interrupts,
and reset. Two software-controlled outputs enable page caching on a cycle-by-cycle
basis. One input and one output are provided for controlling burst read transfers.

• Parity Generation and Control — Even parity is generated on writes to the
processor and checked on reads. An error signal indicates a read parity error.

• Cache Control — Cache control and consistency operations are supported. Three
inputs allow the external system to control the consistency of data stored in the
internal cache unit. Two special bus cycles allow the processor to control the
consistency of external cache.
Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does

not support external cache.

3.2.1 Data Transfers

To support the cache, the bus interface unit reads 16-byte cacheable transfers of
operands, instructions, and other data on the processor bus and passes them to the
cache unit. When cache contents are updated from an internal source, such as a
register, the bus interface unit writes the updated cache information to the external
system. Non-cacheable read transfers are passed through the cache to the integer or
floating-point units.

During instruction prefetch, the bus interface unit reads instructions on the processor
bus and passes them to both the instruction prefetch unit and the cache. The
instruction prefetch unit may then obtain its inputs directly from the cache.

3.2.2 Write Buffers

The bus interface unit has temporary storage for buffering up to four 32-bit write
transfers to memory. Addresses, data, or control information can be buffered. Single I/
O-mapped writes are not buffered, although multiple I/O writes may be buffered. The
buffers can accept memory writes as fast as one per clock. Once a write request is
buffered, the internal unit that generated the request is free to continue processing. If
no higher-priority request is pending and the bus is free, the transfer is propagated as
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 23

Intel® Quark Core—Internal Architecture
an immediate write cycle to the processor bus. When all four write buffers are full, any
subsequent write transfer stalls inside the processor until a write buffer becomes
available.

The bus interface unit can re-order pending reads in front of buffered writes. This is
done because pending reads can prevent an internal unit from continuing, whereas
buffered writes need not have a detrimental effect on processing speed.

Writes are propagated to the processor bus in the first-in-first-out order in which they
are received from the internal unit. However, a subsequently generated read request
(data or instruction) may be re-ordered in front of buffered writes. As a protection
against reading invalid data, this re-ordering of reads in front of buffered writes occurs
only if all buffered writes are cache hits. Because an external read is generated only for
a cache miss, and is re-ordered in front of buffered writes only if all such buffered
writes are cache hits, any read generated on the external bus with this protection never
reads a location that is about to be written by a buffered write. This re-ordering can
only happen once for a given set of buffered writes, because the data returned by the
read cycle could otherwise replace data about to be written from the write buffers.

To ensure that no more than one such re-ordering is done for a given set of buffered
writes, all buffered writes are re-flagged as cache misses when a read request is re-
ordered ahead of them. Buffered writes thus marked are propagated to the processor
bus before the next read request is acted upon. Invalidation of data in the internal
cache also causes all pending writes to be flagged as cache misses. Disabling the cache
unit disables the write buffers, which eliminates any possibility of re-ordering bus
cycles.

3.2.3 Locked Cycles

The processor can generate signals to lock a contiguous series of bus cycles. These
cycles can then be performed without interference from other bus masters, if external
logic observes these lock signals. One example of a locked operation is a semaphor
read-modify-write update, where a resource control register is updated. No other
operations should be allowed on the bus until the entire locked semaphor update is
completed.

When a locked read cycle is generated, the internal cache is not read. All pending
writes in the buffer are completed first. Only then is the read part of the locked
operation performed, the data modified, the result placed in a write buffer, and a write
cycle performed on the processor bus. This sequence of operations ensures that all
writes are performed in the order in which they were generated.

3.2.4 I/O Transfers

Transfers to and from I/O locations have some restrictions to ensure data integrity:
• Caching — I/O reads are never cached.
• Read Re-ordering — I/O reads are never re-ordered ahead of buffered writes to

memory. This ensures that the processor has completed updating all memory
locations before reading status from a device.

• Writes — Single I/O writes are never buffered. When processing an OUT
instruction, internal execution stops until all buffered writes and the I/O write are
completed on the processor bus. This allows time for external logic to drive a cache
invalidate cycle or mask interrupts before the processor executes the next
instruction. The processor completes updating all memory locations before writing
to the I/O location. Repeated OUT instructions may be buffered.

The Intel® Quark Core does not buffer single I/O writes; a read is not done until the I/
O write is completed.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
24 Order Number: 329678-001US

Internal Architecture—Intel® Quark Core
3.3 Cache Unit
The cache unit stores copies of recently read instructions, operands, and other data.
When the processor requests information already in the cache, called a cache hit, no
processor-bus cycle is required. When the processor requests information not in the
cache, called a cache miss, the information is read into the cache in one or more 16-
byte cacheable data transfers, called cache line fills. An internal write request to an
area currently in the cache causes two distinct actions if the cache is using a write-
through policy: the cache is updated, and the write is also passed through the cache to
memory. If the cache is using a write-back policy, then the internal write request only
causes the cache to be updated and the write is stored for future main memory
updating.

The cache transfers data to other units on two 32-bit buses, as shown in Figure 3. The
cache receives linear addresses on a 32-bit bus and the corresponding physical
addresses on a 20-bit bus. The cache and instruction prefetch units are closely coupled.
16-Byte blocks of instructions in the cache can be passed quickly to the instruction
prefetch unit. Both units read information in 16-byte blocks.

The cache can be accessed as often as once each clock. The cache acts on physical
addresses, which minimizes the number of times the cache must be flushed. When
both the cache and the cache write-through functions are disabled, the cache may be
used as a high-speed RAM.

3.3.1 Cache Structure

The cache has a four-way set associative organization. There are four possible cache
locations to store data from a given area of memory. As shown in Figure 5, the
16-Kbyte data block is divided into four data ways, each containing 256 16-byte sets,
or cache lines. Each cache line holds data from 16 successive byte addresses in
memory, beginning with an address divisible by 16.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 25

Intel® Quark Core—Internal Architecture
Cache addressing is performed by dividing the high-order 28 bits of the physical
address into three parts, as shown in Figure 5. The 8 bits of the index field specify the
set number, one of 256, within the cache. The high-order 20 bits on the Intel® Quark
Core processor are the tag field; these bits are compared with tags for each cache line
in the indexed set, and they indicate whether a 16-byte cache line is stored for that
physical address. The low-order 4 bits of the physical address select the byte within the
cache line. Finally, a 4-bit valid field, one for each way within a given set, indicates
whether the cached data at that physical address is currently valid.

3.3.2 Cache Updating

When a cache miss occurs on a read, the 16-byte block containing the requested
information is written into the cache. Data in the neighborhood of the required data is
also read into the cache, but the exact position of data within the cache line depends on
its location in memory with respect to addresses divisible by 16.

Figure 5. Intel® Quark SoC X1000 Core Cache Organization
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
26 Order Number: 329678-001US

Internal Architecture—Intel® Quark Core
Any area of memory can be cacheable, but any page of memory can be declared not
cacheable by setting a bit in its page table entry. The I/O region of memory is non-
cacheable. When a read from memory is initiated on the bus, external logic can indicate
whether the data may be placed in cache, as discussed in Chapter 4.0, “Bus
Operation”. If the read is cacheable, the processor attempts to read an entire 16-byte
cache line.

The cache unit follows a write-through cache policy. The unit on the Intel® Quark Core
can be configured to be a write-through or write-back cache. Cache line fills are
performed only for read misses, never for write misses. When the processor is enabled
for normal caching and write- through operation, every internal write to the cache
(cache hit) not only updates the cache but is also passed along to the bus interface unit
and propagated through the processor bus to memory. The only conditions under which
data in the cache differs from the corresponding data in memory occur when a
processor write cycle to memory is delayed by buffering in the bus interface unit, or
when an external bus master alters the memory area mapped to the internal cache.
When the Intel® Quark Core is enabled for normal caching and write-back operation,
an internal write only causes the cache to be updated. The modified data is stored for
the future update of main memory and is not immediately written to memory.

3.3.3 Cache Replacement

Replacement in the cache is handled by a pseudo-LRU (least recently used)
mechanism. This mechanism maintains three bits for each set in the valid/LRU block,
as shown in Figure 5. The LRU bits are updated on each cache hit or cache line fill. Each
cache line (four per set) also has an associated valid bit that indicates whether the line
contains valid data. When the cache is flushed or the processor is reset, all of the valid
bits are cleared. When a cache line is to be filled, a location for the fill is selected by
simply finding any cache line that is invalid. If no cache line is invalid, the LRU bits
select the line to be overwritten. Valid bits are not set for lines that are only partially
valid.

Cache lines can be invalidated individually by a cache line invalidation operation on the
processor bus. When such an operation is initiated, the cache unit compares the
address to be invalidated with tags for the lines currently in cache and clears the valid
bit if a match is found. A cache flush operation is also available. This invalidates the
entire contents of the internal cache unit.

3.3.4 Cache Configuration

Configuration of the cache unit is controlled by two bits in the processor’s machine
status register (CR0). One of these bits enables caching (cache line fills). The other bit
enables memory write-through. Table 2 shows the four configuration options.
Chapter 4.0, “Bus Operation” gives details.

Table 2. Cache Configuration Options

Cache Enabled Write-through
Enabled Operating Mode

no no
Cache line fills, cache write-throughs, and cache invalidations are
disabled. This configuration allows the internal cache to be used as
high-speed static RAM.

no yes

Cache line fills are disabled, and cache write-throughs and cache
invalidations are enabled. This configuration allows software to
disable the cache for a short time, then re-enable it without flushing
the original contents.

yes no INVALID

yes yes Cache line fills, cache write-throughs, and cache invalidations are
enabled. This is the normal operating configuration.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 27

Intel® Quark Core—Internal Architecture
When caching is enabled, memory reads and instruction prefetches are cacheable.
These transfers are cached if external logic asserts the cache enable input in that bus
cycle, and if the current page table entry allows caching. During cycles in which caching
is disabled, cache lines are not filled on cache misses. However, the cache remains
active even though it is disabled for further filling. Data already in the cache is used if it
is still valid. When all data in the cache is flagged invalid, as happens in a cache flush,
all internal read requests are propagated as bus cycles to the external system.

When cache write-through is enabled, all writes, including those that are cache hits,
are written through to memory. Invalidation operations remove a line from cache if the
invalidate address maps to a cache line. When cache write-throughs are disabled, an
internal write request that is a cache hit does not cause a write-through to memory,
and cache invalidation operations are disabled. With both caching and cache write-
through disabled, the cache can be used as a high-speed static RAM. In this
configuration, the only write cycles that are propagated to the processor bus are cache
misses, and cache invalidation operations are ignored.

The Intel® Quark Core can also be configured to use a write-back cache policy. For
detailed information on the Intel® Quark Core cache feature, refer to Chapter 6.0,
“Cache Subsystem”.

3.4 Instruction Prefetch Unit
When the bus interface unit is not performing bus cycles to execute an instruction, the
instruction prefetch unit uses the bus interface unit to prefetch instructions. By reading
instructions before they are needed, the processor rarely needs to wait for an
instruction prefetch cycle on the processor bus.

Instruction prefetch cycles read 16-byte blocks of instructions, starting at addresses
numerically greater than the last-fetched instruction. The prefetch unit, which has a
direct connection (not shown in Figure 3) to the paging unit, generates the starting
address. The 16-byte prefetched blocks are read into both the prefetch and cache units
simultaneously. The prefetch queue in the prefetch unit stores 32 bytes of instructions.
As each instruction is fetched from the queue, the code part is sent to the instruction
decode unit and (depending on the instruction) the displacement part is sent to the
segmentation unit, where it is used for address calculation. If loops are encountered in
the program being executed, the prefetch unit gets copies of previously executed
instructions from the cache.

The prefetch unit has the lowest priority for processor bus access. Assuming zero wait-
state memory access, prefetch activity never delays execution. However, if there is no
pending data transfer, prefetching may use bus cycles that would otherwise be idle. The
prefetch unit is flushed whenever the next instruction needed is not in numerical
sequence with the previous instruction; for example, during jumps, task switches,
exceptions, and interrupts.

The prefetch unit never accesses beyond the end of a code segment and it never
accesses a page that is not present. However, prefetching may cause problems for
some hardware mechanisms. For example, prefetching may cause an interrupt when
program execution nears the end of memory. To keep prefetching from reading past a
given address, instructions should come no closer to that address than one byte plus
one aligned 16-byte block.

3.5 Instruction Decode Unit
The instruction decode unit receives instructions from the instruction prefetch unit and
translates them in a two-stage process into low-level control signals and microcode
entry points, as shown in Figure 3. Most instructions can be decoded at a rate of one
per clock. Stage 1 of the decode, shown in Figure 4, initiates a memory access. This
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
28 Order Number: 329678-001US

Internal Architecture—Intel® Quark Core
allows execution of a two-instruction sequence that loads and operates on data in just
two clocks, as described in Section 3.2, “Bus Interface Unit” on page 22.

The decode unit simultaneously processes instruction prefix bytes, opcodes, modR/M
bytes, and displacements. The outputs include hardwired microinstructions to the
segmentation, integer, and floating-point units. The instruction decode unit is flushed
whenever the instruction prefetch unit is flushed.

3.6 Control Unit
The control unit interprets the instruction word and microcode entry points received
from the instruction decode unit. The control unit has outputs with which it controls the
integer and floating-point processing units. It also controls segmentation because
segment selection may be specified by instructions.

The control unit contains the processor's microcode. Many instructions have only one
line of microcode, so they can execute in an average of one clock cycle. Figure 4 shows
how execution fits into the internal pipelining mechanism.

3.7 Integer (Datapath) Unit
The integer and datapath unit identifies where data is stored and performs all of the
arithmetic and logical operations available in the processor's instruction set, plus a few
new instructions. It has eight 32-bit general-purpose registers, several specialized
registers, an ALU, and a barrel shifter. Single load, store, addition, subtraction, logic,
and shift instructions execute in one clock.

Two 32-bit bidirectional buses connect the integer and floating-point units. These buses
are used together for transferring 64-bit operands. The same buses also connect the
processing units with the cache unit. The contents of the general purpose registers are
sent to the segmentation unit on a separate 32-bit bus for generation of effective
addresses.

3.8 Floating-Point Unit
The floating-point unit executes the same instruction set as the 387 math coprocessor.
The unit contains a push-down register stack and dedicated hardware for interpreting
the 32-, 64-, and 80-bit formats as specified in IEEE Standard 754. An output signal
passed through to the processor bus indicates floating-point errors to the external
system, which in turn can assert an input to the processor indicating that the processor
should ignore these errors and continue normal operations.

3.8.1 Intel® Quark Core Floating-Point Unit

The Intel® Quark Core incorporates the basic 32-bit architecture, with on-chip memory
management and cache memory units. They also have an on-chip floating-point unit
(FPU) that operates in parallel with the arithmetic and logic unit. The FPU provides
arithmetic instructions for a variety of numeric data types and executes numerous
built-in transcendental functions (e.g., tangent, sine, cosine, and log functions). The
floating-point unit fully conforms to the ANSI/IEEE standard 754-1985 for floating-
point arithmetic.

3.9 Segmentation Unit
A segment is a protected, independent address space. Segmentation is used to enforce
isolation among application programs, to invoke recovery procedures, and to isolate
the effects of programming errors.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 29

Intel® Quark Core—Internal Architecture
The segmentation unit translates a segmented address issued by a program, called a
logical address, into an unsegmented address, called a linear address. The locations of
segments in the linear address space are stored in data structures called segment
descriptors. The segmentation unit performs its address calculations using segment
descriptors and displacements (offsets) extracted from instructions. Linear addresses
are sent to the paging and cache units. When a segment is accessed for the first time,
its segment descriptor is copied into a processor register. A program can have as many
as 16,383 segments. Up to six segment descriptors can be held in processor registers
at a time. Figure 6 shows the relationships between logical, linear, and physical
addresses.

Figure 6. Segmentation and Paging Address Formats

3.10 Paging Unit
The paging unit allows access to data structures larger than the available memory
space by keeping them partly in memory and partly on disk. Paging divides the linear
address space into blocks called pages. Paging uses data structures in memory called
page tables for mapping a linear address to a physical address. The cache uses physical
addresses and puts them on the processor bus. The paging unit also identifies
problems, such as accesses to a page that is not resident in memory, and raises
exceptions called page faults. When a page fault occurs, the operating system has a
chance to bring the required page into memory from disk. If necessary, it can free
space in memory by sending another page out to disk. If paging is not enabled, the
physical address is identical to the linear address.

Intel® Quark Core supports the following: 4-Kbyte, 2-MB, and 4-MB paging, Supervisor
Mode Execution Protection (SMEP), and Execute-Disable Page Protection (PAE.XD).

The paging unit includes a translation lookaside buffer (TLB) that stores the 32 most
recently used page table entries. Figure 7 shows the TLB data structures. The paging
unit looks up linear addresses in the TLB. If the paging unit does not find a linear
address in the TLB, the unit generates requests to fill the TLB with the correct physical
address contained in a page table in memory. Only when the correct page table entry is
in the TLB does the bus cycle take place. When the paging unit maps a page in the

 A5142-01

Segment
Selector

Segment
Offset

047 32 31

Logical Address

Page OffsetPage Directory
Offset

Page Table
Offset

02122

11

111231

Linear Address

Page OffsetPage Base Address

Translated by the segmentation unit

01231

Physical Address

Translated by the paging unit
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
30 Order Number: 329678-001US

Internal Architecture—Intel® Quark Core
linear address space to a page in physical memory, it maps only the upper 20 bits of
the linear address. The lowest 12 bits of the physical address come unchanged from
the linear address.

Figure 7. Translation Lookaside Buffer

Most programs access only a small number of pages during any short span of time.
When this is true, the pages stay in memory and the address translation information
stays in the TLB. In typical systems, the TLB satisfies 99% of the requests to access the
page tables. The TLB uses a pseudo-LRU algorithm, similar to the cache, as a content-
replacement strategy.

The TLB is flushed whenever the page directory base register (CR3) is loaded. Page
faults can occur during either a page directory read or a page table read. The cache can
be used to supply data for the TLB, although this may not be desirable when external
logic monitors TLB updates.

Unlike segmentation, paging is invisible to application programs and does not provide
the same kind of protection against programs altering data outside a restricted part of
memory. Paging is visible to the operating system, which uses it to satisfy application
program memory requirements. For more information on paging and segmentation,
see the Intel® Quark SoC X1000 Core Developer’s Manual.

Way 3Way 2Way 1

Data
Block

Way 0Way 3Way 2Way 1

Valid Attribute
and Tag Block

 A5174-01

LRU
Block

Way 0

Set 7

Set 6

Set 5

Set 4

Set 3

Set 2

Set 1

Set 0

Physical Address

20 Bits

Data

3 Bits

TagAttribute

17 Bits3 Bits1 Bit

Valid

31 1231 121514

Linear Address

Set Select
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 31

Intel® Quark Core—Bus Operation
4.0 Bus Operation

The Intel® Quark Core operates in Standard Bus (write-through) mode. However, when
the internal cache is configured in write-back mode, the processor bus operates in
Enhanced Bus mode, which is described in Section 4.4.

4.1 Data Transfer Mechanism
All data transfers occur as a result of one or more bus cycles. Logical data operands of
byte, word and doubleword lengths may be transferred without restrictions on physical
address alignment. Data may be accessed at any byte boundary but two or three cycles
may be required for unaligned data transfers. (See Section 4.1.2, “Dynamic Data Bus
Sizing” on page 34 and Section 4.1.5, “Operand Alignment” on page 40.)

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
dynamic data bus sizing. Bus width is fixed at 32 bits.

The Intel® Quark Core address signals are split into two components. High-order
address bits are provided by the address lines, A31–A2. The byte enables, BE3#–
BE0#, form the low-order address and provide linear selects for the four bytes of the
32-bit address bus.

The byte enable outputs are asserted when their associated data bus bytes are
involved with the present bus cycle, as listed in Table 3. Byte enable patterns that have
a deasserted byte enable separating two or three asserted byte enables never occur
(see Table 7, “Generating A1, BHE# and BLE# for Addressing 16-Bit Devices” on
page 37). All other byte enable patterns are possible.

Address bits A0 and A1 of the physical operand's base address can be created when
necessary. Use of the byte enables to create A0 and A1 is shown in Table 4. The byte
enables can also be decoded to generate BLE# (byte low enable) and BHE# (byte high
enable). These signals are needed to address 16-bit memory systems. (See Section
4.1.3, “Interfacing with 8-, 16-, and 32-Bit Memories” on page 35.)

4.1.1 Memory and I/O Spaces

Bus cycles may access physical memory space or I/O space. Peripheral devices in the
system can be either memory-mapped, I/O-mapped, or both. Physical memory
addresses range from 00000000H to FFFFFFFFH (4 gigabytes). I/O addresses range
from 00000000H to 0000FFFFH (64 Kbytes) for programmed I/O. (See Figure 8.)

Table 3. Byte Enables and Associated Data and Operand Bytes

Byte Enable Signal Associated Data Bus Signals

BE0# D7–D0 (byte 0–least significant)

BE1# D15–D8 (byte 1)

BE2# D23–D16 (byte 2)

BE3# D31–D24 (byte 3–most significant)
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
32 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Figure 8. Physical Memory and I/O Spaces

4.1.1.1 Memory and I/O Space Organization

The Intel® Quark Core datapath to memory and input/output (I/O) spaces can be 32,
16, or 8 bits wide. The byte enable signals, BE3#–BE0#, allow byte granularity when
addressing any memory or I/O structure, whether 8, 16, or 32 bits wide.

The Intel® Quark Core includes bus control pins, BS16# and BS8#, which allow direct
connection to 16- and 8-bit memories and I/O devices. Cycles of 32-, 16- and 8-bits
may occur in any sequence, since the BS8# and BS16# signals are sampled during
each bus cycle.

Memory and I/O spaces that are 32-bit wide are organized as arrays of four bytes each.
Each four bytes consists of four individually addressable bytes at consecutive byte
addresses (see Figure 9). The lowest addressed byte is associated with data signals
D7–D0; the highest-addressed byte with D31–D24. Each 4 bytes begin at an address
that is divisible by four.

Table 4. Generating A31–A0 from BE3#–BE0# and A31–A2

Intel® Quark Core Address Signals

A31 through A2
BE3# BE2# BE1# BE0#

Physical Address

A31... A2 A1 A0

A31... A2 0 0 X X X 0

A31... A2 0 1 X X 0 1

A31... A2 1 0 X 0 1 1

A31... A2 1 1 0 1 1 1

Physical

Memory

4 Gbyte

Not
Accessible

64 Kbyte

{Accessible
Programmed
I/O Space

0000FFFFH

00000000H00000000H

Physical Memory
Space

I/O Space

FFFFFFFFH

Not
Accessible
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 33

Intel® Quark Core—Bus Operation
Figure 9. Physical Memory and I/O Space Organization

16-bit memories are organized as arrays of two bytes each. Each two bytes begins at
addresses divisible by two. The byte enables BE3#–BE0#, must be decoded to A1,
BLE# and BHE# to address 16-bit memories.

To address 8-bit memories, the two low order address bits A0 and A1 must be decoded
from BE3#–BE0#. The same logic can be used for 8- and 16-bit memories, because the
decoding logic for BLE# and A0 are the same. (See Section 4.1.3, “Interfacing with 8-,
16-, and 32-Bit Memories” on page 35)

4.1.2 Dynamic Data Bus Sizing

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
dynamic data bus sizing. Bus width is fixed at 32 bits.

Dynamic data bus sizing is a feature that allows processor connection to 32-, 16- or 8-
bit buses for memory or I/O. The Intel® Quark Core can connect to all three bus sizes.
Transfers to or from 32-, 16- or 8-bit devices are supported by dynamically determining
the bus width during each bus cycle. Address decoding circuitry may assert BS16# for
16-bit devices or BS8# for 8-bit devices during each bus cycle. BS8# and BS16# must
be deasserted when addressing 32-bit devices. An 8-bit bus width is selected if both
BS16# and BS8# are asserted.

BS16# and BS8# force the Intel® Quark Core to run additional bus cycles to complete
requests larger than 16 or 8 bits. A 32-bit transfer is converted into two 16-bit
transfers (or 3 transfers if the data is misaligned) when BS16# is asserted. Asserting
BS8# converts a 32-bit transfer into four 8-bit transfers.

Extra cycles forced by BS16# or BS8# should be viewed as independent bus cycles.
BS16# or BS8# must be asserted during each of the extra cycles unless the addressed
device has the ability to change the number of bytes it can return between cycles.

The Intel® Quark Core drives the byte enables appropriately during extra cycles forced
by BS8# and BS16#. A31–A2 does not change if accesses are to a 32-bit aligned area.
Table 5 shows the set of byte enables that is generated on the next cycle for each of
the valid possibilities of the byte enables on the current cycle.

The dynamic bus sizing feature of the Intel® Quark Core requires that data bytes be
driven on the addressed data pins. The simplest example of this function is a 32-bit
aligned, BS16# read. When the Intel® Quark Core reads the two high order bytes, they
must be driven on the data bus pins D31–D16. The Intel® Quark Core expects the two
low order bytes on D15–D0.

32-Bit Wide Organization

FFFFFFFFH FFFFFFFCH

16-Bit Wide Organization

FFFFFFFFH FFFFFFFEH

00000001H 00000000H

{ { { {

BE3# BE2# BE1# BE0#

{ {

BHE# BLE#

00000003H 00000000H
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
34 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
The external system must contain buffers to enable the Intel® Quark Core to read and
write data on the appropriate data bus pins. Table 6 shows the data bus lines to which
the Intel® Quark Core expects data to be returned for each valid combination of byte
enables and bus sizing options.

Valid data is only driven onto data bus pins corresponding to asserted byte enables
during write cycles. Other pins in the data bus are driven but they contain no valid
data. The Intel® Quark Core does not duplicate write data onto parts of the data bus
for which the corresponding byte enable is deasserted.

4.1.3 Interfacing with 8-, 16-, and 32-Bit Memories

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 supports 32-bit
data mode only.

Table 5. Next Byte Enable Values for BSx# Cycles

Current Next with Next with BS16#

BE3# BE2# BE1# BE0# BE3# BE2# BE1# BE0# BE3# BE2# BE1# BE0#

1 1 1 0 N N N N N N N N

1 1 0 0 1 1 0 1 N N N N

1 0 0 0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1

1 1 0 1 N N N N N N N N

1 0 0 1 1 0 1 1 1 0 1 1

0 0 0 1 0 0 1 1 0 0 1 1

1 0 1 1 N N N N N N N N

0 0 1 1 0 1 1 1 N N N N

0 1 1 1 N N N N N N N N

Note: “N” means that another bus cycle is not required to satisfy the request.

Table 6. Data Pins Read with Different Bus Sizes

BE3# BE2# BE1# BE0# w/o BS8#/BS16# w BS8# w BS16#

1 1 1 0 D7–D0 D7–D0 D7–D0

1 1 0 0 D15–D0 D7–D0 D15–D0

1 0 0 0 D23–D0 D7–D0 D15–D0

0 0 0 0 D31–D0 D7–D0 D15–D0

1 1 0 1 D15–D8 D15–D8 D15–D8

1 0 0 1 D23–D8 D15–D8 D15–D8

0 0 0 1 D31–D8 D15–D8 D15–D8

1 0 1 1 D23–D16 D23–D16 D23–D16

0 0 1 1 D31–D16 D23–D16 D31–D16

0 1 1 1 D31–D24 D31–D24 D31–D24
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 35

Intel® Quark Core—Bus Operation
In 32-bit physical memories, such as the one shown in Figure 10, each 4-byte word
begins at a byte address that is a multiple of four. A31–A2 are used as a 4-byte word
select. BE3#–BE0# select individual bytes within the 4-byte word. BS8# and BS16#
are deasserted for all bus cycles involving the 32-bit array.

For 16- and 8-bit memories, byte swapping logic is required for routing data to the
appropriate data lines and logic is required for generating BHE#, BLE# and A1. In
systems where mixed memory widths are used, extra address decoding logic is
necessary to assert BS16# or BS8#.

Figure 10. Intel® Quark Core with 32-Bit Memory

Figure 11 shows the Intel® Quark Core address bus interface to 32-, 16- and 8-bit
memories. To address 16-bit memories the byte enables must be decoded to produce
A1, BHE# and BLE# (A0). For 8-bit wide memories the byte enables must be decoded
to produce A0 and A1. The same byte select logic can be used in 16- and 8-bit systems,
because BLE# is exactly the same as A0 (see Table 7).

Figure 11. Addressing 16- and 8-Bit Memories

BE3#–BE0# can be decoded as shown in Table 7. The byte select logic necessary to
generate BHE# and BLE# is shown in Figure 12.

Processor
32-Bit
Memory

Data Bus (D31–D0)32

Address Bus
(BE3#–BE0#, A31–A2)

BS8# BS16#

“HIGH” “HIGH”

Processor

BS16#BS8#

Address Bus (A31–A2, BE3#–BE0#)

A31–A2

BE3#–BE0#

BHE#, BLE#, A1

A0 (BLE#), A1
A31–A2 8-Bit Memory

16-Bit Memory

32-Bit Memory

Byte
Select Logic

Address
Decode
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
36 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Table 7. Generating A1, BHE# and BLE# for Addressing 16-Bit Devices

Intel® Quark Core 8-, 16-Bit Bus Signals
Comments

BE3# BE2# BE1# BE0# A13 BHE#2 BLE# (A0)1

1† 1† 1† 1† x x x x–no asserted bytes

1 1 1 0 0 1 0

1 1 0 1 0 0 1

1 1 0 0 0 0 0

1 0 1 1 1 1 0

1† 0† 1† 0† x x x x–not contiguous bytes

1 0 0 1 0 0 1

1 0 0 0 0 0 0

0 1 1 1 1 0 1

0† 1† 1† 0† x x x x–not contiguous bytes

0† 1† 0† 1† x x x x–not contiguous bytes

0† 1† 0† 0† x x x x–not contiguous bytes

0 1 1 1 0 0

0† 0† 1† 0† x x x x–not contiguous bytes

0 0 0 1 0 0 1

0 0 0 0 0 0 0

Notes:
1. BLE# asserted when D7–D0 of 16-bit bus is asserted.
2. BHE# asserted when D15–D8 of 16-bit bus is asserted.
3. A1 low for all even words; A1 high for all odd words.

KEY:
x =don't care
† = a non-occurring pattern of byte enables; either none are asserted or the pattern has byte
 enables asserted for non-contiguous bytes
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 37

Intel® Quark Core—Bus Operation
Combinations of BE3#–BE0# that never occur are those in which two or three asserted
byte enables are separated by one or more deasserted byte enables. These
combinations are “don't care” conditions in the decoder. A decoder can use the non-
occurring BE3#–BE0# combinations to its best advantage.

Figure 13 shows the Intel® Quark Core data bus interface to 16- and 8-bit wide
memories. External byte swapping logic is needed on the data lines so that data is
supplied to and received from the Intel® Quark Core on the correct data pins (see
Table 6).

Figure 12. Logic to Generate A1, BHE# and BLE# for 16-Bit Buses
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
38 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Figure 13. Data Bus Interface to 16- and 8-Bit Memories

4.1.4 Dynamic Bus Sizing During Cache Line Fills

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
dynamic data bus sizing. Bus width is fixed at 32 bits.

BS8# and BS16# can be driven during cache line fills. The Intel® Quark Core generates
enough 8- or 16-bit cycles to fill the cache line. This can be up to sixteen 8-bit cycles.

The external system should assume that all byte enables are asserted for the first cycle
of a cache line fill. The Intel® Quark Core generates proper byte enables for
subsequent cycles in the line fill. Table 8 shows the appropriate A0 (BLE#), A1 and
BHE# for the various combinations of the Intel® Quark Core byte enables on both the
first and subsequent cycles of the cache line fill. The “†” marks all combinations of byte
enables that are generated by the Intel® Quark Core during a cache line fill.

Processor

BS16#

BS8#

Address
Decode

32-Bit
Memory

16-Bit Memory

8-Bit Memory
Byte Swap
Logic

Byte Swap
Logic

16

8

8

8

8

8

D7–D0

D15–D8
D23–D16

D31–D24

(A31–A2, BE3#–BE0#)

Table 8. Generating A0, A1 and BHE# from the Intel® Quark Core Byte Enables (Sheet
1 of 2)

 BE3# BE2# BE1# BE0#
First Cache Fill Cycle Any Other Cycle

A0 A1 BHE# A0 A1 BHE#

1 1 1 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
†0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 1 0 0

1 0 0 1 0 0 0 1 0 0
†0 0 0 1 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 1
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 39

Intel® Quark Core—Bus Operation
4.1.5 Operand Alignment

Physical 4-byte words begin at addresses that are multiples of four. It is possible to
transfer a logical operand that spans more than one physical 4-byte word of memory or
I/O at the expense of extra cycles. Examples are 4-byte operands beginning at
addresses that are not evenly divisible by 4, or 2-byte words split between two physical
4-byte words. These are referred to as unaligned transfers.

Operand alignment and data bus size dictate when multiple bus cycles are required.
Table 9 describes the transfer cycles generated for all combinations of logical operand
lengths, alignment, and data bus sizing. When multiple cycles are required to transfer a
multibyte logical operand, the highest-order bytes are transferred first. For example,
when the processor executes a 4-byte unaligned read beginning at byte location 11 in
the 4-byte aligned space, the three high-order bytes are read in the first bus cycle. The
low byte is read in a subsequent bus cycle.

The function of unaligned transfers with dynamic bus sizing is not obvious. When the
external systems asserts BS16# or BS8#, forcing extra cycles, low-order bytes or
words are transferred first (opposite to the example above). When the Intel® Quark
Core requests a 4-byte read and the external system asserts BS16#, the lower two
bytes are read first followed by the upper two bytes.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
dynamic data bus sizing. Bus width is fixed at 32 bits.

†0 0 1 1 0 0 0 0 1 0
†0 1 1 1 0 0 0 1 1 0

KEY:
† =a non-occurring pattern of Byte Enables; either none are asserted or the pattern has byte
 enables asserted for non-contiguous bytes

Table 8. Generating A0, A1 and BHE# from the Intel® Quark Core Byte Enables (Sheet
2 of 2)

 BE3# BE2# BE1# BE0#
First Cache Fill Cycle Any Other Cycle

A0 A1 BHE# A0 A1 BHE#

Table 9. Transfer Bus Cycles for Bytes, Words and Dwords

Byte-Length of Logical Operand

1 2 4

Physical Byte Address in
Memory (Low Order Bits) xx 00 01 10 11 00 01 10 11

Transfer Cycles over 32-Bit
Bus b w w w hb

lb d hb
l3

hw
lw

h3
lb

Transfer Cycles over 16-Bit
Bus
(† = BS#16 asserted)

b w lb †
hb † w hb

lb
lw †
hw †

hb
lb †

mw †
hw
lw

mw †
hb †
lb

Transfer Cycles over 8-Bit
Bus
(‡ = BS8# Asserted)

b lb ‡
hb ‡

lb ‡
hb‡

lb ‡
hb ‡

hb
lb

lb ‡
mlb ‡
mhb ‡
hb ‡

hb
lb ‡

mlb ‡
mhb ‡

mhb ‡
hb ‡
lb ‡

mlb ‡

mlb ‡
mhb ‡
hb ‡
lb

KEY:

b = byte transferh = high-order portion4-Byte Operand
w = 2-byte transferl = low-order portion
3 = 3-byte transferm = mid-order portion
d = 4-byte transfer

lb mlb mhb hb

↑ byte with
lowest address

↑byte with
highest address
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
40 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
In the unaligned transfer described above, the processor requested three bytes on the
first cycle. When the external system asserts BS16# during this 3-byte transfer, the
lower word is transferred first followed by the upper byte. In the final cycle, the lower
byte of the 4-byte operand is transferred, as shown in the 32-bit example above.

4.2 Bus Arbitration Logic
Bus arbitration logic is needed with multiple bus masters. Hardware implementations
range from single-master designs to those with multiple masters and DMA devices.

Figure 14 shows a simple system in which only one master controls the bus and
accesses the memory and I/O devices. Here, no arbitration is required.

Figure 14. Single Master Intel® Quark Core System

Processor

I/O MEM

Control Bus

Data Bus

Address Bus
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 41

Intel® Quark Core—Bus Operation
Figure 15 shows a single processor and a DMA device. Here, arbitration is required to
determine whether the processor, which acts as a master most of the time, or a DMA
controller has control of the bus. When the DMA wants control of the bus, it asserts the
HOLD request to the processor. The processor then responds with a HLDA output when
it is ready to relinquish bus control to the DMA device. Once the DMA device completes
its bus activity cycles, it negates the HOLD signal to relinquish the bus and return
control to the processor.

Figure 15. Single Master Intel® Quark Core with DMA

Processor DMA

MEMI/O

Address Bus

Data Bus

Control Bus
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
42 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Figure 16 shows more than one primary bus master and two secondary masters, and
the arbitration logic is more complex. The arbitration logic resolves bus contention by
ensuring that all device requests are serviced one at a time using either a fixed or a
rotating scheme. The arbitration logic then passes information to the Intel® Quark
Core, which ultimately releases the bus. The arbitration logic receives bus control
status information via the HOLD and HLDA signals and relays it to the requesting
devices.

Figure 16. Single Master Intel® Quark Core with Multiple Secondary Masters

As systems become more complex and include multiple bus masters, hardware must be
added to arbitrate and assign the management of bus time to each master. The second
master may be a DMA controller that requires bus time to perform memory transfers or
it may be a second processor that requires the bus to perform memory or I/O cycles.
Any of these devices may act as a bus master. The arbitration logic must assign only
one bus master at a time so that there is no contention between devices when
accessing main memory.

The arbitration logic may be implemented in several different ways. The first technique
is to “round-robin” or to “time slice” each master. Each master is given a block of time
on the bus to match their priority and need for the bus.

Another method of arbitration is to assign the bus to a master when the bus is needed.
Assigning the bus requires the arbitration logic to sample the BREQ or HOLD outputs
from the potential masters and to assign the bus to the requestor. A priority scheme
must be included to handle cases where more than one device is requesting the bus.
The arbitration logic must assert HOLD to the device that must relinquish the bus. Once

Processor DMA

MEMI/O

Arbitration
Logic

ACQ

ACKHLDA 0

HOLD 0

DRQ

DACK

Address Bus

Data Bus

Control Bus

BDCKBREQ
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 43

Intel® Quark Core—Bus Operation
HLDA is asserted by all of these devices, the arbitration logic may assert HLDA or
BACK# to the device requesting the bus. The requestor remains the bus master until
another device needs the bus.

These two arbitration techniques can be combined to create a more elaborate
arbitration scheme that is driven by a device that needs the bus but guarantees that
every device gets time on the bus. It is important that an arbitration scheme be
selected to best fit the needs of each system's implementation.

The Intel® Quark Core asserts BREQ when it requires control of the bus. BREQ notifies
the arbitration logic that the processor has pending bus activity and requests the bus.
When its HOLD input is inactive and its HLDA signal is deasserted, the Intel® Quark
Core can acquire the bus. Otherwise if HOLD is asserted, then the Intel® Quark Core
has to wait for HOLD to be deasserted before acquiring the bus. If the Intel® Quark
Core does not have the bus, then its address, data, and status pins are 3-stated.
However, the processor can execute instructions out of the internal cache or instruction
queue, and does not need control of the bus to remain active.

The address buses shown in Figure 15 and Figure 16 are bidirectional to allow cache
invalidations to the processors during memory writes on the bus.

4.3 Bus Functional Description
The Intel® Quark Core supports a wide variety of bus transfers to meet the needs of
high performance systems. Bus transfers can be single cycle or multiple cycle, burst or
non-burst, cacheable or non-cacheable, 8-, 16- or 32-bit, and pseudo-locked. Cache
invalidation cycles and locked cycles provide support for multiprocessor systems.

This section explains basic non-cacheable, non-burst single cycle transfers. It also
details multiple cycle transfers and introduces the burst mode. Cacheability is
introduced in Section 4.3.3, “Cacheable Cycles” on page 49. The remaining sections
describe locked, pseudo-locked, invalidate, bus hold and interrupt cycles.

Bus cycles and data cycles are discussed in this section. A bus cycle is at least two
clocks long and begins with ADS# asserted in the first clock and RDY# or BRDY#
asserted in the last clock. Data is transferred to or from the Intel® Quark Core during a
data cycle. A bus cycle contains one or more data cycles.

Refer to Section 4.3.13, “Bus States” on page 72 for a description of the bus states
shown in the timing diagrams.

4.3.1 Non-Cacheable Non-Burst Single Cycle

4.3.1.1 No Wait States

The fastest non-burst bus cycle that the Intel® Quark Core supports is two clocks.
These cycles are called 2-2 cycles because reads and writes take two cycles each. The
first “2” refers to reads and the second “2” to writes. If a wait state needs to be added
to the write, the cycle is called “2-3.”

Basic two-clock read and write cycles are shown in Figure 17. The Intel® Quark Core
initiates a cycle by asserting the address status signal (ADS#) at the rising edge of the
first clock. The ADS# output indicates that a valid bus cycle definition and address is
available on the cycle definition lines and address bus.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
44 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Figure 17. Basic 2-2 Bus Cycle

The non-burst ready input (RDY#) is asserted by the external system in the second
clock. RDY# indicates that the external system has presented valid data on the data
pins in response to a read or the external system has accepted data in response to a
write.

The Intel® Quark Core samples RDY# at the end of the second clock. The cycle is
complete if RDY# is asserted (LOW) when sampled. Note that RDY# is ignored at the
end of the first clock of the bus cycle.

The burst last signal (BLAST#) is asserted (LOW) by the Intel® Quark Core during the
second clock of the first cycle in all bus transfers illustrated in Figure 17. This indicates
that each transfer is complete after a single cycle. The Intel® Quark Core asserts
BLAST# in the last cycle, “T2”, of a bus transfer.

The timing of the parity check output (PCHK#) is shown in Figure 17. The Intel® Quark
Core drives the PCHK# output one clock after RDY# or BRDY# terminates a read cycle.
PCHK# indicates the parity status for the data sampled at the end of the previous
clock. The PCHK# signal can be used by the external system. The Intel® Quark Core
does nothing in response to the PCHK# output.

4.3.1.2 Inserting Wait States

The external system can insert wait states into the basic 2-2 cycle by deasserting RDY#
at the end of the second clock. RDY# must be deasserted to insert a wait state.
Figure 18 illustrates a simple non-burst, non-cacheable signal with one wait state
added. Any number of wait states can be added to a Intel® Quark Core bus cycle by
maintaining RDY# deasserted.

CLK

ADS#

A31–A2
M/IO#
D/C#

BE3#–BE0#

W/R#

RDY#

BLAST#

DATA

PCHK#

Ti T1 T2 T1 T2 T1 T2 T1 T2 Ti

Read Write Read Write

To Processor
From Processor‡

†

† † ‡‡

242202-031
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 45

Intel® Quark Core—Bus Operation
Figure 18. Basic 3-3 Bus Cycle

The burst ready input (BRDY#) must be deasserted on all clock edges where RDY# is
deasserted for proper operation of these simple non-burst cycles.

4.3.2 Multiple and Burst Cycle Bus Transfers

Multiple cycle bus transfers can be caused by internal requests from the Intel® Quark
Core or by the external memory system. An internal request for a 128-bit pre-fetch
requires more than one cycle. Internal requests for unaligned data may also require
multiple bus cycles. A cache line fill requires multiple cycles to complete.

The external system can cause a multiple cycle transfer when it can only supply 8- or
16-bits per cycle.

Only multiple cycle transfers caused by internal requests are considered in this section.
Cacheable cycles and 8- and 16-bit transfers are covered in Section 4.3.3, “Cacheable
Cycles” on page 49 and Section 4.3.5, “8- and 16-Bit Cycles” on page 57.

Internal Requests from Intel® Quark Core

An internal request by the Intel® Quark Core for a 64-bit floating-point load must take
more than one internal cycle.

4.3.2.1 Burst Cycles

The Intel® Quark Core can accept burst cycles for any bus requests that require more
than a single data cycle. During burst cycles, a new data item is strobed into the Intel®
Quark Core every clock rather than every other clock as in non-burst cycles. The
fastest burst cycle requires two clocks for the first data item, with subsequent data
items returned every clock.

CLK

ADS#

A31–A2
M/IO#
D/C#

BE3#–BE0#

W/R#

RDY#

BLAST#

DATA

Ti T1 T2 Ti

Read Write

To Processor
From Processor

T2 T1 T2 T2

‡
†

† ‡

242202-032
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
46 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
The Intel® Quark Core is capable of bursting a maximum of 32 bits during a write.
Burst writes can only occur if BS8# or BS16# is asserted. For example, the Intel®
Quark Core can burst write four 8-bit operands or two 16-bit operands in a single burst
cycle. But the Intel® Quark Core cannot burst multiple 32-bit writes in a single burst
cycle.

Burst cycles begin with the Intel® Quark Core driving out an address and asserting
ADS# in the same manner as non-burst cycles. The Intel® Quark Core indicates that it
is willing to perform a burst cycle by holding the burst last signal (BLAST#) deasserted
in the second clock of the cycle. The external system indicates its willingness to do a
burst cycle by asserting the burst ready signal (BRDY#).

The addresses of the data items in a burst cycle all fall within the same 16-byte aligned
area (corresponding to an internal Intel® Quark Core cache line). A 16-byte aligned
area begins at location XXXXXXX0 and ends at location XXXXXXXF. During a burst
cycle, only BE3#–BE0#, A2, and A3 may change. A31–A4, M/IO#, D/C#, and W/R#
remain stable throughout a burst. Given the first address in a burst, external hardware
can easily calculate the address of subsequent transfers in advance. An external
memory system can be designed to quickly fill the Intel® Quark Core internal cache
lines.

Burst cycles are not limited to cache line fills. Any multiple cycle read request by the
Intel® Quark Core can be converted into a burst cycle. The Intel® Quark Core only
bursts the number of bytes needed to complete a transfer. For example, the Intel®
Quark Core bursts eight bytes for a 64-bit floating-point non-cacheable read.

The external system converts a multiple cycle request into a burst cycle by asserting
BRDY# rather than RDY# (non-burst ready) in the first cycle of a transfer. For cycles
that cannot be burst, such as interrupt acknowledge and halt, BRDY# has the same
effect as RDY#. BRDY# is ignored if both BRDY# and RDY# are asserted in the same
clock. Memory areas and peripheral devices that cannot perform bursting must
terminate cycles with RDY#.

4.3.2.2 Terminating Multiple and Burst Cycle Transfers

The Intel® Quark Core deasserts BLAST# for all but the last cycle in a multiple cycle
transfer. BLAST# is deasserted in the first cycle to inform the external system that the
transfer could take additional cycles. BLAST# is asserted in the last cycle of the transfer
to indicate that the next time BRDY# or RDY# is asserted the transfer is complete.

BLAST# is not valid in the first clock of a bus cycle. It should be sampled only in the
second and subsequent clocks when RDY# or BRDY# is asserted.

The number of cycles in a transfer is a function of several factors including the number
of bytes the Intel® Quark Core needs to complete an internal request (1, 2, 4, 8, or
16), the state of the bus size inputs (BS8# and BS16#), the state of the cache enable
input (KEN#) and the alignment of the data to be transferred.

When the Intel® Quark Core initiates a request, it knows how many bytes are
transferred and if the data is aligned. The external system must indicate whether the
data is cacheable (if the transfer is a read) and the width of the bus by returning the
state of the KEN#, BS8# and BS16# inputs one clock before RDY# or BRDY# is
asserted. The Intel® Quark Core determines how many cycles a transfer will take based
on its internal information and inputs from the external system.

BLAST# is not valid in the first clock of a bus cycle because the Intel® Quark Core
cannot determine the number of cycles a transfer will take until the external system
asserts KEN#, BS8# and BS16#. BLAST# should only be sampled in the second T2
state and subsequent T2 states of a cycle when the external system asserts RDY# or
BRDY#.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 47

Intel® Quark Core—Bus Operation
The system may terminate a burst cycle by asserting RDY# instead of BRDY#. BLAST#
remains deasserted until the last transfer. However, any transfers required to complete
a cache line fill follow the burst order; for example, if burst order was 4, 0, C, 8 and
RDY# was asserted after 0, the next transfers are from C and 8.

4.3.2.3 Non-Cacheable, Non-Burst, Multiple Cycle Transfers

Figure 19 illustrates a two-cycle, non-burst, non-cacheable read. This transfer is simply
a sequence of two single cycle transfers. The Intel® Quark Core indicates to the
external system that this is a multiple cycle transfer by deasserting BLAST# during the
second clock of the first cycle. The external system asserts RDY# to indicate that it will
not burst the data. The external system also indicates that the data is not cacheable by
deasserting KEN# one clock before it asserts RDY#. When the Intel® Quark Core
samples RDY# asserted, it ignores BRDY#.

Figure 19. Non-Cacheable, Non-Burst, Multiple-Cycle Transfers

Each cycle in the transfer begins when ADS# is asserted and the cycle is complete
when the external system asserts RDY#.

The Intel® Quark Core indicates the last cycle of the transfer by asserting BLAST#. The
next RDY# asserted by the external system terminates the transfer.

4.3.2.4 Non-Cacheable Burst Cycles

The external system converts a multiple cycle request into a burst cycle by asserting
BRDY# rather than RDY# in the first cycle of the transfer. This is illustrated in
Figure 20.

There are several features to note in the burst read. ADS# is asserted only during the
first cycle of the transfer. RDY# must be deasserted when BRDY# is asserted.

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

BE3#–BE0#

RDY#

BRDY#

BLAST#

DATA

To Processor†

KEN#

2nd Data

TiT2T1T2T1Ti

1st Data

††

242202-033
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
48 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
BLAST# behaves exactly as it does in the non-burst read. BLAST# is deasserted in the
second clock of the first cycle of the transfer, indicating more cycles to follow. In the
last cycle, BLAST# is asserted, prompting the external memory system to end the
burst after asserting the next BRDY#.

Figure 20. Non-Cacheable Burst Cycle

4.3.3 Cacheable Cycles

Any memory read can become a cache fill operation. The external memory system can
allow a read request to fill a cache line by asserting KEN# one clock before RDY# or
BRDY# during the first cycle of the transfer on the external bus. Once KEN# is asserted
and the remaining three requirements described below are met, the Intel® Quark Core
fetches an entire cache line regardless of the state of KEN#. KEN# must be asserted in
the last cycle of the transfer for the data to be written into the internal cache. The
Intel® Quark Core converts only memory reads or prefetches into a cache fill.

KEN# is ignored during write or I/O cycles. Memory writes are stored only in the on-
chip cache if there is a cache hit. I/O space is never cached in the internal cache.

To transform a read or a prefetch into a cache line fill, the following conditions must be
met:
1. The KEN# pin must be asserted one clock prior to RDY# or BRDY# being asserted

for the first data cycle.
2. The cycle must be of a type that can be internally cached. (Locked reads, I/O

reads, and interrupt acknowledge cycles are never cached.)
3. The page table entry must have the page cache disable bit (PCD) set to 0. To cache

a page table entry, the page directory must have PCD=0. To cache reads or
prefetches when paging is disabled, or to cache the page directory entry, control
register 3 (CR3) must have PCD=0.

4. The cache disable (CD) bit in control register 0 (CR0) must be clear.

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

BE3#–BE0#

RDY#

BRDY#

BLAST#

DATA

KEN#

TiT2T1T2T1Ti

To Processor†

† †

242202-034
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 49

Intel® Quark Core—Bus Operation
External hardware can determine when the Intel® Quark Core has transformed a read
or prefetch into a cache fill by examining the KEN#, M/IO#, D/C#, W/R#, LOCK#, and
PCD pins. These pins convey to the system the outcome of conditions 1–3 in the above
list. In addition, the Intel® Quark Core drives PCD high whenever the CD bit in CR0 is
set, so that external hardware can evaluate condition 4.

Cacheable cycles can be burst or non-burst.

4.3.3.1 Byte Enables during a Cache Line Fill

For the first cycle in the line fill, the state of the byte enables should be ignored. In a
non-cacheable memory read, the byte enables indicate the bytes actually required by
the memory or code fetch.

The Intel® Quark Core expects to receive valid data on its entire bus (32 bits) in the
first cycle of a cache line fill. Data should be returned with the assumption that all the
byte enable pins are asserted. However if BS8# is asserted, only one byte should be
returned on data lines D7–D0. Similarly if BS16# is asserted, two bytes should be
returned on D15–D0.

The Intel® Quark Core generates the addresses and byte enables for all subsequent
cycles in the line fill. The order in which data is read during a line fill depends on the
address of the first item read. Byte ordering is discussed in Section 4.3.4, “Burst Mode
Details” on page 53.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
50 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
4.3.3.2 Non-Burst Cacheable Cycles

Figure 21 shows a non-burst cacheable cycle. The cycle becomes a cache fill when the
Intel® Quark Core samples KEN# asserted at the end of the first clock. The Intel®
Quark Core deasserts BLAST# in the second clock in response to KEN#. BLAST# is
deasserted because a cache fill requires three additional cycles to complete. BLAST#
remains deasserted until the last transfer in the cache line fill. KEN# must be asserted
in the last cycle of the transfer for the data to be written into the internal cache.

Note that this cycle would be a single bus cycle if KEN# was not sampled asserted at
the end of the first clock. The subsequent three reads would not have happened since a
cache fill was not requested.

The BLAST# output is invalid in the first clock of a cycle. BLAST# may be asserted
during the first clock due to earlier inputs. Ignore BLAST# until the second clock.

During the first cycle of the cache line fill the external system should treat the byte
enables as if they are all asserted. In subsequent cycles in the burst, the Intel® Quark
Core drives the address lines and byte enables. (See Section 4.3.4.2, “Burst and Cache
Line Fill Order” on page 55.)

Figure 21. Non-Burst, Cacheable Cycles

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

BE3#–BE0#

KEN#

RDY#

BLAST#

DATA

Ti T1 T2 T1 T2 T1 T2 T1 T2 Ti

† To Processor

BRDY#

† † ††

242202-035
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 51

Intel® Quark Core—Bus Operation
4.3.3.3 Burst Cacheable Cycles

Figure 22 illustrates a burst mode cache fill. As in Figure 21, the transfer becomes a
cache line fill when the external system asserts KEN# at the end of the first clock in the
cycle.

The external system informs the Intel® Quark Core that it will burst the line in by
asserting BRDY# at the end of the first cycle in the transfer.

Note that during a burst cycle, ADS# is only driven with the first address.

Figure 22. Burst Cacheable Cycle

242202-036

CLK

ADS#

A31–A4
M/IO#
D/C#
W/R#

A3–A2
BE3#–BE0#

RDY#

BLAST#

DATA

PCHK#

Ti

To Processor

T1 T2 T2 T2 T2 Ti

KEN#

BRDY#

†

††† †
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
52 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
4.3.3.4 Effect of Changing KEN# during a Cache Line Fill

KEN# can change multiple times as long as it arrives at its final value in the clock
before RDY# or BRDY# is asserted. This is illustrated in Figure 23. Note that the timing
of BLAST# follows that of KEN# by one clock. The Intel® Quark Core samples KEN#
every clock and uses the value returned in the clock before BRDY# or RDY# to
determine if a bus cycle would be a cache line fill. Similarly, it uses the value of KEN# in
the last cycle before early RDY# to load the line just retrieved from memory into the
cache. KEN# is sampled every clock and it must satisfy setup and hold times.

KEN# can also change multiple times before a burst cycle, as long as it arrives at its
final value one clock before BRDY# or RDY# is asserted.

Figure 23. Effect of Changing KEN#

4.3.4 Burst Mode Details

4.3.4.1 Adding Wait States to Burst Cycles

Burst cycles need not return data on every clock. The Intel® Quark Core strobes data
into the chip only when either RDY# or BRDY# is asserted. Deasserting BRDY# and
RDY# adds a wait state to the transfer. A burst cycle where two clocks are required for
every burst item is shown in Figure 24.

242202-037

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

RDY#

BLAST#

DATA

Ti T1 T2 T2

To Processor

T2 T2 T1 T2

A3–A2
BE3#–BE0#

KEN#

†

††
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 53

Intel® Quark Core—Bus Operation
Figure 24. Slow Burst Cycle

242202-038

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

KEN#

RDY#

BLAST#

DATA

Ti T1 T2 T2 T2 T2 T2 T2 T2 T2

To Processor

BRDY#

A3–A2
BE3#–BE0#

†

† †††
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
54 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
4.3.4.2 Burst and Cache Line Fill Order

The burst order used by the Intel® Quark Core is shown in Table 10. This burst order is
followed by any burst cycle (cache or not), cache line fill (burst or not) or code
prefetch.

The Intel® Quark Core presents each request for data in an order determined by the
first address in the transfer. For example, if the first address was 104 the next three
addresses in the burst will be 100, 10C and 108. An example of burst address
sequencing is shown in Figure 25.

Figure 25. Burst Cycle Showing Order of Addresses

The sequences shown in Table 10 accommodate systems with 64-bit buses as well as
systems with 32-bit data buses. The sequence applies to all bursts, regardless of
whether the purpose of the burst is to fill a cache line, perform a 64-bit read, or
perform a pre-fetch. If either BS8# or BS16# is asserted, the Intel® Quark Core
completes the transfer of the current 32-bit word before progressing to the next 32-bit
word. For example, a BS16# burst to address 4 has the following order: 4-6-0-2-C-E-
8-A.

Table 10. Burst Order (Both Read and Write Bursts)

First Address Second Address Third Address Fourth Address

0 4 8 C

4 0 C 8

8 C 0 4

C 8 4 0

242202-039

CLK

ADS#

A31–A2

RDY#

BLAST#

DATA

Ti

To Processor

T1 T2 T2 T2 T2 Ti

KEN#

BRDY#

104 100 10C 108

†

† †††
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 55

Intel® Quark Core—Bus Operation
4.3.4.3 Interrupted Burst Cycles

Some memory systems may not be able to respond with burst cycles in the order
defined in Table 10. To support these systems, the Intel® Quark Core allows a burst
cycle to be interrupted at any time. The Intel® Quark Core automatically generates
another normal bus cycle after being interrupted to complete the data transfer. This is
called an interrupted burst cycle. The external system can respond to an interrupted
burst cycle with another burst cycle.

The external system can interrupt a burst cycle by asserting RDY# instead of BRDY#.
RDY# can be asserted after any number of data cycles terminated with BRDY#.

An example of an interrupted burst cycle is shown in Figure 26. The Intel® Quark Core
immediately asserts ADS# to initiate a new bus cycle after RDY# is asserted. BLAST#
is deasserted one clock after ADS# begins the second bus cycle, indicating that the
transfer is not complete.

Figure 26. Interrupted Burst Cycle

KEN# need not be asserted in the first data cycle of the second part of the transfer
shown in Figure 27. The cycle had been converted to a cache fill in the first part of the
transfer and the Intel® Quark Core expects the cache fill to be completed. Note that the
first half and second half of the transfer in Figure 26 are both two-cycle burst transfers.

The order in which the Intel® Quark Core requests operands during an interrupted
burst transfer is shown by Table 9, “Transfer Bus Cycles for Bytes, Words and Dwords”
on page 40. Mixing RDY# and BRDY# does not change the order in which operand
addresses are requested by the Intel® Quark Core.

An example of the order in which the Intel® Quark Core requests operands during a
cycle in which the external system mixes RDY# and BRDY# is shown in Figure 27. The
Intel® Quark Core initially requests a transfer beginning at location 104. The transfer
becomes a cache line fill when the external system asserts KEN#. The first cycle of the
cache fill transfers the contents of location 104 and is terminated with RDY#. The

242202-067

CLK

ADS#

A31–A2

BRDY#

BLAST#

DATA

Ti T1 T2 Ti

To Processor

T2 T1 T2 T2

KEN#

RDY#

104 100 10C 108

†

† † ††
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
56 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Intel® Quark Core drives out a new request (by asserting ADS#) to address 100. If the
external system terminates the second cycle with BRDY#, the Intel® Quark Core next
requests/expects address 10C. The correct order is determined by the first cycle in the
transfer, which may not be the first cycle in the burst if the system mixes RDY# with
BRDY#.

Figure 27. Interrupted Burst Cycle with Non-Obvious Order of Addresses

4.3.5 8- and 16-Bit Cycles

The Intel® Quark Core supports both 16- and 8-bit external buses through the BS16#
and BS8# inputs. BS16# and BS8# allow the external system to specify, on a cycle-by-
cycle basis, whether the addressed component can supply 8, 16 or 32 bits. BS16# and
BS8# can be used in burst cycles as well as non-burst cycles. If both BS16# and BS8#
are asserted for any bus cycle, the Intel® Quark Core responds as if only BS8# is
asserted.

The timing of BS16# and BS8# is the same as that of KEN#. BS16# and BS8# must be
asserted before the first RDY# or BRDY# is asserted. Asserting BS16# and BS8# can
force the Intel® Quark Core to run additional cycles to complete what would have been
only a single 32-bit cycle. BS8# and BS16# may change the state of BLAST# when
they force subsequent cycles from the transfer.

Figure 28 shows an example in which BS8# forces the Intel® Quark Core to run two
extra cycles to complete a transfer. The Intel® Quark Core issues a request for 24 bits
of information. The external system asserts BS8#, indicating that only eight bits of
data can be supplied per cycle. The Intel® Quark Core issues two extra cycles to
complete the transfer.

242202-068

CLK

ADS#

A31–A2

BRDY#

BLAST#

DATA

Ti T1 T2 Ti

To Processor

T1 T2 T2 T2

KEN#

RDY#

104 100 10C 108

†

† † † †
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 57

Intel® Quark Core—Bus Operation
Figure 28. 8-Bit Bus Size Cycle

Extra cycles forced by BS16# and BS8# signals should be viewed as independent bus
cycles. BS16# and BS8# should be asserted for each additional cycle unless the
addressed device can change the number of bytes it can return between cycles. The
Intel® Quark Core deasserts BLAST# until the last cycle before the transfer is
complete.

Refer to Section 4.1.2, “Dynamic Data Bus Sizing” on page 34 for the sequencing of
addresses when BS8# or BS16# are asserted.

During burst cycles, BS8# and BS16# operate in the same manner as during non-burst
cycles. For example, a single non-cacheable read could be transferred by the Intel®
Quark Core as four 8-bit burst data cycles. Similarly, a single 32-bit write could be
written as four 8-bit burst data cycles. An example of a burst write is shown in
Figure 29. Burst writes can only occur if BS8# or BS16# is asserted.

242202-069

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

RDY#

BLAST#

DATA

Ti T1 T2 Ti

To Processor

T1 T2 T1 T2

BS8#

BE3#–BE0#

†

† † †
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
58 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Figure 29. Burst Write as a Result of BS8# or BS16#

4.3.6 Locked Cycles

Locked cycles are generated in software for any instruction that performs a read-
modify-write operation. During a read-modify-write operation, the Intel® Quark Core
can read and modify a variable in external memory and ensure that the variable is not
accessed between the read and write.

Locked cycles are automatically generated during certain bus transfers. The XCHG
(exchange) instruction generates a locked cycle when one of its operands is memory-
based. Locked cycles are generated when a segment or page table entry is updated and
during interrupt acknowledge cycles. Locked cycles are also generated when the LOCK
instruction prefix is used with selected instructions.

Locked cycles are implemented in hardware with the LOCK# pin. When LOCK# is
asserted, the Intel® Quark Core is performing a read-modify-write operation and the
external bus should not be relinquished until the cycle is complete. Multiple reads or
writes can be locked. A locked cycle is shown in Figure 30. LOCK# is asserted with the
address and bus definition pins at the beginning of the first read cycle and remains
asserted until RDY# is asserted for the last write cycle. For unaligned 32-bit read-
modify-write operations, the LOCK# remains asserted for the entire duration of the
multiple cycle. It deasserts when RDY# is asserted for the last write cycle.

When LOCK# is asserted, the Intel® Quark Core recognizes address hold and backoff
but does not recognize bus hold. It is left to the external system to properly arbitrate a
central bus when the Intel® Quark Core generates LOCK#.

242202–143

CLK

ADS#

BE3#–BE0#

RDY#

BLAST#

DATA

Ti

From Processor

T1 T2 T2 T2 T2 Ti

BS8#

BRDY#

ADDR
SPEC

‡

‡

Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 59

Intel® Quark Core—Bus Operation
Figure 30. Locked Bus Cycle

4.3.7 Pseudo-Locked Cycles

Pseudo-locked cycles assure that no other master is given control of the bus during
operand transfers that take more than one bus cycle.

For the Intel® Quark Core, examples include 64-bit description loads and cache line
fills.

Pseudo-locked transfers are indicated by the PLOCK# pin. The memory operands must
be aligned for correct operation of a pseudo-locked cycle.

PLOCK# need not be examined during burst reads. A 64-bit aligned operand can be
retrieved in one burst (note that this is only valid in systems that do not interrupt
bursts).

The system must examine PLOCK# during 64-bit writes since the Intel® Quark Core
cannot burst write more than 32 bits. However, burst can be used within each 32-bit
write cycle if BS8# or BS16# is asserted. BLAST is de-asserted in response to BS8# or
BS16#. A 64-bit write is driven out as two non-burst bus cycles. BLAST# is asserted
during both 32-bit writes, because a burst is not possible. PLOCK# is asserted during
the first write to indicate that another write follows. This behavior is shown in
Figure 31.

The first cycle of a 64-bit floating-point write is the only case in which both PLOCK#
and BLAST# are asserted. Normally PLOCK# and BLAST# are the inverse of each other.

During all of the cycles in which PLOCK# is asserted, HOLD is not acknowledged until
the cycle completes. This results in a large HOLD latency, especially when BS8# or
BS16# is asserted. To reduce the HOLD latency during these cycles, windows are
available between transfers to allow HOLD to be acknowledged during non-cacheable
code prefetches. PLOCK# is asserted because BLAST# is deasserted, but PLOCK# is
ignored and HOLD is recognized during the prefetch.

242202-080

TiT2T1T2T1Ti

CLK

ADS#

A31–A2
M/IO#
D/C#

BE3#–BE0#

W/R#

RDY#

DATA

LOCK#

To Processor
From Processor

Read Write

‡
†

† ‡
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
60 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
PLOCK# can change several times during a cycle, settling to its final value in the clock
in which RDY# is asserted.

4.3.7.1 Floating-Point Read and Write Cycles

For the Intel® Quark Core, 64-bit floating-point read and write cycles are also
examples of operand transfers that take more than one bus cycle.

Figure 31. Pseudo Lock Timing

4.3.8 Invalidate Cycles

Invalidate cycles keep the Intel® Quark Core internal cache contents consistent with
external memory. The Intel® Quark Core contains a mechanism for monitoring writes
by other devices to external memory. When the Intel® Quark Core finds a write to a
section of external memory contained in its internal cache, the Intel® Quark Core's
internal copy is invalidated.

Invalidations use two pins, address hold request (AHOLD) and valid external address
(EADS#). There are two steps in an invalidation cycle. First, the external system
asserts the AHOLD input forcing the Intel® Quark Core to immediately relinquish its
address bus. Next, the external system asserts EADS#, indicating that a valid address
is on the Intel® Quark Core address bus. Figure 32 shows the fastest possible
invalidation cycle. The Intel® Quark Core recognizes AHOLD on one CLK edge and
floats the address bus in response. To allow the address bus to float and avoid
contention, EADS# and the invalidation address should not be driven until the following
CLK edge. The Intel® Quark Core reads the address over its address lines. If the Intel®
Quark Core finds this address in its internal cache, the cache entry is invalidated. Note
that the Intel® Quark Core address bus is input/output.

TiT2T1T2T1Ti

CLK

ADS#

A31–A2
M/IO#
D/C#

BE3#–BE0#

W/R#

RDY#

BLAST#

From Processor

DATA

PLOCK#

Write Write

‡

‡ ‡

242202-144
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 61

Intel® Quark Core—Bus Operation
Figure 32. Fast Internal Cache Invalidation Cycle

Figure 33. Typical Internal Cache Invalidation Cycle

242202-091

CLK

ADS#

ADDR

BREQ

DATA

Ti T1 T2 Ti

To Processor†

Ti Ti T1 T2

EADS#

AHOLD

RDY#

† †

†

242202-092

CLK

ADS#

ADDR

RDY#

BREQ

DATA

Ti T1 T2 T2

To Processor

Ti Ti T1 T1

EADS#

AHOLD

†

†

†

Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
62 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
4.3.8.1 Rate of Invalidate Cycles

The Intel® Quark Core can accept one invalidate per clock except in the last clock of a
line fill. One invalidate per clock is possible as long as EADS# is deasserted in ONE or
BOTH of the following cases:
1. In the clock in which RDY# or BRDY# is asserted for the last time.
2. In the clock following the clock in which RDY# or BRDY# is asserted for the last

time.

This definition allows two system designs. Simple designs can restrict invalidates to one
every other clock. The simple design need not track bus activity. Alternatively, systems
can request one invalidate per clock provided that the bus is monitored.

4.3.8.2 Running Invalidate Cycles Concurrently with Line Fills

Precautions are necessary to avoid caching stale data in the Intel® Quark Core cache in
a system with a second-level cache. An example of a system with a second-level cache
is shown in Figure 34.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
second-level cache.

An external device can write to main memory over the system bus while the Intel®
Quark Core is retrieving data from the second-level cache. The Intel® Quark Core must
invalidate a line in its internal cache if the external device is writing to a main memory
address that is also contained in the Intel® Quark Core cache.

A potential problem exists if the external device is writing to an address in external
memory, and at the same time the Intel® Quark Core is reading data from the same
address in the second-level cache. The system must force an invalidation cycle to
invalidate the data that the Intel® Quark Core has requested during the line fill.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 63

Intel® Quark Core—Bus Operation
Figure 34. System with Second-Level Cache

Processor

Second-Level
Cache

System Bus

External
Memory

External Bus
Master

Address, Data and
Control Bus

Address, Data and
Control Bus
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
64 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
If the system asserts EADS# before the first data in the line fill is returned to the Intel®
Quark Core, the system must return data consistent with the new data in the external
memory upon resumption of the line fill after the invalidation cycle. This is illustrated
by the asserted EADS# signal labeled “1” in Figure 35.

If the system asserts EADS# at the same time or after the first data in the line fill is
returned (in the same clock that the first RDY# or BRDY# is asserted or any
subsequent clock in the line fill) the data is read into the Intel® Quark Core input
buffers but it is not stored in the on-chip cache. This is illustrated by asserted EADS#
signal labeled “2” in Figure 35. The stale data is used to satisfy the request that
initiated the cache fill cycle.

Figure 35. Cache Invalidation Cycle Concurrent with Line Fill

242202-093

NOTES:
1. Data returned must be consistent if its address equals the invalidation address in this clock.
2. Data returned is not cached if its address equals the invalidation address in this clock.

CLK

ADS#

ADDR

AHOLD

RDY#

DATA

Ti T1 T2 T2 T2 T2 T2 T2 Ti

To Processor

EADS#

1 2

BRDY#

KEN#

†

† †††

††
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 65

Intel® Quark Core—Bus Operation
4.3.9 Bus Hold

The Intel® Quark Core provides a bus hold, hold acknowledge protocol using the bus
hold request (HOLD) and bus hold acknowledge (HLDA) pins. Asserting the HOLD input
indicates that another bus master has requested control of the Intel® Quark Core bus.
The Intel® Quark Core responds by floating its bus and asserting HLDA when the
current bus cycle, or sequence of locked cycles, is complete. An example of a HOLD/
HLDA transaction is shown in Figure 36. The Intel® Quark Core can respond to HOLD
by floating its bus and asserting HLDA while RESET is asserted.

Figure 36. HOLD/HLDA Cycles

Note that HOLD is recognized during un-aligned writes (less than or equal to 32 bits)
with BLAST# being asserted for each write. For a write greater than 32-bits or an
un-aligned write, HOLD# recognition is prevented by PLOCK# getting asserted.
However, HOLD is recognized during non-cacheable, non-burstable code prefetches
even though PLOCK# is asserted.

For cacheable and non-burst or burst cycles, HOLD is acknowledged during backoff only
if HOLD and BOFF# are asserted during an active bus cycle (after ADS# asserted) and
before the first RDY# or BRDY# has been asserted (see Figure 37). The order in which
HOLD and BOFF# are asserted is unimportant (as long as both are asserted prior to the
first RDY#/BRDY# asserted by the system). Figure 37 shows the case where HOLD is
asserted first; HOLD could be asserted simultaneously or after BOFF# and still be
acknowledged.

The pins floated during bus hold are: BE3#–BE0#, PCD, PWT, W/R#, D/C#, M/O#,
LOCK#, PLOCK#, ADS#, BLAST#, D31–D0, A31–A2, and DP3–DP0.

242202-146

CLK

ADS#

A31–A2
M/IO#
D/C#
W/R#

BE3#–BE0#

RDY#

DATA

HLDA

Ti

From Processor

Ti T1 T2 Ti Ti T1

‡

HOLD

‡

Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
66 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Figure 37. HOLD Request Acknowledged during BOFF#

4.3.10 Interrupt Acknowledge

The Intel® Quark Core generates interrupt acknowledge cycles in response to maskable
interrupt requests that are generated on the interrupt request input (INTR) pin.
Interrupt acknowledge cycles have a unique cycle type generated on the cycle type
pins.

An example of an interrupt acknowledge transaction is shown in Figure 38. Interrupt
acknowledge cycles are generated in locked pairs. Data returned during the first cycle
is ignored. The interrupt vector is returned during the second cycle on the lower 8 bits
of the data bus. The Intel® Quark Core has 256 possible interrupt vectors.

The state of A2 distinguishes the first and second interrupt acknowledge cycles. The
byte address driven during the first interrupt acknowledge cycle is 4 (A31–A3 low, A2
high, BE3#–BE1# high, and BE0# low). The address driven during the second interrupt
acknowledge cycle is 0 (A31–A2 low, BE3#–BE1# high, BE0# low).

Each of the interrupt acknowledge cycles is terminated when the external system
asserts RDY# or BRDY#. Wait states can be added by holding RDY# or BRDY#
deasserted. The Intel® Quark Core automatically generates four idle clocks between
the first and second cycles to allow for 8259A recovery time.

242202-095

CLK

ADS#

M/IO#

D/C#

KEN#

BRDY#

RDY#

W/R#

HOLD

HLDA

BOFF#

Ti Ti Ti Ti Ti T1 T2 Ti Ti Ti Ti
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 67

Intel® Quark Core—Bus Operation
Figure 38. Interrupt Acknowledge Cycles

4.3.11 Special Bus Cycles

The Intel® Quark Core provides special bus cycles to indicate that certain instructions
have been executed, or certain conditions have occurred internally. The special bus
cycles are identified by the status of the pins shown in Table 11.

During these cycles the address bus is driven low while the data bus is undefined.

Two of the special cycles indicate halt or shutdown. Another special cycle is generated
when the Intel® Quark Core executes an INVD (invalidate data cache) instruction and
could be used to flush an external cache. The Write Back cycle is generated when the
Intel® Quark Core executes the WBINVD (write-back invalidate data cache) instruction
and could be used to synchronize an external write-back cache.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
external cache.

The external hardware must acknowledge these special bus cycles by asserting RDY#
or BRDY#.

4.3.11.1 HALT Indication Cycle

The Intel® Quark Core halts as a result of executing a HALT instruction. A HALT
indication cycle is performed to signal that the processor has entered into the HALT
state. The HALT indication cycle is identified by the bus definition signals in special bus
cycle state and by a byte address of 2. BE0# and BE2# are the only signals that
distinguish HALT indication from shutdown indication, which drives an address of 0.
During the HALT cycle, undefined data is driven on D31–D0. The HALT indication cycle
must be acknowledged by RDY# asserted.

A halted Intel® Quark Core resumes execution when INTR (if interrupts are enabled),
NMI, or RESET is asserted.

CLK

ADS#

ADDR

RDY#

DATA

Ti T1 T2 Ti Ti T1 T2 Ti

To Processor†

LOCK#

4 Clocks

†

04 00

242202-096
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
68 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
4.3.11.2 Shutdown Indication Cycle

The Intel® Quark Core shuts down as a result of a protection fault while attempting to
process a double fault. A shutdown indication cycle is performed to indicate that the
processor has entered a shutdown state. The shutdown indication cycle is identified by
the bus definition signals in special bus cycle state and a byte address of 0.

4.3.11.3 Stop Grant Indication Cycle

A special Stop Grant bus cycle is driven to the bus after the processor recognizes the
STPCLK# interrupt. The definition of this bus cycle is the same as the HALT cycle
definition for the Intel® Quark Core, with the exception that the Stop Grant bus cycle
drives the value 0000 0010H on the address pins. The system hardware must
acknowledge this cycle by asserting RDY# or BRDY#. The processor does not enter the
Stop Grant state until either RDY# or BRDY# has been asserted. (See Figure 39.)

The Stop Grant Bus Cycle is defined as follows:

M/IO# = 0, D/C# = 0, W/R# = 1, Address Bus = 0000 0010H (A4 = 1), BE3#–BE0# =
1011, Data bus = undefined.

The latency between a STPCLK# request and the Stop Grant bus cycle is dependent on
the current instruction, the amount of data in the processor write buffers, and the
system memory performance.

Figure 39. Stop Grant Bus Cycle

Table 11. Special Bus Cycle Encoding

Cycle Name M/IO# D/C# W/R# BE3#–BE0# A4-A2

Write-Back† 0 0 1 0111 000

First Flush Ack Cycle† 0 0 1 0111 001

Flush† 0 0 1 1101 000

Second Flush Ack Cycle† 0 0 1 1101 001

Shutdown 0 0 1 1110 000

HALT 0 0 1 1011 000

Stop Grant Ack Cycle 0 0 1 1011 100
† These cycles are specific to the Write-Back Enhanced Intel® Quark Core. The FLUSH# cycle is

applicable to all Intel® Quark Cores. See appropriate sections for details.

STPCLK#

CLK

A4401-01

Stop Grant Cycle

BRDY# or RDY#

ADDR Data

ThdTsu
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 69

Intel® Quark Core—Bus Operation
4.3.12 Bus Cycle Restart

In a multi-master system, another bus master may require the use of the bus to enable
the Intel® Quark Core to complete its current bus request. In this situation, the Intel®
Quark Core must restart its bus cycle after the other bus master has completed its bus
transaction.

A bus cycle may be restarted if the external system asserts the backoff (BOFF#) input.
The Intel® Quark Core samples the BOFF# pin every clock cycle. When BOFF# is
asserted, the Intel® Quark Core floats its address, data, and status pins in the next
clock (see Figure 40 and Figure 41). Any bus cycle in progress when BOFF# is asserted
is aborted and any data returned to the processor is ignored. The pins that are floated
in response to BOFF# are the same as those that are floated in response to HOLD.
HLDA is not generated in response to BOFF#. BOFF# has higher priority than RDY# or
BRDY#. If either RDY# or BRDY# are asserted in the same clock as BOFF#, BOFF#
takes effect.

Figure 40. Restarted Read Cycle

242202-097

CLK

Ti T1 T2 Tb Tb T1b T2 T2 T2 T2 T2

ADS#

A31–A2
M/IO#
D/C#

BE3#–BE0#

KEN#

RDY#

BLAST#

DATA

To Processor†

BRDY#

BOFF#

100 100 104 108 10C

† † † †
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
70 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Figure 41. Restarted Write Cycle

The device asserting BOFF# is free to run cycles while the Intel® Quark Core bus is in
its high impedance state. If backoff is requested after the Intel® Quark Core has
started a cycle, the new master should wait for memory to assert RDY# or BRDY#
before assuming control of the bus. Waiting for RDY# or BRDY# provides a handshake
to ensure that the memory system is ready to accept a new cycle. If the bus is idle
when BOFF# is asserted, the new master can start its cycle two clocks after issuing
BOFF#.

The external memory can view BOFF# in the same manner as BLAST#. Asserting
BOFF# tells the external memory system that the current cycle is the last cycle in a
transfer.

The bus remains in the high impedance state until BOFF# is deasserted. Upon
negation, the Intel® Quark Core restarts its bus cycle by driving out the address and
status and asserting ADS#. The bus cycle then continues as usual.

Asserting BOFF# during a burst, BS8#, or BS16# cycle forces the Intel® Quark Core to
ignore data returned for that cycle only. Data from previous cycles is still valid. For
example, if BOFF# is asserted on the third BRDY# of a burst, the Intel® Quark Core
assumes the data returned with the first and second BRDY# is correct and restarts the
burst beginning with the third item. The same rule applies to transfers broken into
multiple cycles by BS8# or BS16#.

Asserting BOFF# in the same clock as ADS# causes the Intel® Quark Core to float its
bus in the next clock and leave ADS# floating low. Because ADS# is floating low, a
peripheral may think that a new bus cycle has begun even though the cycle was
aborted. There are two possible solutions to this problem. The first is to have all
devices recognize this condition and ignore ADS# until RDY# is asserted. The second
approach is to use a “two clock” backoff: in the first clock AHOLD is asserted, and in the
second clock BOFF# is asserted. This guarantees that ADS# is not floating low. This is
necessary only in systems where BOFF# may be asserted in the same clock as ADS#.

242202-147

CLK

ADS#

ADDR
SPEC

BRDY#

DATA

Ti T1 T2 Ti

From Processor‡

Tb Tb T1b T2

BOFF#

RDY#

100 100

‡ ‡
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 71

Intel® Quark Core—Bus Operation
4.3.13 Bus States

A bus state diagram is shown in Figure 42. A description of the signals used in the
diagram is given in Table 12.

Figure 42. Bus State Diagram

240950–069

Ti T1 T2

T1bTb

Request Pending ·
HOLD Deasserted ·
AHOLD Deasserted ·
BOFF# Deasserted

(BRDY# · BLAST#) Asserted) ·

HOLD Deasserted · AHOLD Deasserted · BOFF# Deasserted

AHOLD Deasserted ·
BOFF# Deasserted ·
(HOLD) Deasserted†

(RDY# Asserted + (BRDY# · BLAST#) Asserted) ·

(HOLD + AHOLD + No Request) · BOFF# Deasserted

Request Pending · (RDY# Asserted +

BOFF# Asserte
d

BOFF#
Deasserted

BOFF#
Asserted

BOFF# Deasserted

BOFF# Asserted

† HOLD is only factored into this state transition if Tb was
entered while a non-cacheable. non-burst, code prefetch was
in progress. Otherwise, ignore HOLD.

Table 12. Bus State Description

State Means

Ti Bus is idle. Address and status signals may be driven to undefined values, or the bus may be floated
to a high impedance state.

T1 First clock cycle of a bus cycle. Valid address and status are driven and ADS# is asserted.

T2 Second and subsequent clock cycles of a bus cycle. Data is driven if the cycle is a write, or data is
expected if the cycle is a read. RDY# and BRDY# are sampled.

T1b First clock cycle of a restarted bus cycle. Valid address and status are driven and ADS# is asserted.

Tb Second and subsequent clock cycles of an aborted bus cycle.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
72 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
4.3.14 Floating-Point Error Handling for Intel® Quark Core

The Intel® Quark Core provides two options for reporting floating-point errors. The
simplest method is to raise interrupt 16 whenever an unmasked floating-point error
occurs. This option may be enabled by setting the NE bit in control register 0 (CR0).

The Intel® Quark Core also provides the option of allowing external hardware to
determine how floating-point errors are reported. This option is necessary for
compatibility with the error reporting scheme used in DOS-based systems. The NE bit
must be cleared in CR0 to enable user-defined error reporting. User-defined error
reporting is the default condition because the NE bit is cleared on reset.

Two pins, floating-point error (FERR#, an output) and ignore numeric error (IGNNE#,
an input) are provided to direct the actions of hardware if user-defined error reporting
is used. The Intel® Quark Core asserts the FERR# output to indicate that a floating-
point error has occurred.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 provides the
capability to control the IGNNE# pin via a register; the default value of the register is
1'b0.

4.3.14.1 Floating-Point Exceptions

The following class of floating-point exceptions drive FERR# at the time the exception
occurs (i.e., before encountering the next floating-point instruction).
1. The stack fault, invalid operation, and denormal exceptions on all transcendental

instructions, integer arithmetic instructions, FSQRT, FSEALE, FPREM(1), FXTRACT,
FBLD, and FBSTP.

2. Any exceptions on store instructions (including integer store instructions).

The following class of floating-point exceptions drive FERR# only after encountering the
next floating-point instruction.
1. Exceptions other than on all transcendental instructions, integer arithmetic

instructions, FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD, and FBSTP.
2. Any exception on all basic arithmetic, load, compare, and control instructions (i.e.,

all other instructions).

IGNNE# is an input to the Intel® Quark Core. When the NE bit in CR0 is cleared, and
IGNNE# is asserted, the Intel® Quark Core ignores user floating-point errors and
continue executing floating-point instructions. When IGNNE# is deasserted, the
IGNNE# is an input to these processors that freeze on floating-point instructions that
get errors (except for the control instructions FNCLEX, FNINIT, FNSAVE, FNSTENV,
FNSTCW, FNSTSW, FNSTSW AX, FNENI, FNDISI and FNSETPM). IGNNE# may be
asynchronous to the Intel® Quark Core clock.

In systems with user-defined error reporting, the FERR# pin is connected to the
interrupt controller. When an unmasked floating-point error occurs, an interrupt is
raised. If IGNNE# is high at the time of this interrupt, the Intel® Quark Core freezes
(disallowing execution of a subsequent floating-point instruction) until the interrupt
handler is invoked. By driving the IGNNE# pin low (when clearing the interrupt
request), the interrupt handler can allow execution of a floating-point instruction,
within the interrupt handler, before the error condition is cleared (by FNCLEX, FNINIT,
FNSAVE or FNSTENV). If execution of a non-control floating-point instruction, within
the floating-point interrupt handler, is not needed, the IGNNE# pin can be tied high.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 73

Intel® Quark Core—Bus Operation
4.3.15 Intel® Quark Core Floating-Point Error Handling in AT-
Compatible Systems

The Intel® Quark Core provides special features to allow the implementation of an
AT-compatible numerics error reporting scheme. These features DO NOT replace the
external circuit. Logic is still required that decodes the OUT F0 instruction and latches
the FERR# signal. The use of these Intel Processor features is described below.

• The NE bit in the Machine Status Register
• The IGNNE# pin
• The FERR# pin

The NE bit determines the action taken by the Intel® Quark Core when a numerics
error is detected. When set, this bit signals that non-DOS compatible error handling is
implemented. In this mode, Intel® Quark Core takes a software exception (16) if a
numerics error is detected.

If the NE bit is reset, the Intel® Quark Core uses the IGNNE# pin to allow an external
circuit to control the time at which non-control numerics instructions are allowed to
execute. Note that floating-point control instructions such as FNINIT and FNSAVE can
be executed during a floating-point error condition regardless of the state of IGNNE#.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 provides the
capability to control the IGNNE# pin via a register; the default value of the register is
1'b0.

4.4 Enhanced Bus Mode Operation (Write-Back Mode)
All Intel® Quark Cores operate in Standard Bus (write-through) mode. However, when
the internal cache of the Intel® Quark Core is configured in write-back mode, the
processor bus operates in the Enhanced Bus mode. This section describes how the
Intel® Quark Core bus operation changes for the Enhanced Bus mode when the internal
cache is configured in write-back mode.

4.4.1 Summary of Bus Differences

The following is a list of the differences between the Enhanced Bus and Standard Bus
modes. In Enhanced Bus mode:
1. Burst write capability is extended to four doubleword burst cycles (for write-back

cycles only).
2. Four new signals: INV, WB/WT#, HITM#, and CACHE#, have been added to

support the write-back operation of the internal cache. These signals function the
same as the equivalent signals on the Pentium® OverDrive® processor pins.

3. The SRESET signal has been modified so that it does not write back, invalidate, or
disable the cache. Special test modes are also not initiated through SRESET.

4. The FLUSH# signal behaves the same as the WBINVD instruction. Upon assertion,
FLUSH# writes back all modified lines, invalidates the cache, and issues two special
bus cycles.

5. The PLOCK# signal remains deasserted.

4.4.2 Burst Cycles

Figure 43 shows a basic burst read cycle of the Intel® Quark Core. In the Enhanced Bus
mode, both PCD and CACHE# are asserted if the cycle is internally cacheable. The
Write-Back Enhanced Intel® Quark Core samples KEN# in the clock before the first
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
74 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
BRDY#. If KEN# is asserted by the system, this cycle is transformed into a multiple-
transfer cycle. With each data item returned from external memory, the data is
“cached” only if KEN# is asserted again in the clock before the last BRDY# signal. Data
is sampled only in the clock in which BRDY# is asserted. If the data is not sent to the
processor every clock, it causes a “slow burst” cycle.

Figure 43. Basic Burst Read Cycle

4.4.2.1 Non-Cacheable Burst Operation

When CACHE# is asserted on a read cycle, the processor follows with BLAST# high
when KEN# is asserted. However, the converse is not true. The Write-Back Enhanced
Intel® Quark Core may elect to read burst data that are identified as non-cacheable by
either CACHE# or KEN#. In this case, BLAST# is also high in the same cycle as the first
BRDY# (in clock four). To improve performance, the memory controller should try to
complete the cycle as a burst cycle.

The assertion of CACHE# on a write cycle signifies a replacement or snoop write-back
cycle. These cycles consist of four doubleword transfers (either bursts or non-burst).
The signals KEN# and WB/WT# are not sampled during write-back cycles because the
processor does not attempt to redefine the cacheability of the line.

4.4.2.2 Burst Cycle Signal Protocol

The signals from ADS# through BLAST#, which are shown in Figure 43, have the same
function and timing in both Standard Bus and Enhanced Bus modes. Burst cycles can
be up to 16-bytes long (four aligned doublewords) and can start with any one of the
four doublewords. The sequence of the addresses is determined by the first address
and the sequence follows the order shown in Table 7 on page 37. The burst order for
reads is the same as the burst order for writes. (See Section 4.3.4.2, “Burst and Cache
Line Fill Order” on page 55)

242202-149

CLK

ADS#

A31–A4
M/IO#
D/C#
W/R#

A3–A2

BLAST#

CACHE#

BRDY#

WB/WT#

1 2 3 4 5 6 7 8 9 10 11 12 13

PCD

KEN#

0 4 8 C
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 75

Intel® Quark Core—Bus Operation
An attempted line fill caused by a read miss is indicated by the assertion of CACHE#
and W/R#. For a line fill to occur, the system must assert KEN# twice: one clock prior
to the first BRDY# and one clock prior to last BRDY#. It takes only one deassertion of
KEN# to mark the line as non-cacheable. A write-back cycle of a cache line, due to
replacement or snoop, is indicated by the assertion of CACHE# low and W/R# high.
KEN# has no effect during write-back cycles. CACHE# is valid from the assertion of
ADS# through the clock in which the first RDY# or BRDY# is asserted. CACHE# is
deasserted at all other times. PCD behaves the same in Enhanced Bus mode as in
Standard Bus mode, except that it is low during write-back cycles.

The Write-Back Enhanced Intel® Quark Core samples WB/WT# once, in the same clock
as the first BRDY#. This sampled value of WB/WT# is combined with PWT to bring the
line into the internal cache, either as a write-back line or write-through line.

4.4.3 Cache Consistency Cycles

The system performs snooping to maintain cache consistency. Snoop cycles can be
performed under AHOLD, BOFF#, or HOLD, as described in Table 13.

The snoop cycle begins by checking whether a particular cache line has been “cached”
and invalidates the line based on the state of the INV pin. If the Write-Back Enhanced
Intel® Quark Core is configured in Enhanced Bus mode, the system must drive INV
high to invalidate a particular cache line. The Write-Back Enhanced Intel® Quark Core
does not have an output pin to indicate a snoop hit to an S-state line or an E-state line.
However, the Write-Back Enhanced Intel® Quark Core invalidates the line if the system
snoop hits an S-state, E-state, or M-state line, provided INV was driven high during
snooping. If INV is driven low during a snoop cycle, a modified line is written back to
memory and remains in the cache as a write-back line; a write-through line also
remains in the cache as a write-through line.

After asserting AHOLD or BOFF#, the external bus master driving the snoop cycle must
wait for two clocks before driving the snoop address and asserting EADS#. If snooping
is done under HOLD, the master performing the snoop must wait for at least one clock
cycle before driving the snoop addresses and asserting EADS#. INV should be driven
low during read operations to minimize invalidations, and INV should be driven high to
invalidate a cache line during write operations. The Write-Back Enhanced Intel® Quark
Core asserts HITM# if the cycle hits a modified line in the cache. This output signal
becomes valid two clock periods after EADS# is valid on the bus. HITM# remains
asserted until the modified line is written back and remains asserted until the RDY# or
BRDY# of the snoop cycle is asserted. Snoop operations could interrupt an ongoing bus
operation in both the Standard Bus and Enhanced Bus modes. The Write-Back
Enhanced Intel® Quark Core can accept EADS# in every clock period while in Standard
Bus mode. In Enhanced Bus mode, the Write-Back Enhanced Intel® Quark Core can

Table 13. Snoop Cycles under AHOLD, BOFF#, or HOLD

AHOLD

Floats the address bus. ADS# is asserted under AHOLD only to initiate a snoop write-back cycle.
An ongoing burst cycle is completed under AHOLD. For non-burst cycles, a specific non-burst
transfer (ADS#-RDY# transfer) is completed under AHOLD and fractured before the next
assertion of ADS#. A snoop write-back cycle is reordered ahead of a fractured non-burst cycle
and the non-burst cycle is completed only after the snoop write-back cycle is completed,
provided there are no other snoop write-back cycles scheduled.

BOFF#
Overrides AHOLD and takes effect in the next clock. On-going bus cycles will stop in the clock
following the assertion of BOFF# and resume when BOFF# is de-asserted. The snoop write-back
cycle begins after BOFF# is de-asserted followed by the backed-off cycle.

HOLD

HOLD is acknowledged only between bus cycles, except for a non-cacheable, non-burst code
prefetch cycle. In a non-cacheable, non-burst code prefetch cycle, HOLD is acknowledged after
the system asserts RDY#. Once HOLD is asserted, the processor blocks all bus activities until the
system releases the bus (by de-asserting HOLD).
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
76 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
accept EADS# every other clock period or until a snoop hits an M-state line. The Write-
Back Enhanced Intel® Quark Core does not accept any further snoop cycles inputs until
the previous snoop write-back operation is completed.

All write-back cycles adhere to the burst address sequence of 0-4-8-C. The CACHE#,
PWT, and PCD output pins are asserted and the KEN# and WB/WT# input pins are
ignored. Write-back cycles can be either burst or non-burst. All write-back operations
write 16 bytes of data to memory corresponding to the modified line that hit during the
snoop.

Note: The Write-Back Enhanced Intel® Quark Core accepts BS8# and BS16# line-fill cycles,
but not on replacement or snoop-forced write-back cycles.

4.4.3.1 Snoop Collision with a Current Cache Line Operation

The system can also perform snooping concurrent with a cache access and may collide
with a current cache bus cycle. Table 14 lists some scenarios and the results of a snoop
operation colliding with an on-going cache fill or replacement cycle.

Table 14. Various Scenarios of a Snoop Write-Back Cycle Colliding with an On-Going
Cache Fill or Replacement Cycle

Arbi-
tration
Control

Snoop to the Line
That Is Being

Filled

Snoop to a Different
Line than the Line

Being Filled

Snoop to the Line
That Is Being

Replaced

Snoop to a Different
Line than the Line

Being Replaced

AHOLD

Read all line fill data
into cache line
buffer.
Update cache only if
snoop occurred with
INV = 0
No write-back cycle
because the line has
not been modified
yet.

Complete fill if the
cycle is burst. Start
snoop write-back.
If the cycle is non-
burst, the snoop
write-back is
reordered ahead of
the line fill.
After the snoop write-
back cycle is
completed, continue
with line fill.

Complete replacement
write-back if the cycle
is burst. Processor
does not initiate a
snoop write-back, but
asserts HITM# until
the replacement write-
back is completed.
If the replacement
cycle is non-burst, the
snoop write-back is re-
ordered ahead of the
replacement write-
back cycle. The
processor does not
continue with the
replacement write-
back cycle.

Complete replacement
write-back if it is a burst
cycle. Initiate snoop
write-back.
If the replacement write-
back is a non-burst
cycle, the snoop write-
back cycle is re-ordered
in front of the
replacement cycle. After
the snoop write-back,
the replacement write-
back is continued from
the interrupt point.

BOFF#

Stop reading line fill
data
Wait for BOFF# to be
deasserted.
Continue read from
backed off point
Update cache only if
snoop occurred with
INV = '0'.

Stop fill
Wait for BOFF# to be
deasserted.
Do snoop write-back
Continue fill from
interrupt point.

Stop replacement
write-back
Wait for BOFF# to be
deasserted.
Initiate snoop write-
back
Processor does not
continue replacement
write-back.

Stop replacement write-
back
Wait for BOFF# to be de-
asserted
Initiate snoop write-back
Continue replacement
write-back from point of
interrupt.

HOLD

HOLD is not acknowledged until the current bus cycle (i.e., the line operation) is completed, except
for a non-cacheable, non-burst code prefetch cycle. Consequently there can be no collision with
the snoop cycles using HOLD, except as mentioned earlier. In this case the snoop write-back is re-
ordered ahead of an on-going non-burst, non-cached code prefetch cycle. After the write-back
cycle is completed, the code prefetch cycle continues from the point of interrupt.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 77

Intel® Quark Core—Bus Operation
4.4.3.2 Snoop under AHOLD

Snooping under AHOLD begins by asserting AHOLD to force the Write-Back Enhanced
Intel® Quark Core to float the address bus. The ADS# for the write-back cycle is
guaranteed to occur no sooner than the second clock following the assertion of HITM#
(i.e., there is a dead clock between the assertion of HITM# and the first ADS# of the
snoop write-back cycle).

When a line is written back, KEN#, WB/WT#, BS8#, and BS16# are ignored, and PWT
and PCD are always low during write-back cycles.

The next ADS# for a new cycle can occur immediately after the last RDY# or BRDY# of
the write-back cycle. The Write-Back Enhanced Intel® Quark Core does not guarantee
a dead clock between cycles unless the second cycle is a snoop-forced write-back cycle.
This allows snoop-forced write-backs to be backed off (BOFF#) when snooping under
AHOLD.

HITM# is guaranteed to remain asserted until the RDY# or BRDY# signals
corresponding to the last doubleword of the write-back cycle is returned. HITM# is de-
asserted from the clock edge in which the last BRDY# or RDY# for the snoop write-
back cycle is asserted. The write-back cycle could be a burst or non-burst cycle. In
either case, 16 bytes of data corresponding to the modified line that has a snoop hit is
written back.

Snoop under AHOLD Overlaying a Line-Fill Cycle

The assertion of AHOLD during a line fill is allowed on the Write-Back Enhanced Intel®
Quark Core. In this case, when a snoop cycle is overlaid by an on-going line-fill cycle,
the chipset must generate the burst addresses internally for the line fill to complete,
because the address bus has the valid snoop address. The write-back mode is more
complex compared to the write-through mode because of the possibility of a line being
written back. Figure 44 shows a snoop cycle overlaying a line-fill cycle, when the
snooped line is not the same as the line being filled.

In Figure 44, the snoop to an M-state line causes a snoop write-back cycle. The Write-
Back Enhanced Intel® Quark Core asserts HITM# two clocks after the EADS#, but
delays the snoop write-back cycle until the line fill is completed, because the line fill
shown in Figure 44 is a burst cycle. In this figure, AHOLD is asserted one clock after
ADS#. In the clock after AHOLD is asserted, the Write-Back Enhanced Intel® Quark
Core floats the address bus (not the Byte Enables). Hence, the memory controller must
determine burst addresses in this period. The chipset must comprehend the special
ordering required by all burst sequences of the Write-Back Enhanced Intel® Quark
Core. HITM# is guaranteed to remain asserted until the write-back cycle completes.

If AHOLD continues to be asserted over the forced write-back cycle, the memory
controller also must supply the write-back addresses to the memory. The Write-Back
Enhanced Intel® Quark Core always runs the write-back with an address sequence of
0-4-8-C.

In general, if the snoop cycle overlays any burst cycle (not necessarily a line-fill cycle)
the snoop write-back is delayed because of the on-going burst cycle. First, the burst
cycle goes to completion and only then does the snoop write-back cycle start.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
78 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Figure 44. Snoop Cycle Overlaying a Line-Fill Cycle

AHOLD Snoop Overlaying a Non-Burst Cycle

When AHOLD overlays a non-burst cycle, snooping is based on the completion of the
current non-burst transfer (ADS#-RDY# transfer). Figure 45 shows a snoop cycle
under AHOLD overlaying a non-burst line-fill cycle. HITM# is asserted two clocks after
EADS#, and the non-burst cycle is fractured after the RDY# for a specific single
transfer is asserted. The snoop write-back cycle is re-ordered ahead of an ongoing non-
burst cycle. After the write-back cycle is completed, the fractured non-burst cycle
continues. The snoop write-back ALWAYS precedes the completion of a fractured cycle,
regardless of the point at which AHOLD is de-asserted, and AHOLD must be de-
asserted before the fractured non-burst cycle can complete.

242202-151

CLK

AHOLD

EADS#

INV

HITM#

BRDY#

CACHE#

1 2 3 4 5 6 7 8 9 10 11 12 13

BLAST#

A31–A4

A3–A2 0 4 8 C

ADS#

W/R#

To Processor
Write-back from Processor

Fill

0

Fill

‡
†

† ‡
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 79

Intel® Quark Core—Bus Operation
Figure 45. Snoop Cycle Overlaying a Non-Burst Cycle

AHOLD Snoop to the Same Line that is being Filled

A system snoop does not cause a write-back cycle to occur if the snoop hits a line while
the line is being filled. The processor does not allow a line to be modified until the fill is
completed (and a snoop only produces a write-back cycle for a modified line). Although
a snoop to a line that is being filled does not produce a write-back cycle, the snoop still
has an effect based on the following rules:
1. The processor always snoops the line being filled.
2. In all cases, the processor uses the operand that triggered the line fill.
3. If the snoop occurs when INV = “1”, the processor never updates the cache with

the fill data.
4. If the snoop occurs when INV = “0”, the processor loads the line into the internal

cache.

4.4.3.3 Snoop During Replacement Write-Back

If the cache contains valid data during a line fill, one of the cache lines may be replaced
as determined by the Least Recently Used (LRU) algorithm. Refer to Chapter 6.0,
“Cache Subsystem” for a detailed discussion of the LRU algorithm. If the line being
replaced is modified, this line is written back to maintain cache coherency. When a

242202-152

CLK

AHOLD

EADS#

INV

HITM#

ADS#

A31–A4

BLAST#

To Processor
Write-back from Processor

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A3–A2 0 0 4 8 C 4 8 C

RDY#

CACHE#

W/R#

Fill Fill Cont.‡

†

†

‡

Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
80 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
replacement write-back cycle is in progress, it might be necessary to snoop the line
that is being written back. (See Figure 46.)

Figure 46. Snoop to the Line that is Being Replaced

If the replacement write-back cycle is burst and there is a snoop hit to the same line as
the line that is being replaced, the on-going replacement cycle runs to completion.
HITM# is asserted until the line is written back and the snoop write-back is not
initiated. In this case, the replacement write-back is converted to the snoop write-back,
and HITM# is asserted and de-asserted without a specific ADS# to initiate the write-
back cycle.

If there is a snoop hit to a different line from the line being replaced, and if the
replacement write-back cycle is burst, the replacement cycle goes to completion. Only
then is the snoop write-back cycle initiated.

If the replacement write-back cycle is a non-burst cycle, and if there is a snoop hit to
the same line as the line being replaced, it fractures the replacement write-back cycle
after RDY# is asserted for the current non-burst transfer. The snoop write-back cycle is
reordered in front of the fractured replacement write-back cycle and is completed
under HITM#. However, after AHOLD is deasserted, the replacement write-back cycle is
not completed.

242202-153

CLK

AHOLD

EADS#

INV

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11

W/R#

To Processor

BRDY#

CACHE#

BLAST#

0 8 C

Replace

0 4 8 C

Replace

†

†

Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 81

Intel® Quark Core—Bus Operation
If there is a snoop hit to a line that is different from the one being replaced, the non-
burst replacement write-back cycle is fractured, and the snoop write-back cycle is
reordered ahead of the replacement write-back cycle. After the snoop write-back is
completed, the replacement write-back cycle continues.

4.4.3.4 Snoop under BOFF#

BOFF# is capable of fracturing any transfer, burst or non-burst. The output pins (see
Table 7 and Table 14) of the Write-Back Enhanced Intel® Quark Core are floated in the
clock period following the assertion of BOFF#. If the system snoop hits a modified line
using BOFF#, the snoop write-back cycle is reordered ahead of the current cycle.
BOFF# must be de-asserted for the processor to perform a snoop write-back cycle and
resume the fractured cycle. The fractured cycle resumes with a new ADS# and begins
with the first uncompleted transfer. Snoops are permitted under BOFF#, but write-back
cycles are not started until BOFF# is de-asserted. Consequently, multiple snoop cycles
can occur under a continuously asserted BOFF#, but only up to the first asserted
HITM#.

Snoop under BOFF# during Cache Line Fill

As shown in Figure 47, BOFF# fractures the second transfer of a non-burst cache line-
fill cycle. The system begins snooping by driving EADS# and INV in clock six. The
assertion of HITM# in clock eight indicates that the snoop cycle hit a modified line and
the cache line is written back to memory. The assertion of HITM# in clock eight and
CACHE# and ADS# in clock ten identifies the beginning of the snoop write-back cycle.
ADS# is guaranteed to be asserted no sooner than two clock periods after the assertion
of HITM#. Write-back cycles always use the four-doubleword address sequence of 0-4-
8-C (burst or non-burst). The snoop write-back cycle begins upon the de-assertion of
BOFF# with HITM# asserted throughout the duration of the snoop write-back cycle.

If the snoop cycle hits a line that is different from the line being filled, the cache line fill
resumes after the snoop write-back cycle completes, as shown in Figure 47.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
82 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Figure 47. Snoop under BOFF# during a Cache Line-Fill Cycle

An ADS# is always issued when a cycle resumes after being fractured by BOFF#. The
address of the fractured data transfer is reissued under this ADS#, and CACHE# is not
issued unless the fractured operation resumes from the first transfer (e.g., first
doubleword). If the system asserts BOFF# and RDY# simultaneously, as shown in clock
four on Figure 47, BOFF# dominates and RDY# is ignored. Consequently, the Write-
Back Enhanced Intel® Quark Core accepts only up to the x4h doubleword, and the line
fill resumes with the x0h doubleword. ADS# initiates the resumption of the line-fill
operation in clock period 15. HITM# is de-asserted in the clock period following the
clock period in which the last RDY# or BRDY# of the write-back cycle is asserted.
Hence, HITM# is guaranteed to be de-asserted before the ADS# of the next cycle.

Figure 47 also shows the system asserting RDY# to indicate a non-burst line-fill cycle.
Burst cache line-fill cycles behave similarly to non-burst cache line-fill cycles when
snooping using BOFF#. If the system snoop hits the same line as the line being filled
(burst or non-burst), the Write-Back Enhanced Intel® Quark Core does not assert
HITM# and does not issue a snoop write-back cycle, because the line was not modified,
and the line fill resumes upon the de-assertion of BOFF#. However, the line fill is
cached only if INV is driven low during the snoop cycle.

242202-154

CLK

BOFF#

EADS#

INV

HITM#

ADS#

BLAST#

To Processor

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A31–A4

A3–A2

RDY#

CACHE#

W/R#

BRDY#

Linefill Write Back Cycle Line Fill Cycle Cont.

4 0 0 4 C 8 0 C 8

†

†

Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 83

Intel® Quark Core—Bus Operation
Snoop under BOFF# during Replacement Write-Back

If the system snoop under BOFF# hits the line that is currently being replaced (burst or
non-burst), the entire line is written back as a snoop write-back line, and the
replacement write-back cycle is not continued. However, if the system snoop hits a
different line than the one currently being replaced, the replacement write-back cycle
continues after the snoop write-back cycle has been completed. Figure 48 shows a
system snoop hit to the same line as the one being replaced (non-burst).

Figure 48. Snoop under BOFF# to the Line that is Being Replaced

4.4.3.5 Snoop under HOLD

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
the HOLD mechanism.

HOLD can only fracture a non-cacheable, non-burst code prefetch cycle. For all other
cycles, the Write-Back Enhanced Intel® Quark Core does not assert HLDA until the
entire current cycle is completed. If the system snoop hits a modified line under HLDA
during a non-cacheable, non-burstable code prefetch, the snoop write-back cycle is
reordered ahead of the fractured cycle. The fractured non-cacheable, non-burst code
prefetch resumes with an ADS# and begins with the first uncompleted transfer. Snoops
are permitted under HLDA, but write-back cycles do not occur until HOLD is de-
asserted. Consequently, multiple snoop cycles are permitted under a continuously
asserted HLDA only up to the first asserted HITM#.

CLK

BOFF#

EADS#

INV

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

RDY#

BRDY#

To Processor

W/R#

0 4 8 C

Repl Wb

Repl Wb

Write Back Cycle

†

†

Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
84 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Snoop under HOLD during Cache Line Fill

As shown in Figure 49, HOLD (asserted in clock two) does not fracture the burst cache
line-fill cycle until the line fill is completed (in clock five). Upon completing the line fill in
clock five, the Write-Back Enhanced Intel® Quark Core asserts HLDA and the system
begins snooping by driving EADS# and INV in the following clock period. The assertion
of HITM# in clock nine indicates that the snoop cycle has hit a modified line and the
cache line is written back to memory. The assertion of HITM# in clock nine and
CACHE# and ADS# in clock 11 identifies the beginning of the snoop write-back cycle.
The snoop write-back cycle begins upon the de-assertion of HOLD, and HITM# is
asserted throughout the duration of the snoop write-back cycle.

Figure 49. Snoop under HOLD during Cache Line Fill

If HOLD is asserted during a non-cacheable, non-burst code prefetch cycle, as shown in
Figure 50, the Write-Back Enhanced Intel® Quark Core issues HLDA in clock seven
(which is the clock period in which the next RDY# is asserted). If the system snoop hits
a modified line, the snoop write-back cycle begins after HOLD is released. After the
snoop write-back cycle is completed, an ADS# is issued and the code prefetch cycle
resumes.

242202-156

CLK

HOLD

HLDA

INV

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

BRDY#

To Processor

W/R#

0 4 8 C

EADS#

0 4 8 C

Linefill

†

†

Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 85

Intel® Quark Core—Bus Operation
Figure 50. Snoop using HOLD during a Non-Cacheable, Non-Burstable Code Prefetch

4.4.3.6 Snoop under HOLD during Replacement Write-Back

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
the HOLD mechanism.

Collision of snoop cycles under a HOLD during the replacement write-back cycle can
never occur, because HLDA is asserted only after the replacement write-back cycle
(burst or non-burst) is completed.

4.4.4 Locked Cycles

In both Standard and Enhanced Bus modes, the Write-Back Enhanced Intel® Quark
Core architecture supports atomic memory access. A programmer can modify the
contents of a memory variable and be assured that the variable is not accessed by
another bus master between the read of the variable and the update of that variable.
This function is provided for instructions that contain a LOCK prefix, and also for

242202-157

CLK

HOLD

EADS#

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

To Processor

W/R#

0 4 8 C

INV

RDY#

BRDY#

HLDA

C0 4 8

Prefetch Cycle Write Back Cycle Prefetch
Cont.

†

†

Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
86 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
instructions that implicitly perform locked read modify write cycles. In hardware, the
LOCK function is implemented through the LOCK# pin, which indicates to the system
that the processor is performing this sequence of cycles, and that the processor should
be allowed atomic access for the location accessed during the first locked cycle.

A locked operation is a combination of one or more read cycles followed by one or more
write cycles with the LOCK# pin asserted. Before a locked read cycle is run, the
processor first determines if the corresponding line is in the cache. If the line is present
in the cache, and is in an E or S state, it is invalidated. If the line is in the M state, the
processor does a write-back and then invalidates the line. A locked cycle to an M, S, or
E state line is always forced out to the bus. If the operand is misaligned across cache
lines, the processor could potentially run two write back cycles before starting the first
locked read. In this case the sequence of bus cycles is: write back, write back, locked
read, locked read, locked write and the final locked write. Note that although a total of
six cycles are generated, the LOCK# pin is asserted only during the last four cycles, as
shown in Figure 51.

LOCK# is not deasserted if AHOLD is asserted in the middle of a locked cycle. LOCK#
remains asserted even if there is a snoop write-back during a locked cycle. LOCK# is
floated if BOFF# is asserted in the middle of a locked cycle. However, it is driven LOW
again when the cycle restarts after BOFF#. Locked read cycles are never transformed
into line fills, even if KEN# is asserted. If there are back-to-back locked cycles, the
Write-Back Enhanced Intel® Quark Core does not insert a dead clock between these
two cycles. HOLD is recognized if there are two back-to-back locked cycles, and LOCK#
floats when HLDA is asserted.

Figure 51. Locked Cycles (Back-to-Back)

242202-158

CLK

ADS#

DATA

Ti T1 T2 T1 T2 T1 T2 T1 T2 T1

To Processor
From Processor

RDY#
BRDY#

ADDR

CACHE#

LOCK#

W/R#

Rd1 Wt1 Rd2 Wt2

†

‡

‡ † ‡

†

Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 87

Intel® Quark Core—Bus Operation
4.4.4.1 Snoop/Lock Collision

If there is a snoop cycle overlaying a locked cycle, the snoop write-back cycle fractures
the locked cycle. As shown in Figure 52, after the read portion of the locked cycle is
completed, the snoop write-back starts under HITM#. After the write-back is
completed, the locked cycle continues. But during all this time (including the write-back
cycle), the LOCK# signal remains asserted.

Because HOLD is not acknowledged if LOCK# is asserted, snoop-lock collisions are
restricted to AHOLD and BOFF# snooping.

Figure 52. Snoop Cycle Overlaying a Locked Cycle

4.4.5 Flush Operation

The Write-Back Enhanced Intel® Quark Core executes a flush operation when the
FLUSH# pin is asserted, and no outstanding bus cycles, such as a line fill or write back,
are being processed. In the Enhanced Bus mode, the processor first writes back all the
modified lines to external memory. After the write-back is completed, two special
cycles are generated, indicating to the external system that the write-back is done. All
lines in the internal cache are invalidated after all the write-back cycles are done.
Depending on the number of modified lines in the cache, the flush could take a
minimum of 1280 bus clocks (2560 processor clocks) and up to a maximum of 5000+
bus clocks to scan the cache, perform the write backs, invalidate the cache, and run the
flush acknowledge cycles. FLUSH# is implemented as an interrupt in the Enhanced Bus
mode, and is recognized only on an instruction boundary. Write-back system designs
should look for the flush acknowledge cycles to recognize the end of the flush
operation. Figure 53 shows the flush operation of the Write-Back Enhanced Intel®
Quark Core when configured in the Enhanced Bus mode.

242202-159

CLK

ADS#

RDY#
BRDY#

AHOLD

ADDR

EADS#

HITM#

W/R#

To Processor
From Processor

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Write

0 4 8 C

CACHE#

LOCK#

WB1 WB2 WB3 WB4

WriteRead WB

†
‡

‡ † ‡
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
88 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
If the Intel® Quark Core is in Standard Bus mode, it does not issue special
acknowledge cycles in response to the FLUSH# input, although the internal cache is
invalidated. The invalidation of the cache in this case, takes only two bus clocks.

Figure 53. Flush Cycle

4.4.6 Pseudo Locked Cycles

In Enhanced Bus mode, PLOCK# is always deasserted for both burst and non-burst
cycles. Hence, it is possible for other bus masters to gain control of the bus during
operand transfers that take more than one bus cycle. A 64-bit aligned operand can be
read in one burst cycle or two non-burst cycles if BS8# and BS16# are not asserted.
Figure 54 shows a 64-bit floating-point operand or Segment Descriptor read cycle,
which is burst by the system asserting BRDY#.

4.4.6.1 Snoop under AHOLD during Pseudo-Locked Cycles

AHOLD can fracture a 64-bit transfer if it is a non-burst cycle. If the 64-bit cycle is
burst, as shown in Figure 54, the entire transfer goes to completion and only then does
the snoop write-back cycle start.

242202-160

CLK

ADS#

RDY#
BRDY#

FLUSH#

ADDR
M/IO#
D/C#

W/R#,
BE3–0#

CACHE#

BLAST#

DATA

T1 T1 T2 T2 T2 T2 T1 T1 T2 T1 T2 T1 T1

Write-Back 1st Flush
Acknowledge

2nd Flush
Acknowledge
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 89

Intel® Quark Core—Bus Operation
Figure 54. Snoop under AHOLD Overlaying Pseudo-Locked Cycle

4.4.6.2 Snoop under Hold during Pseudo-Locked Cycles

As shown in Figure 55, HOLD does not fracture the 64-bit burst transfer. The Write-
Back Enhanced Intel® Quark Core does not issue HLDA until clock four. After the 64-bit
transfer is completed, the Write-Back Enhanced Intel® Quark Core writes back the
modified line to memory (if snoop hits a modified line). If the 64-bit transfer is non-
burst, the Write-Back Enhanced Intel® Quark Core can issue HLDA in between bus
cycles for a 64-bit transfer.

242202-161

CLK

AHOLD

EADS#

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

To Processor†

W/R#

0 4 8 C

INV

PLOCK#

BRDY#

Write Back Cycle†
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
90 Order Number: 329678-001US

Bus Operation—Intel® Quark Core
Figure 55. Snoop under HOLD Overlaying Pseudo-Locked Cycle

4.4.6.3 Snoop under BOFF# Overlaying a Pseudo-Locked Cycle

BOFF# is capable of fracturing any bus operation. In Figure 56, BOFF# fractured a
current 64-bit read cycle in clock four. If there is a snoop hit under BOFF#, the snoop
write-back operation begins after BOFF# is deasserted. The 64-bit write cycle resumes
after the snoop write-back operation completes.

242202-162

CLK

HOLD

EADS#

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

To Processor

W/R#

0 4 8 C

INV

PLOCK#

BRDY#

HLDA

64-Bit
Read Cycle Write Back Cycle

†

†

Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 91

Intel® Quark Core—Bus Operation
Figure 56. Snoop under BOFF# Overlaying a Pseudo-Locked Cycle

CLK

AHOLD

EADS#

HITM#

A31–A4

A3–A2

ADS#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BLAST#

CACHE#

To Processor†

W/R#

0 4 8 C

INV

PLOCK#

BRDY#

Write Back Cycle†

242202-163
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
92 Order Number: 329678-001US

Memory Subsystem Design—Intel® Quark Core
5.0 Memory Subsystem Design

5.1 Introduction
The Intel® Quark Core can access instructions and data from its on-chip cache in the
same clock cycle. To support the Intel® Quark Core's internal data path, the external
bus has also been optimized. The internal cache requires rapid access to entire cache
lines. Invalidation cycles must be supported to maintain consistency with external
memory. All of these functions must be supported by the external memory system.
Without them, the full performance potential of the CPU cannot be attained.

The requirements of multi-tasking and multiprocessor operating systems also place
increased demand on the external memory system. OS support functions such as
paging and context switching can degrade reference locality. Without efficient access to
external memory, the performance of these functions is degraded.

Second-level (also known as L2) caching is a technique used to improve the memory
interface. Some applications, such as multi-user office computers, require this feature
to meet performance goals. Single-user systems, on the other hand, may not warrant
the extra cost. Due to the variety of applications incorporating the Intel® Quark Core,
memory system architecture is very diverse.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
second-level cache.

5.2 Processor and Cache Feature Overview
The improvements made to the processor bus interface impact the memory subsystem
design. It is important to understand the impact of these features before attempting to
define a memory subsystem. This section reviews the bus features that affect the
memory interface.

5.2.1 The Burst Cycle

The Intel® Quark Core's burst bus cycle feature has more impact on the memory logic
than any other feature. A large portion of the control logic is dedicated to supporting
this feature. The L2 cache control is also primarily dedicated to supporting burst cycles.

To understand why the logic is designed this way, we must first understand the function
of the burst cycle. Burst cycles are generated by the CPU only when two events occur.
First, the CPU must request a cycle which is longer in bytes than the data bus can
accommodate. Second, the BRDY# signal must be activated to terminate the cycle.
When these two events occur a burst cycle takes place. Note that this cycle occurs
regardless of the state of the KEN# input. The KEN# input's function is discussed in the
next section.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 93

Intel® Quark Core—Memory Subsystem Design
With this definition we see that several cases are included as “burstable.” Some
examples of burstable cycles are listed in Table 15. These cycle lengths are shown in
bytes to clarify the case listed.

The last two cases show that write cycles are burstable. In the last case a write cycle is
transferred on an 8- or 16-bit bus. If BRDY# is returned to terminate this cycle, the
CPU generates another write cycle without activating ADS#.

Using the burst write feature has debatable performance benefit. Some systems may
implement special functions that benefit from the use of burst writes. However, the
Intel® Quark Core does not write cache lines. Therefore, all write cycles are 4 bytes
long. Most of the devices that use dynamic bus sizing are read-only. This fact further
reduces the utility of burst writes.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
dynamic data bus sizing. Bus width is fixed at 32 bits.

Due to these facts, a memory subsystem design normally does not implement burst
write cycles. The BRDY# input is asserted only during main memory read cycles. RDY#
is used to terminate all memory write cycles. RDY# is also used for all cycles that are
not in the memory subsystem or are not capable of supporting burst cycles. The RDY#
input is used, for example, to terminate an EPROM or I/O cycle.

5.2.2 The KEN# Input

The primary purpose of the KEN# input is to determine whether a cycle is to be cached.
Only read data and code cycles can be cached. Therefore, these cycles are the only
cycles affected by the KEN# input.

Figure 57 shows a typical burst cycle. In this sequence, the value of KEN# is important
in two different places. First, to begin a cacheable cycle, KEN# must be active the clock
before BRDY# is returned. Second, KEN# is sampled the clock before BLAST# is active.
At this time the CPU determines whether this line is written to the cache.

The state of KEN# also determines when read cycles can be burst. Most read cycles are
initiated as 4 bytes long from the processor’s cache unit. When KEN# is sampled
active, the clock before BRDY# or RDY# is asserted, the cycle is converted to a 16-byte
cache line fill by the bus unit. This way, a cycle which would not have been burst can
now be burst by activating BRDY#.

Some read cycles can be burst without activating KEN#. The most prevalent example
of this type of read cycle is a code fetch. All code fetches are generated as 16-byte
cycles from the processor’s cache unit. So, regardless of the state of KEN#, code
fetches are always burstable. In addition, several types of data read cycles are
generated as 8-byte cycles. These cycles, mentioned previously, are descriptor loads
and floating-point operand loads. These cycles can be burst at any time.

The use of the KEN# input affects performance. The design example used in Figure 57
illustrates one way to use this signal effectively.

Table 15. Access Length of Typical CPU Functions

Bus Cycle Size (Bytes)

All code fetches 16

Descriptor loads 8

Cacheable reads 16

Floating-point operand loads 8

Bus size 8 (16) writes 4 (Max)
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
94 Order Number: 329678-001US

Memory Subsystem Design—Intel® Quark Core
Figure 57. Typical Burst Cycle

The primary concern when using KEN# is generating it in time for zero wait state read
cycles. Most main memory cycles are zero wait state if an L2 cache is implemented.
The access to main memory is one wait state during most read cycles. Any cache
access takes place with zero wait states. KEN# must, therefore, be valid during the first
T2 of any read cycle.

Once this requirement is established, a problem arises. Decode functions are inherently
asynchronous. Therefore, the decoded output that generates KEN# must be
synchronized. If it is not, the CPU’s setup and hold times are violated and internal
metastability results. With synchronization, the delay required to generate KEN# will be
at least three clocks. In the example shown, four clocks are required. In either case the
KEN# signal will not be valid before BRDY# is returned for zero or one wait state
cycles.

This problem is resolved if KEN# is made active. Figure 58 illustrates this function. In
this diagram KEN# is active during the first two clocks of the burst cycle. If this is a
data read cycle, KEN# being active at this time causes it to be converted to a 16-byte
length. The decode and synchronization of KEN# takes place during the first two T2
states of the cycle. If the cycle turns out to be non-cacheable, KEN# is deactivated in
the third T2. Otherwise KEN# is left active and the retrieved data is written to the
cache.

BLAST#

KEN#

DATA

BRDY#

T1

A5242-02

T2 T2 T2 T2

Sampled
here

Sampled
here

1 2 3 4
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 95

Intel® Quark Core—Memory Subsystem Design
Figure 58. Burst Cycle: KEN# Normally Active

Some memory devices may be slow enough that 16-byte cycles are undesirable. In this
case more than three wait states exist. The KEN# signal can be deactivated prior to
returning RDY# or BRDY# if three or more wait states are present. As a result, these
slow cycles are not converted to 16-byte cache line fills.

BLAST#

KEN#

DATA

BRDY#

T1

A5243-01

T2 T2 T2 T2

Sampled
here

Sampled here

1 2 3 4
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
96 Order Number: 329678-001US

Cache Subsystem—Intel® Quark Core
6.0 Cache Subsystem

6.1 Introduction
Cache is an important means of improving overall system performance. The Intel®
Quark Core has an on-chip, unified code and data cache. The on-chip cache is used for
both instruction and data accesses and operates on physical addresses. The Intel®
Quark Core has a 16-Kbyte cache that is organized in a 4-way set associative manner.
To understand cache philosophy and the system advantages of a cache, many issues
must be considered.

This chapter discusses the following related cache issues:
• Cache theory and the impact of cache on performance.
• The relationship between cache size and hit rates when using a first-level cache.
• Issues in mapping (or associativity) that arise when main memory is cached.

Different cache configurations including direct-mapped, set associative, and fully
associative. They are discussed along with the performance trade-offs inherent to
each configuration.

• The impact of cache line sizes and cache re-filling algorithms on performance.
• Write-back and write-through methods for updating main memory. How each

method maintain cache consistency and the impact on external bus utilization.
• Cache consistency issues that arise when a DMA occurs while the Intel® Quark

Core's cache is enabled. Methods that ensure cache and main memory consistency
during cache accesses.

• Cache used in single versus multiple CPU systems.

6.2 Cache Memory
Cache memory is high-speed memory that is placed between microprocessors and
main memory. Cache memory keeps copies of main memory that are currently in use
to speed microprocessor access to requested data and instructions. When properly
implemented, cache access time can be three to eight times faster than that of main
memory, and thus can reduce the overall access time. Cache also reduces the number
of accesses to main memory DRAM, which is important to systems with multiple bus
masters that all access that same memory. This section introduces the cache concept
and discusses memory performance benefits provided by a cache.

6.2.1 What is a Cache?

A cache memory is a smaller high-speed memory that fits between a CPU and slower
main memory. Cache memory is important in increasing computer performance by
reducing total memory latency. A cache memory consists of a directory (or tag), and a
data memory. Whenever the CPU is required to read or write data, it first accesses the
tag memory and determines if a cache hit has occurred, implying that the requested
word is present in the cache. If the tags do not match, the data word is not present in
the cache. This is called a cache miss. On a cache hit, the cache data memory allows a
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 97

Intel® Quark Core—Cache Subsystem
read operation to be completed more quickly from its faster memory than from a
slower main memory access. The hit rate is the percentage of the accesses that are
hits, and is affected by the size and organization of the cache, the cache algorithm
used, and the program running. An effective cache system maintains data in a way that
increases the hit rate. Different cache organizations are discussed later in this chapter.
The main advantage of cache is that a larger main memory appears to have the high
speed of a cache. For example, a zero-wait state cache that has a hit rate of 90 percent
makes main memory appear to be zero-wait state memory for 9 out of 10 accesses.

Programs usually address memory in the neighborhood of recently accessed locations.
This is called program locality or locality of reference and it is locality that makes cache
systems possible. Code, data character strings, and vectors tend to be sequentially
scanned items or items accessed repeatedly, and cache helps the performance in these
cases. In some cases the program locality principle does not apply. Jumps in code
sequences and context switching are some examples.

6.3 Cache Trade-offs
Cache efficiency is the cache's ability to keep the code and data most frequently used
by the microprocessor. Cache efficiency is measured in terms of the hit rate. Another
indication of cache efficiency is system performance; this is the time in which the
microprocessor can perform a certain task and is measured in effective bus cycles. An
efficient cache reduces external bus cycles and enhances overall system performance.
Hit rates are discussed in the next section.

Factors that can affect a cache's performance are:
• Size: Increasing the cache size allows more items to be contained in the cache.

Cost is increased, however, and a larger cache cannot operate as quickly as a
smaller one.

• Associativity (discussed in Section 6.3, “Cache Trade-offs” on page 98): Increased
associativity increases the cache hit rate but also increases its complexity and
reduces its speed.

• Line Size: The amount of data the cache must fetch during each cache line
replacement (every miss) affects performance. More data takes more time to fill a
cache line, but then more data is available and the hit rate increases.

• Write-Back and Write Posting: The ability to write quickly to the cache and have the
cache then write to the slower memory increases performance. Implementing
these types of cache designs can be very complex, however.

• Features: Adding features such as write-protection (to be able to cache ROM
memory), bus watching, and multiprocessing protocols can speed a cache but
increases cost and complexity.

• Speed: Not all cache return data to the CPU as quickly as possible. It is less
expensive and complex to use slower cache memories and cache logic.

6.3.1 Intel® Quark Core Cache Organization

The Intel® Quark Core's on-board cache is organized 4-way set associative with a line
size of 16 bytes. The 16-Kbyte cache is organized as four 4-Kbyte sets. Each 4-Kbyte
set is comprised of 256 16-byte lines. Figure 59 shows the cache organization. An
application can achieve an extremely high hit rate with the 4-way associativity. The
cache is transparent so that the Intel® Quark Core remains software-compatible with
its non-cache predecessors.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
98 Order Number: 329678-001US

Cache Subsystem—Intel® Quark Core
Figure 59. Cache Data Organization for the Intel® Quark Core On-Chip Cache

6.3.2 Block/Line Size

Block size is an important consideration in cache memory design. Block size is also
referred to as the line size, or the width of the cache data word. The block size may be
larger than the word, and this can impact the performance, because the cache may be
fetching and storing more information than the CPU needs.

As the block size increases, the number of blocks that fit in the cache is reduced.
Because each block fetch overwrites the older cache contents, some blocks are
overwritten shortly after being fetched. In addition, as block size increases, additional
words are fetched with the requested word. Because of program locality, the additional
words are less likely to be needed by the processor.

When a cache is refilled with four dwords or eight words on a miss, the performance is
dramatically better than a cache size that employs single-word refills. Those extra
words that are read into the cache, because they are subsequent words and because
programs are generally sequential in nature, are likely be hits in subsequent cache
accesses. Also, the cache refill algorithm is a significant performance factor in systems
in which the delay in transferring the first word from the main memory is long but in
which several subsequent words can be transferred in a shorter time. This situation
applies when using page mode accesses in dynamic RAM; and the initial word is read
after the normal access time, whereas subsequent words can be accessed quickly by
changing only the column addresses. Taking advantage of this situation while selecting
the optimum line size can greatly increase cache performance.

Word 0 Word 1 Word 2 Word 3

4 Kbytes

Set 0

Set 1

Set 2

Set 3

4 Kbytes

4 Kbytes

4 Kbytes

4-Way Set Associative 16-Kbyte Cache

Line Size = 4 DWORDS

Line Size = 16 Bytes
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 99

Intel® Quark Core—Cache Subsystem
6.3.3 Replacement Policy

In a set-associative cache configuration, a replacement policy is needed to determine
which set should receive new data when the cache is updated. There are four common
approaches for choosing which block (or single word) within a set is be overwritten.
These are the least recently used (LRU) method, the pseudo LRU method, the first-in
first-out (FIFO) method, and the random method.

In the LRU method, the set that was least recently accessed is overwritten. The control
logic must maintain least recently used bits and must examine the bits before an
update occurs. In the pseudo LRU method, the set that was assumed to be the least
recently accessed is overwritten. In the FIFO method, the cache overwrites the block
that is resident for the longest time. In the random method, the cache arbitrarily
replaces a block. The performance of the algorithms depends on the program behavior.
The LRU method is preferred because it provides the best hit rate.

6.4 Updating Main Memory
When the processor executes instructions that modify the contents of the cache,
changes have to be made in the main memory as well; otherwise, the cache is only a
temporary buffer and it is possible for data inconsistencies to arise between the main
memory and the cache. If only one of the cache or the main memory is altered and the
other is not, two different sets of data become associated with the same address.

There are two general approaches to updating the main memory. The first is the write-
through method; and the second is the write-back, also known as copy-back method.
Memory traffic issues are discussed for both methods.

6.4.1 Write-Through and Buffered Write-Through Systems

In a write-through system, data is written to the main memory immediately after or
while it is written into the cache. As a result, the main memory always contains valid
data. The advantage to this approach is that any block in the cache can be overwritten
without data loss, while the hardware implementation remains fairly straightforward.
There is a memory traffic trade-off, however, because every write cycle increases the
bus traffic on a slower memory bus. This can create contention for use of the memory
bus by other bus masters. Even in a buffered write-through scheme, each write
eventually goes to memory. Thus, bus utilization for write cycles is not reduced by
using a write-through or buffered write-through cache.

Users sometimes adopt a buffered write-through approach in which the write accesses
to the main memory can be buffered with a N-deep pipeline. A number of words are
stored in pipelined registers, and will subsequently be written to the main memory. The
processor can begin a new operation before the write operation to main memory is
completed. If a read access follows a write access, and a cache hit occurs, then data
can be accessed from the cache memory while the main memory is updated. When the
N-deep pipeline is full, the processor must wait if another write access occurs and the
main memory has not yet been updated. A write access followed by a read miss also
requires the processor to wait because the main memory has to be updated before the
next read access.

Pipeline configurations must account for multiprocessor complications when another
processor accesses a shared main memory location which has not been updated by the
pipeline. This means the main memory hasn't been updated, and the memory
controller must take the appropriate action to prevent data inconsistencies.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
100 Order Number: 329678-001US

Cache Subsystem—Intel® Quark Core
6.4.2 Write-Back System

In a write-back system, the processor writes data into the cache and sets a “dirty bit”
which indicates that a word had been written into the cache but not into the main
memory. The cache data is written into the main memory at a later time and the dirty
bit is cleared. Before overwriting any word or block in the cache, the cache controller
looks for a dirty bit and updates the main memory before loading the cache with the
new data.

A write-back cache accesses memory less often than a write-through cache because
the number of times that the main memory must be updated with altered cache
locations is usually lower than the number of write accesses. This results in reduced
traffic on the main memory bus.

A write-back cache can offer higher performance than a write-through cache if writes to
main memory are slow. The primary use of the a write-back cache is in a
multiprocessing environment. Since many processors must share the main memory, a
write-back cache may be required to limit each processor's bus activity, and thus
reduce accesses to main memory. It has been shown that in a single-CPU environment
with up to four clock memory writes, there is no significant performance difference
between a write-through and write-back cache.

There are some disadvantages to a write-back system. The cache control logic is more
complex because addresses have to be reconstructed from the tag RAM and the main
memory has to be updated along with the pending request. For DMA and
multiprocessor operations, all locations with an asserted dirty bit must be written to the
main memory before another device can access the corresponding main memory
locations.

6.4.3 Cache Consistency

Write-through and write-back systems require mechanisms to eliminate the problem of
stale main memory in a multiprocessing system or in a system with a DMA controller. If
the main memory is updated by one processor, the cache data maintained by another
processor may contain stale data. A system that prevents the stale data problem is said
to maintain cache consistency. There are four methods commonly used to maintain
cache consistency: snooping (or bus watching), broadcasting (or hardware
transparency), non-cacheable memory designation, and cache flushing.

In snooping, cache controllers monitor the bus lines and invalidate any shared locations
that are written by another processor. The common cache location is invalidated and
cache consistency is maintained. This method is shown in Figure 60.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 101

Intel® Quark Core—Cache Subsystem
Figure 60. Bus Watching/Snooping for Shared Memory Systems

In broadcasting/hardware transparency, the addresses of all stores are transmitted to
all the other cache so that all copies are updated. This is accomplished by routing the
accesses of all devices to main memory through the same cache. Another method is by
copying all cache writes to main memory and to all of the cache that share main
memory. A hardware transparent system is shown in Figure 61.

Figure 61. Hardware Transparency

In non-cacheable memory systems, all shared memory locations are considered non-
cacheable. In such systems, access to the shared memory is never copied in the cache,
and the cache never receives stale data. This can be implemented with chip select logic
or with the high order address bits. Figure 62 shows non-cacheable memory.

Shared
Memory

Cache
Controller

Snoop
Address I/P

Other
Bus Master(s)

CPU

Main
Memory

Cache

CacheCPU

Other
Bus

Master
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
102 Order Number: 329678-001US

Cache Subsystem—Intel® Quark Core
Figure 62. Non-Cacheable Share Memory

In cache flushing, all cache locations with set dirty bits are written to main memory (for
write-back systems), then cache contents are cleared. If all of the devices are flushed
before another bus master writes to shared memory, cache consistency is maintained.

Combinations of various cache coherency techniques may be used in a system to
provide an optimal solution. A system may use hardware transparency for time critical
I/O operations such as paging, and it may partition the memory as non-cacheable for
slower I/O operations such as printing.

6.5 Non-Cacheable Memory Locations
To avoid cache consistency problems, certain memory locations must not be cached.
The PC architecture has several special memory areas which may not be cached. If
ROM locations on add-in cards are cached, for example, write operations to the ROM
can alter the cache while main memory contents remain the same. Further, if the mode
of a video RAM subsystem is switched, it can produce altered versions of the original
data when a read-back is performed. Expanded memory cards may change their
mapping, and hence memory contents, with an I/O write operation. LAN or disk
controllers with local memory may change the memory contents independent of the
Intel® Quark Core. This altering of certain memory locations can cause a cache
consistency problem. For these reasons, the video RAM, shadowed BIOSROMs,
expanded memory boards, add-in cards, and shadowed expansion ROMs should be
non-cacheable locations. Depending on the system design, ROM locations may be
cacheable in a second-level cache if write protection is allowed.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
second-level cache.

6.6 Cache and DMA Operations
Some of the issues related to cache consistency in systems employing DMA have
already been covered in the preceding section. Because a DMA controller or other bus
master can update main memory, there is a possibility of stale data in the cache. The
problem can be avoided through snooping, cache transparency, and non-cacheable
designs.

CPU Decoder

Other
Bus

Master

Cache

Non-cacheable

Cacheable
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 103

Intel® Quark Core—Cache Subsystem
In snooping, the cache controller monitors the system address bus and invalidates
cache locations that will be written to during a DMA cycle. This method is advantageous
in that the processor can access its cache during DMA operations to main memory. Only
a “snoop hit” causes an invalidation cycle (or update cycle) to occur.

In cache transparency, memory accesses through the CPU and the DMA controller are
directed through the cache, requiring minimal hardware. However, the main
disadvantage is that while a DMA operation is in progress, the CPU bus is placed in
HOLD. The concurrency of CPU/cache and DMA controller/main memory operations is
not supported.

In non-cacheable designs, a separate dual-ported memory can be used as the non-
cacheable portion of the memory, and the DMA device is tightly coupled to this
memory. In this way, the problem of stale data cannot occur.

In all of the approaches, the cache should be made software transparent so that DMA
cycles do not require special software programming to ensure cache coherency.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
104 Order Number: 329678-001US

Peripheral Subsystem—Intel® Quark Core
7.0 Peripheral Subsystem

The peripheral (I/O) interface is an essential part of any embedded processor system.
It supports communications between the microprocessor and the peripherals. Given the
variety of existing peripheral devices, a peripheral system must allow a variety of
interfaces. An important part of a microprocessor system is the bus that connects all
major parts of the system. This chapter describes the connection of peripheral devices
to the Intel® Quark Core bus. This chapter presents design techniques for interfacing
different devices with the Intel® Quark Core, such as LAN controllers and EISA, VESA
local bus, and PCI chip sets.

The peripheral subsystem must provide sufficient data bandwidth to support the Intel®
Quark Core. High-speed devices like disks must be able to transfer data to memory
with minimal CPU overhead or interaction. The on-chip cache of the Intel® Quark Core
requires further considerations to avoid stale data problems. These subjects are also
covered in this chapter.

The Intel® Quark Core supports 8-bit, 16-bit and 32-bit I/O devices, which can be I/O-
mapped, memory-mapped, or both. It has a 106 Mbyte/sec memory bandwidth at
33 MHz. Cache coherency is supported by cache line invalidation and cache flush
cycles. I/O devices can be accessed by dedicated I/O instructions for I/O-mapped
devices, or by memory operand instructions for memory-mapped devices. In addition,
the Intel® Quark Core always synchronizes I/O instruction execution with external bus
activity. All previous instructions are completed before an I/O operation begins. In
particular, all writes pending in the write buffers are completed before an I/O read or
write is performed. These functions are described in this chapter.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
dynamic data bus sizing. Bus width is fixed at 32 bits.

7.1 Peripheral/Processor Bus Interface
Because the Intel® Quark Core supports both memory-mapped and I/O-mapped
devices, this section discusses the types of mapping, support for dynamic bus sizing,
byte swap logic, and critical timings. An example of a basic I/O controller
implementation is also included. Some system-oriented interface considerations are
discussed because they can have a significant influence on overall system performance.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
dynamic bus sizing.

7.1.1 Mapping Techniques

The system designer should have a thorough understanding of the system application
and its use of peripherals in order to design the optional mapping scheme. Two
techniques can be used to control the transmission of data between the computer and
its peripherals. The most straightforward approach is I/O mapping.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 105

Intel® Quark Core—Peripheral Subsystem
The Intel® Quark Core can interface with 8-bit, 16-bit or 32-bit I/O devices, which can
be I/O-mapped, memory-mapped, or both. All I/O devices can be mapped into physical
memory addresses ranging from 00000000H to FFFFFFFFH (four-gigabytes) or I/O
addresses ranging from 00000000H to 0000FFFFH (64 Kbytes) for programmed I/O, as
shown in Figure 63.

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 supports 32-bit
devices only.

Figure 63. Mapping Scheme

I/O mapping and memory-mapping differ in the following respects:
• The address decoding required to generate chip selects for the I/O-mapped devices

is much simpler than that required for memory-mapped devices. I/O-mapped
devices reside within the I/O space of the Intel® Quark Core (64 Kbytes); memory-
mapped devices reside in a much larger Intel® Quark Core memory space
(4-gigabytes), which requires more address lines to decode.

• The I/O space is 64 Kbytes and can be divided into 64 K of 8-bit ports, 32 K of 16-
bit ports, 16 K of 32-bit ports or any combinations of ports which add up to less
than 64 Kbytes. The 64 Kbytes of I/O address space refers to physical memory
because I/O instructions do not utilize the segmentation or paging hardware and
are directly addressable using DX registers.

• Memory-mapped devices can be accessed using the Intel® Quark Core's
instructions, so that I/O to memory, memory-to-I/O, and I/O-to-I/O transfers, as
well as compare and test operations, can be coded efficiently.

• The I/O-mapped device can be accessed only with IN, OUT, INS, and OUTS
instructions. I/O instruction execution is synchronized with external bus activity. All
I/O transfers are performed using the AL (8-bit), AX (16-bit), or EAX (32-bit)
registers.

• Memory mapping offers more flexibility in Protected Mode than I/O mapping.
Memory-mapped devices are protected by the memory management and
protection features. A device can be inaccessible to a task, visible but protected, or

Physical
Memory

Not
Accessible

Not
Accessible

64 Kbyte

FFFFFFFFH

00000000H

0000FFFFH

00000000H

Accessible
Programmed
I/O Space

I/O SpacePhysical Memory
Space

4 Gbyte
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
106 Order Number: 329678-001US

Peripheral Subsystem—Intel® Quark Core
fully accessible, depending on where it is mapped. Paging and segmentation
provide the same protection levels for 4-Kbyte pages or variable length segments,
which can be swapped to the disk or shared between programs. The Intel® Quark
Core supports pages and segments to provide the designer with maximum
flexibility.

• The I/O privilege level of the Intel® Quark Core protects I/O-mapped devices by
either preventing a task from accessing any I/O devices or by allowing a task to
access all I/O devices. A virtual-8086 mode I/O permission bitmap can be used to
select the privilege level for a combination of I/O bytes.

7.1.2 Dynamic Data Bus Sizing

Note: The implementation of Intel® Quark Core on Intel® Quark SoC X1000 does not support
dynamic data bus sizing.

Dynamic data bus sizing allows a direct processor connection to 32-, 16- or 8-bit buses
for memory or I/O devices. The Intel® Quark Core supports dynamic data bus sizing.
With dynamic bus sizing, the bus width is determined during each bus cycle to
accommodate data transfers to or from 32-bit, 16-bit or 8-bit devices. The decoding
circuitry can assert BS16# for 16-bit devices, or BS8# for 8-bit devices for each bus
cycle. For addressing 32-bit devices, both BS16# and BS8# are deasserted. If both
BS16# and BS8# are asserted, an 8-bit bus width is assumed.

Appropriate selection of BS16# and BS8# drives the Intel® Quark Core to run
additional bus cycles to complete requests larger than 16-bits or 8-bits. When BS16# is
asserted, a 32-bit transfer is converted into two 16-bit transfers (or three transfers if
the data is misaligned). Similarly, asserting BS8# converts 32-bit transfers into four 8-
bit transfers. The extra cycles forced by the BS16# or BS8# signals should be viewed
as independent cycles. BS16# or BS8# are normally driven active during the
independent cycles. The only exception is when the addressed device can vary the
number of bytes that it can return between the cycles.

The Intel® Quark Core drives the appropriate byte enables during the independent
cycles initiated by BS8# and BS16#. Addresses A31–A2 do not change if accesses are
to a 32-bit aligned area. Table 16 shows the set of byte enables that is generated on
the next cycle for each of the valid possibilities of the byte enables on the current cycle.
BEx# must be ignored for 16-byte cycles to memory-mapped devices.

Table 16. Next Byte-Enable Values for the BSx# Cycles

Current Next with BS8# Next with BS16#

BE3# BE2# BE1# BE0# BE3# BE2# BE1# BE0# BE3# BE2# BE1# BE0#

1 1 1 0 N N N N N N N N

1 1 0 0 1 1 0 1 N N N N

1 0 0 0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1

1 1 0 1 N N N N N N N N

1 0 0 1 1 0 1 1 1 0 1 1

0 0 0 1 0 0 1 1 0 0 1 1

1 0 1 1 N N N N N N N N

0 0 1 1 0 1 1 1 N N N N

0 1 1 1 N N N N N N N N

Note: “N” means that another bus cycle is not required to satisfy the request.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 107

Intel® Quark Core—Peripheral Subsystem
The Intel® Quark Core requires that the data bytes be driven on the addressed lines
only. The simplest example of this function is a 32-bit aligned BS16# read. When the
Intel® Quark Core reads the two higher order bytes, they must be driven on D31–D16
data bus, and it expects the two low order bytes on D15–D0.

The external system design must provide buffers to allow the Intel® Quark Core to
read or write data on the appropriate data bus pins. Table 17 shows the data bus lines
where the Intel® Quark Core expects valid data to be returned for each valid
combination of byte enables and bus sizing options. Valid data is driven only on data
bus pins which correspond to byte enable signals that are active during write cycles.
Other data pins are also driven, but they do not contain valid data. The Intel® Quark
Core does not duplicate write data on the data bus when corresponding byte enables
are deasserted.

The BS16# and BS8# inputs allow external 16- and 8-bit buses to be supported using
fewer external components. The Intel® Quark Core samples these pins every clock
cycle. This value is sampled on the clock before RDY# to determine the bus size. When
BS8# or BS16# is asserted, only 16-bits or 8-bits of data are transferred in a clock
cycle. When both BS8# and BS16# are asserted, an 8-bit bus width is used.

Dynamic bus sizing allows the power-up or boot-up programs to be stored in 8-bit non-
volatile memory devices (e.g., PROM, EPROM, E2PROM, Flash, and ROM) while program
execution uses 32-bit DRAM or variants.

7.1.3 Address Decoding for I/O Devices

Address decoding for I/O devices resembles address decoding for memories. The
primary difference is that the block size (range of addresses) for each address signal is
much smaller. The minimum block size depends on the number of addresses used by
the I/O device. In most processors, where I/O instructions are separate, I/O addresses
are shorter than memory addresses. Typically, processors with a 16-bit address bus use
an 8-bit address for I/O.

One technique for decoding memory-mapped I/O addressed is to map the entire I/O
space of the Intel® Quark Core into a 64-Kbyte region of the memory space. The
address decoding logic can be reconfigured so that each I/O device responds to a
memory address and an I/O address. This configuration is compatible with software
that uses either I/O instructions or memory-mapped techniques.

Table 17. Valid Data Lines for Valid Byte Enable Combinations

BE3# BE23 BE1# BE0# w/o BS8#/BS16# w BS8# w BS16#

1 1 1 0 D7–D0 D7–D0 D7–D0

1 1 0 0 D15–D0 D7–D0 D15–D0

1 0 0 0 D23–D0 D7–D0 D15–D0

0 0 0 0 D31–D0 D7–D0 D15–D0

1 1 0 1 D15–D8 D15–D8 D15–D8

1 0 0 1 D23–D8 D15–D8 D15–D8

0 0 0 1 D31–D8 D15–D8 D15–D8

1 0 1 1 D23–D16 D23–D16 D23–D16

0 0 1 1 D31–D16 D23–D16 D31–D16

0 1 1 1 D31–D24 D31–D24 D31–D24
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
108 Order Number: 329678-001US

Peripheral Subsystem—Intel® Quark Core
Addresses can be assigned arbitrarily within the I/O or memory space. Addresses for
either I/O-mapped or memory-mapped devices should be selected so as to minimize
the number of address lines needed.

7.1.3.1 Address Bus Interface

Figure 64 shows the Intel® Quark Core address interface to 32-bit devices.

Figure 64. Intel® Quark Core Interface to I/O Devices

7.1.3.2 32-Bit I/O Interface

A simple 32-bit I/O interface is shown in Figure 65. The example uses only four 8-bit
wide bidirectional buffers which are enabled by BE3#–BE0#. Table 17 provides
different combinations of BE3#–BE0#. To provide greater flexibility in I/O interface
implementation, the design should include interfaces for 32-, 16- and 8-bit devices.
The truth table for a 32-to-32-bit interface is shown in Table 18.

Address Bus
(A31–A2, BE3#–BE0#)

32-Bit
I/O

Devices

16-Bit
I/O

Devices

8-Bit
I/O

Devices

A31–A2

BE3#–
BE0#

Byte
Select

BHE#,
BLE#,
A1

A0(BLE#), A1
Address
Decoder

BS8# BS16#BS8# = BS16# = HIGH
for 32-Bit Addressing

A31–A2

Processor
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 109

Intel® Quark Core—Peripheral Subsystem
Figure 65. 32-Bit I/O Interface

BUFF 0

BUFF 1

BUFF 2

BUFF 3

BE3#

8

8

8

8

8

8

8

8

BE2#

BE1#

BE0#

Intel® Quark Core Processor Data Bus 32-Bit I/O Device

Table 18. 32-Bit to 32-Bit Bus Swapping Logic Truth Table (Sheet 1 of 2)

Intel® Quark Core 8-Bit Interface(1)

BE3# BE2# BE1# BE0# BEN16# BEN8UH# BEN8UL# BEN8H# BHE#(2) A1 A0

0 0 0 0 1 1 1 1 X X X

1 0 0 0 1 1 1 1 X X X

0 1 0 0(3) 1 1 1 1 X X X

1 1 0 0 1 1 1 1 X X X

0 0 1 0(3) 1 1 1 1 X X X

1 0 1 0(3) 1 1 1 1 X X X

0 1 1 0(3) 1 1 1 1 X X X

1 1 1 0 1 1 1 1 X X X

0 0 0 1 1 1 1 1 X X X
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
110 Order Number: 329678-001US

Peripheral Subsystem—Intel® Quark Core
7.2 Basic Peripheral Subsystem
All microprocessor systems include a CPU, memory and I/O devices which are linked by
the address, data and control buses. Figure 66 illustrates the system block diagram of
a typical Intel® Quark Core-based system.

1 0 0 1 1 1 1 1 X X X

0 1 0 1(3) 1 1 1 1 X X X

1 1 0 1 1 1 1 1 X X X

0 0 1 1 1 1 1 1 X X X

1 0 1 1 1 1 1 1 X X X

0 1 1 1 1 1 1 1 X X X

1 1 1 1(3) 1 1 1 1 X X X

 Inputs Outputs

Notes:
1. X implies “do not care” (either 0 or 1).
2. BHE# (byte high enable) is not needed in 8-bit interface.
3. Indicates a non-occurring pattern of byte enables; either none are asserted or the pattern has byte

enables asserted for non-contiguous bytes.

Table 18. 32-Bit to 32-Bit Bus Swapping Logic Truth Table (Sheet 2 of 2)

Intel® Quark Core 8-Bit Interface(1)

BE3# BE2# BE1# BE0# BEN16# BEN8UH# BEN8UL# BEN8H# BHE#(2) A1 A0
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 111

Intel® Quark Core—Peripheral Subsystem
Figure 66. System Block Diagram

An embedded Intel® Quark Core system may consist of several subsystems. The heart
of the system is the processor. The memory subsystem is also important and must be
efficient and optimized to provide peak system level performance. As described in
Chapter 5.0, “Memory Subsystem Design” it is necessary to utilize the burst-bus
feature of the Intel® Quark Core for the DRAM control implementation. The cache
subsystem, as described in Chapter 6.0, “Cache Subsystem” also plays an important
role in overall system performance. For many systems however, the on-chip cache
provides sufficient performance.

A high-performance Intel® Quark Core-based system, requires an efficient peripheral
subsystem. This section describes the elements of this system, including the I/O
devices on the expansion bus (the memory bus) and the local I/O bus. In a typical
system, a number of slave I/O devices can be controlled through the same local bus
interface. Complex peripheral devices which can act as bus masters may require a
more complex interface.

The bus interface control logic is shown in Figure 67 and consists of three main blocks:
the bus control and ready logic, the data transceiver and byte swap logic, and the
address decoder.

Processor

LAN
Controller

Cache
Subsystem

Memory
Subsystems

DMAC

Memory Bus

Bus
Translator

I/O Bus

Bus
Interface

SCSI/IPI
Interface

ESDI

(EISA, MCA,

Proprietary)
PCI, ISA, or
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
112 Order Number: 329678-001US

Peripheral Subsystem—Intel® Quark Core
Figure 67. Basic I/O Interface Block Diagram

7.2.1 Bus Control and Ready Logic

A typical peripheral device has address inputs which the processor uses to select the
device's internal registers. It also has a chip select (CS#) signal which enables it to
read data from and write data to the data bus, as controlled by the READ (RD#) and
WRITE (WR#) control signals. For a processor that has separate memory and I/O
addressing, either memory or I/O read and write signals can be used. As discussed in
Section 7.1.1, “Mapping Techniques” on page 105, when memory read and write
signals are used to access the peripheral device, the device is called a memory-mapped
I/O device.

Many peripheral devices also generate an interrupt output which is asserted when a
response is required from the processor. Here, the processor must generate an
interrupt acknowledge (INTA#) signal.

Clock CLK

ADS#

M/IO#

D/C#

W/R#

RDY#

ADS#

M/IO#

D/C#

W/R#

RDY#

 CPU

Bus Control
and Ready

IOCYC

EN

Address
Decoder

CS1#

CS0#

INTA

RECOV

IOR#

IOW#

CS0#

CS1#

OE#
Data

Transceiver

DIR Data
Bus

CS0#RD#

WR#

A2

I/O #2
(32-Bit)

I/O #1
(32-Bit)

RD#

WR#

A2

CS1#

32

32 32 4

(To Interrupt Controller)

Data
Bus

Addr
Bus

BE3#–
BE0#
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 113

Intel® Quark Core—Peripheral Subsystem
The bus controller decodes the Intel® Quark Core’s status outputs (W/R#, M/IO# and
D/C#) and activates command signals according to the type of bus cycle requested.

The bus controller can be used to do the following:
1. Generate an EPROM data read when the control logic generates a signal such as a

memory read command (EPRD#). The command forces the selected memory
device to output data.

2. Generate the IOCYC# signal which indicates to the address decoder that a valid I/O
cycle is taking place. As a result, the relevant chip select (CS#) signal should be
enabled for the I/O device. Once IOCYC is generated, the IOR# and IOW# signals
are asserted according to the decoded Intel® Quark Core status signals (explained
later).

3. Initiate I/O read cycles when W/R# is low and M/IO# is low. The I/O read
command (IOR#) is generated. IOR# selects the I/O device which is to output the
data.

4. Initiate an I/O write cycle when W/R# is high and M/IO# is low. The I/O write
command signal (IOW#) is generated. This signal instructs a selected I/O device to
receive data from the Intel® Quark Core.

5. Generate a RECOV signal which is used for recovery and to avoid data contention.
This signal is detailed in Section 7.2.5, “Recovery and Bus Contention” on
page 119.

6. Generates the interrupt acknowledge signal (INTA#). This signal is sent to the
82C59A programmable interrupt controller to enable 82C59A interrupt vector data
onto the Intel® Quark Core data bus using a sequence of interrupt acknowledge
pulses that are issued by the control logic.

7.2.2 Bus Control Signal Description

The following list describes the input/output signals for the bus control logic.

7.2.2.1 Intel® Quark Core Interface

ADS#—Address Status. This input signal to the bus controller is connected directly to
the Intel® Quark Core ADS# output. It indicates that a valid bus cycle definition and
address are available on the cycle definition lines and address bus. ADS# is driven
active at the same time when addresses are driven.

M/IO#—Memory/Input-Output Signal
D/C#—Data/Control
W/R#—Write/Read (Input signals to bus controller)

These signals are connected directly to the Intel® Quark Core's bus cycle status
outputs. For the Intel® Quark Core, they are valid when ADS# is asserted. Table 19
describes the bus cycles of various combinations of M/IO#, D/C# and W/R# signals.

Table 19. Bus Cycle Definitions (Sheet 1 of 2)

M/IO# D/C# W/R# ADS# Bus Cycle Initiated

0 0 0 0 Interrupt acknowledge

0 0 1 0 Halt/special cycle

0 1 0 0 I/O read

0 1 1 0 I/O write

Note: † Intel reserved. Do not use.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
114 Order Number: 329678-001US

Peripheral Subsystem—Intel® Quark Core
RDY#—Ready Output Signal. This signal is connected directly to the Intel® Quark
Core's RDY# input and indicates that the current bus cycle is complete. It also indicates
that the I/O device has returned valid data to the Intel® Quark Core's data pins
following an I/O write cycle. For the Intel® Quark Core, RDY# is ignored when the bus
is idle and at the end of the first clock of the bus cycle. The signal is utilized in wait
state generation which is covered in the next section.

CLK#—Clock Input Signal. This signal provides the fundamental timings for the bus
control logic and is synchronous with the processor's clock. All of the external timings
are specified with respect to the rising edge of the clock.

7.2.3 Wait State Generator Logic

When the memory subsystem or the I/O device cannot respond to the processor in
time, wait states are added to the bus cycles. During wait states the processor freezes
the state of the bus. On the Intel® Quark Core, wait states are activated by the RDY#
signal (when asserted). Additional wait states are generated as long as RDY# stays
deasserted, and the processor resumes its operations once RDY# is asserted.

Timing differences between microprocessors and peripheral devices are common, but
can be compensated for by using wait states or some other delay techniques. The
following major timing parameters must be accounted for:
1. Minimum pulse width for read and write timings
2. Chip select access time
3. Address access time
4. Access time from read strobe

It is possible to adjust the minimum pulse width and chip select access time by adding
wait states. Refer to Chapter 4.0, “Bus Operation” for more detailed information on
adding wait states to basic bus cycles.

Figure 68 shows PLD equations for basic I/O control logic. A wait state generator should
be implemented to optimize wait state generation.

1 0 0 0 Code read

1 0 1 0 Reserved†

1 1 0 0 Memory read

1 1 1 0 Memory write

Table 19. Bus Cycle Definitions (Sheet 2 of 2)

M/IO# D/C# W/R# ADS# Bus Cycle Initiated

Note: † Intel reserved. Do not use.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 115

Intel® Quark Core—Peripheral Subsystem
Figure 68. PLD Equations for Basic I/O Control Logic

The equation in Figure 68 shows an implementation of a seven-state wait state
controller. The wait state logic inserts the needed wait states according to the number
required by the device being accessed. In a simple design, I/O accesses can be
designated as being equal to the number of wait states required by the slowest device.

7.2.4 Address Decoder

The function of the address decoder is to decode the most significant address bits and
generate address select signals for each system device. The address space is divided
into blocks, and the address select signals indicate whether the address on the address
bus is within the predetermined range. The block size usually represents the amount of
address space that can be accessed within a particular device and the address select
signal is asserted for any address within that range.

Address select signals are asserted within the range of addresses which is determined
by the decoded address lines. The relationship between memory and I/O mapping and
address decoding is given by the following equation:
Given that n = bits to decoder

m = bits to I/O or memory
then # of chip selects = 2n

address range = 2m = # of least significant address lines

For example, when the address decoder decodes A13 through the most significant
address bits, the least significant 13 address bits A2 to A12 are ignored. Hence the
address select can be asserted for a 2-Kbyte address range.

For I/O-mapped devices, the maximum I/O space is 64 Kbytes. When using I/O
instructions the block size (range of addresses) for each address select signal is much
smaller than the address space of the memory-mapped devices. The minimum block
size is determined according to the number of addresses being used by the peripheral
device.

Inputs ADS#, M/IO#, D/C#, W/R#, SEL0, SEL1, SEL2
Outputs IOCYC, 0 C1, C2, IOR#, IOW#, RDY#

IOCYC = IOCYCLE VALID
C0, C1, C2 = Outputs of a 3-bit counter
Sel 0, 1, 2 = Programmable wait state select input

PLD Equation:
IO VALID CYCLE ;; start I/O cycle

IOCYC : =ADS * M/IO# *D/C;END when ready
Wait State Counter;

C0 : = IOCYC * C0#;Counter bit 0
C1 : = IOCYC * C0 * C1#;Counter bit 1

+ IOCYC * C0# * C1
C2 : = IOCYC * C0 * C1 * C2#;Counter bit 2

+ IOCYC * C0# * C2
+ IOCYC * C0# * C1 * C2

I/O Read; I/O Write
IOR : = ADS * M/IO# * D/C * W/R#

 + IOR * RDY
IOW : = ADS * M/IO * D/C * W/R

 + IOW * RDY#
READY (3 Wait States)

 RDY = C0 * C1 * C2#
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
116 Order Number: 329678-001US

Peripheral Subsystem—Intel® Quark Core
A typical address decoding circuit for a basic I/O interface implementation is shown in
Figure 69. It uses 74S138. Only one output is asserted at a time. The signal
corresponding to the binary number present at the A, B and C inputs and value of the
gate enable signals.

Figure 70 shows the internal logic and truth table of the 74S138. It has three enable
inputs; two are active low, and one is active high. All three inputs must be asserted;
otherwise the outputs are deasserted. Since all of the outputs are active low, the
selected output is low and the others are high.

Figure 69. I/O Address Example

In Figure 69, address lines A15–A8 are ignored to maintain simplicity. Lines A7–A2 are
decoded to generate addresses XXE0–XXFC. When a valid cycle begins, ADS# is
latched in the flip-flop.

RDY#

RESET

TIMEOUT

S

D

Q#

QADS#

CPU CLK

A5
A6
A7

A2

A3

A4

M/IO#

D/C#

IO CS (XXE0)

E4

E8

FC

F8

E1

E2

E3

A

B

C

74S138
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 117

Intel® Quark Core—Peripheral Subsystem
Figure 70. Internal Logic and Truth Table of 74S138

When A5, A6 and A7 are high and ADS# is strobed, E2 on the decoder is enabled. Here,
M/IO# is low and D/C# is high, enabling inputs E1 and E3 of the decoder. When RDY#
is active, E2 is disabled and the address is no longer valid. Reset and timeout signals
may also disable the address decoding logic.

Because of its non-pipelined address bus, the basic I/O interface design for the Intel®
Quark Core does not require address latches following the decoder.

The number of decoders needed is usually a factor of memory mapping complexity.

(15)

(14)

(13)

(12)

(11)

(10)

(9)

(7)

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Data
Outputs

(6)

(4)

(5)

G1

G2A#

G2B#

Enable
Inputs

(1)

(2)

(3)

A

B

C

Select
Inputs

Inputs

Outputs
Enable Select

G1 G2#† C B A Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

X 1 X X X 1 1 1 1 1 1 1 1

0 X X X X 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 1 1 1

1 0 0 0 1 1 0 1 1 1 1 1 1

1 0 0 1 0 1 1 0 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1 1 1

1 0 1 0 0 1 1 1 1 0 1 1 1

1 0 1 0 1 1 1 1 1 1 0 1 1

1 0 1 1 0 1 1 1 1 1 1 0 1

1 0 1 1 1 1 1 1 1 1 1 1 0
†G2# = G2A# + G2B#
1 = High 0= Low Level
X = Don’t Care
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
118 Order Number: 329678-001US

Peripheral Subsystem—Intel® Quark Core
7.2.5 Recovery and Bus Contention

Although data transceivers help to avoid data bus contention, I/O devices may still
require a recovery period between back-to-back accesses. At higher Intel® Quark Core
clock frequencies, bus contention is more problematic, particularly because of the long
float delay of I/O devices, which can conflict with read data from other I/O devices or
write data from the CPU. To ensure proper operation, I/O devices require a recovery
time between consecutive accesses. All slave devices stop driving data on the bus on
the rising edge of IOR#. After a delay which follows this rising edge, the data bus
floats.

When other devices drive data on to the bus before the data from the previous access
floats, bus contention occurs. The Intel® Quark Core has a fast cycle time (30 ns at
33 MHz), and the probability of bus contentions must be addressed.

Bus control logic should implement recovery to eliminate bus contention. The logic
generates a RECOV signal until the data from the previous read floats. It may or may
not be possible to enforce this recovery with the hardware counter. The hardware
counter method may not be feasible when recovery times are too fast for the hardware
counter (i.e., when recovery time is in nanoseconds). In this case, recovery time can be
enforced in software using NOPs and delay loops or using a programmable timer.

The advantages of using hardware-enforced recovery are transparency and reliability.
When moving to higher processor clock speeds, no change is needed in the I/O device
drivers. For these reasons, hardware enforced I/O recovery time is recommended.

7.2.6 Write Buffers and I/O Cycles

The Intel® Quark Core contains four write buffers to enhance the performance of
consecutive writes to memory. Writes are driven onto the external bus in the same
order in which they are received by the write buffers. Under certain conditions, a
memory read is reordered in front of the writes pending in the write buffer even though
the writes occurred earlier in program execution (see Chapter 4.0, “Bus Operation” for
details).

However, I/O cycles must be handled in a different manner by the write buffers. I/O
reads are never reordered in front of buffered memory writes. This ensures that the
Intel® Quark Core updates all memory locations before reading status from an I/O
device.

The Intel® Quark Core never buffers single I/O writes. When processing an I/O write
instruction (OUT, OUTS), internal execution stops until the I/O write actually completes
on the external bus. This allows time for the external system to drive an invalidate into
the Intel® Quark Core or to mask interrupts before the processor continues to the
instruction following the write instruction. Repeated OUTS (REP OUTS) instructions are
buffered and the next instruction is not executed until the REP OUTS finishes executing.

7.2.6.1 Write Buffers and Recovery Time

The write buffers, in association with the cache, have certain implications for I/O device
recovery times. Back-to-back write recovery times must be guaranteed by explicitly
generating a read cycle to a non-cacheable area in between the writes. Since the Intel®
Quark Core does not buffer I/O writes, the inserted read does not proceed to the bus
until the first write is completed. Then, the read cycle executes on the external bus.
During this time, the I/O device recovers and allows the next write.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 119

Intel® Quark Core—Peripheral Subsystem
7.2.7 Non-Cacheability of Memory-Mapped I/O Devices

To avoid problems caused by I/O “read arounds,” memory-mapped I/O should not be
cached. A read around occurs when a read cycle is reordered in front of a write cycle. If
the memory-mapped I/O device is cached, it is possible to read the status of the I/O
device before all previous writes to that device are completed. This causes a problem
when the read initiates an action requiring memory to be up-to-date.

An example of when a read around could cause a problem follows:
• The interrupt controller is memory-mapped in cacheable memory.
• The write buffer is filled with write cache hits, so a read is reordered in front of the

writes.
• One of the pending writes is a write to the interrupt controller control register.
• The read that was reordered (and performed before the write) was to the interrupt

controller's status register.

Because the reading of the status register occurred before the write to the control
register, the wrong status was read. This can be avoided by not caching memory-
mapped I/O devices.

7.2.8 Intel® Quark Core On-Chip Cache Consistency

Some peripheral devices can write to cacheable main memory. If this is the case, cache
consistency must be maintained to prevent stale data from being left in the on-chip
cache. Cache consistency is maintained by adding bus snooping logic to the system and
invalidating any line in the on-chip cache that another bus master writes to.

Cache line invalidations are usually performed by asserting AHOLD to allow another bus
master to drive the address of the line to be invalidated, and then asserting EADS# to
invalidate the line. Cache line invalidations may also be performed when BOFF# or
HOLD is asserted instead of AHOLD. If AHOLD, BOFF# and HOLD are all deasserted
when EADS# is issued, the Intel® Quark Core invalidates the cache line at the address
that happens to be on the bus. Cache line invalidations and cache consistency are
explained more fully in Chapter 6.0, “Cache Subsystem”.

7.3 I/O Cycles
The I/O read and write cycles used in a system are a factor of the I/O control logic
implementation. Figure 71 through 74 illustrate an I/O read and write cycle for a typical
implementation.

7.3.1 Read Cycle Timing

A new processor read cycle is initiated when ADS# is asserted in T1. The address and
status signals (M/IO# = low, W/R# = low, D/C# = high) are asserted. The IOCYC
signal is generated by the control logic by decoding ADS#, M/IO#, W/R# and D/C#.
IOCYC indicates to an external device that an I/O cycle is pending. The IOR# signal is
asserted in the T2 state when IOCYC is valid and RECOV is inactive. The RECOV signal
indicates that the new cycle must be delayed to meet the I/O device recovery time or
to prevent data bus contention. The I/O read signal (IOR#) signal is not asserted until
RECOV is deasserted. Data becomes valid after IOR# is asserted, with the timing
dependent on the number of wait states implemented.

In the example, two wait states are required for the slowest I/O device to do a read,
and the bus control logic keeps IOR# active to meet the minimum active time
requirement. The worst case timing values are calculated by assuming maximum delay
in the decode logic and through data transceivers. The following equations show the
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
120 Order Number: 329678-001US

Peripheral Subsystem—Intel® Quark Core
fastest possible cycle implementation. Wait States should be added to meet the access
times of the I/O devices used. Figure 71 and 72 show the I/O read cycle timing and the
critical analysis.

Figure 71. I/O Read Timing Analysis

Figure 72. I/O Read Timings

TRVD Read Signal Valid Delay
TRVD = TPLDpd

= 10 ns

TDSU Read Data Setup Time
TDSU = TBUFpd + Tsu

†

= 9 + 5 = 14 ns

TDHD Read Data Hold Time
TDHD = THD

† – TBUFpd
= 3 – 9 = –6 ns

†TSU = T22 = Intel® Quark Core processor time (33 MHz)
 THD = Intel® Quark Core processor read hold time (33 MHz)

CLK

ADS#

M/IO#

D/C#

A31–A2

W/R#

IOCYC

IOR#

CS#

DATA

RDY#

TDSU

TDHD

To CPU

TRVD

T2 T2 T2 T2T1 T1
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 121

Intel® Quark Core—Peripheral Subsystem
7.3.2 Write Cycle Timings

The I/O write cycle is similar to the I/O read cycle with the exception of W/R# being
asserted high when sampled rather than low from the Intel® Quark Core side. This is
shown in Figure 73 and 74.

Figure 73. I/O Write Cycle Timings

The timing of the remaining signals (the address and status signals) is similar to that of
I/O read cycle timings. The processor outputs data in T2. The I/O write signal (IOW#)
may be asserted one or two clocks after the chip select. The exact delay between the
chip select and the IOW# varies according to the write requirements of the I/O device.
Data is written into the I/O device on the rising edge of IOW#, and the processor stops
driving data once RDY# data is sampled active. The critical timings for the I/O write
cycle are shown in Figure 74.

CLK

ADS#

M/IO#

D/C#

A31–A2

W/R#

IOCYC

IOW#

CS#

DATA

RDY#

From CPU

TWVD

T2 T2 T2 T2T1 T1

TDVD TDFD
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
122 Order Number: 329678-001US

Peripheral Subsystem—Intel® Quark Core
Figure 74. I/O Write Cycle Timing Analysis

Latches and data buffers can improve processor write performance. In Figure 75, I/O
addresses and data are both latched in a configuration called a posted write. Posted
writes help increase system performance by allowing the processor to complete a cycle
without wait states. Once the data and address are latched, RDY# can be asserted
during the first T2 of an I/O write cycle. Thus, the processor operation and the write
cycle to the peripheral device can continue simultaneously. This is illustrated in
Figure 76. The write cycle appears to be only two clocks long (from ADS# to RDY#)
because the actual write overlaps other CPU bus cycles.

Figure 75. Posted Write Circuit

TWVD Write Signal Valid Delay
TWVD = TPLDpd

= 10 ns

TDVD Write Data Valid Delay
TDVD = TVD

† + TBUFpd
= 19 + 9 = 28 ns

TDFD Write Data Float Time
TDFD = TFD

† – TBUFpd
= 0 + 9 = 9 ns

†TVD = T10 = Intel® Quark Core processor write data valid delay (33 MHz)
 TFD = T11 = Intel® Quark Core processor write data float delay (33 MHz)

I/O

Device

I/O
Data
Latch

I/O
Address
Decode

I/O
Address

Latch

Data
Buffer

Address

Processor

Data I/O Write
Data Bus
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 123

Intel® Quark Core—Peripheral Subsystem
Figure 76. Timing of a Posted Write

CLK

T1 T1 T2T2

ADS

CPU

Latched

RDX#

Address

Address
Cycle 1

Cycle 1 Cycle 2
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
124 Order Number: 329678-001US

Local APIC—Intel® Quark Core
8.0 Local APIC

8.1 Local APIC Overview
The local APIC (LAPIC) receives interrupts from the processor’s interrupt pins, from
internal sources, and SoC and sends these to the CPU for handling the interrupts. The
LAPIC currently does not support sending/receiving inter processor interrupt (IPI)
messages to and from other processors on the system bus. The local APIC consists of a
set of APIC registers and associated hardware that control the delivery of interrupts to
the processor core. The APIC registers are memory mapped and can be read and
written using the MOV instruction.

Figure 77. LAPIC Diagram
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 125

Intel® Quark Core—Local APIC
8.2 LAPIC Register Structure
The LAPIC registers are mapped into the 4KB APIC register space. All the registers are
32-bits, 64-bits, or 256-bits in width and are aligned on 128-bit boundaries. All the
registers are accessed using load/store operations. The following table shows the LAPIC
register address mapping and the different register fields.

Table 20. LAPIC Register Address Map and Fields (Sheet 1 of 5)

Address Register Name Software
Read/Write Reset Value Description

FEE0_0000H Reserved

FEE0_0010H Reserved

FEE0_0020H LAPIC ID Register Read/Write
[31:28] = Reserved
[27:24] = 8’b0;
[23:0] = Reserved

[27:24] = APIC_ID

FEE0_0030H LAPIC Version Register Read Only
[7:0] = Version
[23:16] = Max. LVT Entry

FEE0_0040H Reserved

FEE0_0050H Reserved

FEE0_0060H Reserved

FEE0_0070H Reserved

FEE0_0080H Task Priority Register
(TPR) Read/Write [31:0] = 32’b0

[3:0] = Task Priority Sub Class
[7:4] = Task Priority

FEE0_0090H
Reserved.
Arbitration Priority
Register (APR)

Not Supported.
Read Only

Not Supported

FEE0_00A0H Processor Priority
Register (PPR) Read Only [31:0] = 32’b0

[3:0] = Processor Priority Sub-
Class
[7:4] = Processor Priority

FEE0_00B0H EOI Register Write Only [31:0] = 32’b0 [7:0] = EOI vector

FEE0_00C0H Reserved

FEE0_00D0H Logical Destination
Register (LDR) Read/Write [31:0] = 32’b0 [31:24] = Logical APIC_ID

FEE0_00E0H Destination Format
Register (DFR)

Bits 0 -27 Read
only, bits 28-31
Read/Write

[31:0] = All 1’s

[31:28] = Model
1111 = Flat Model
0000 = Cluster (Not
Supported)

FEE0_00F0H Spurious Interrupt
Vector Register

Bits 0-3,
Read/Writes.
Writes are
dropped. Hard
wired to All 1's.
Bits 7-4 Read/
Write; bits 9-31
Read only

[7:0] = h’FF
[31:8] = All 0’s

[7:0] = Spurious Vector
[7:4]= S/W can write
[3:0] = 4'b1111 and writes are
dropped.
[8] = APIC S/W enable/disable
[9] = Focus Processor
Checking

FEE0_0100H through
FEE0_0170H

In-Service
Register(ISR) Read only [255:0] = All 0’s

[255:16]
[15:0] = Reserved

FEE0_0180H through
FEE0_01F0H

Trigger Mode Register
(TMR) Read only [255:0] = All 0’s

[255:16]
[15:0] = Reserved

FEE0_0200H through
FEE0_0270H

Interrupt Request
Register (IRR) Read only [255:0] = All 0’s

[255:16]
[15:0] = Reserved
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
126 Order Number: 329678-001US

Local APIC—Intel® Quark Core
FEE0_0280H Error Status Register
(ESR) Read only [31:0] = 32’b0

[31:7] = Reserved.
[7] is currently defined and
this needs to be fixed in the
RTL.
[6] = Received illegal Vector
[5] = Send Illegal Vector
[4:0] = Reserved

FEE0_0290H through
FEE0_02F0H

Reserved

FEE0_0300H Interrupt Command
Register (ICR) [0-31] Read/Write [31:0] = 32’b0

[7:0] = Vector

[10:8] = Delivery Mode

000: Fixed
001: Lowest Priority (Not
Supported)
010 : SMI(Not Supported)
011 : Reserved
100: NMI(Not Supported)
101: Reserved
110: Startup (Not Supported)
111: Reserved

[11] = Destination Mode
0: Physical
1: Logical

[12] = delivery Status
0 : Idle
1: Send Pending

[13] = Reserved

[14] = Level

0 = De-assert
1=Assert

[15] = TriggerMode
0: Edge
1: Level

[17:16] = Reserved
[19:18]= Destination
Shorthand.
00 = No Shorthand
01 = Self
10,11 = Not Supported.
[31:20] =Reserved

FEE0_0310H Interrupt Command
Register (ICR) [32-63] Read/Write [31:0] = 32’b0

[63:56] = Destination Field
[55:32] = Reserved

Table 20. LAPIC Register Address Map and Fields (Sheet 2 of 5)

Address Register Name Software
Read/Write Reset Value Description
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 127

Intel® Quark Core—Local APIC
FEE0_0320H LVT Timer Register Read/Write [31:0] = 0001_0000H

[7:0] = Vector
[11:8] = Reserved
[12] = Delivery Status
0: Idle
1: Send Pending
[15:12] = Reserved
[16] = Mask
0: Not Masked
1: Masked
[17] = Timer Mode
0: One-Shot
1: Periodic
[31:18] = Reserved

FEE0_0330H Reserved Read/Write

FEE0_0340H Reserved Read/Write

FEE0_0350H LVT LINT0 Register Read/Write [31:0] = 0001_0000H

[7:0] = Vector
[10:8] = Delivery Mode
000: Fixed
010: SMI(Not Supported)
100: NMI(Not Supported)
111: ExtINT(Not Supported)
101: Reserved
All other combinations are
Reserved

[11] = Reserved
[12] = Delivery Status
0: Idle
1: SendPending
[13] = Interrupt Input Pin
polarity
0: Active High
1: Active Low
[14] = Remote IRR Flag (Read
Only)
1: LAPIC accepts the interrupt
for servicing
0: EOI command is received
from the CPU.
[15] = Trigger Mode
0: Edge
1: Level
[16] = Mask
0: Enables Reception of the
Interrupt
1: Inhibits Reception of the
Interrupt
[31:17] = Reserved

Table 20. LAPIC Register Address Map and Fields (Sheet 3 of 5)

Address Register Name Software
Read/Write Reset Value Description
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
128 Order Number: 329678-001US

Local APIC—Intel® Quark Core
FEE0_0360H LVT LINT1 Register Read/Write [31:0] = 0001_0000H

[7:0] = Vector
[10:8] = Delivery Mode
000: Fixed
010: SMI(Not Supported)
100: NMI(Not Supported)
111: ExtINT(Not Supported)
101: Reserved
All other combinations are
Reserved

[11] = Reserved
[12] = Delivery Status
0: Idle
1: SendPending
[13] = Interrupt Input Pin
polarity
0: Active High
1: Active Low
[14] = Remote IRR Flag (Read
Only)
1: LAPIC accepts the interrupt
for servicing
0: EOI command is received
from the CPU.
[15] = Trigger Mode
0: Edge
1: Level
[16] = Mask
0: Enables Reception of the
Interrupt
1: Inhibits Reception of the
Interrupt
[31:17] = Reserved

FEE0_0370H LVT Error Register Read/Write [31:0] = 0001_0000H

[7:0] = Vector
[11:8] = Reserved
[12] = Delivery Status
0: Idle
1: Send Pending
[15:13] = Reserved
[16] = Mask
[31:17] = Reserved

FEE0_0380H Initial Count Register
(for Timer) Read/Write [31:0] = 32’b0 [31:0] = Initial CountValue

FEE0_0390H Current Count Register
(for Timer) Read Only [31:0] = 32’b0 [31:0] = Current Count Value

Table 20. LAPIC Register Address Map and Fields (Sheet 4 of 5)

Address Register Name Software
Read/Write Reset Value Description
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 129

Intel® Quark Core—Local APIC
The LAPIC can be enabled/disabled using the APIC software enable/disable flag in the
spurious-interrupt vector register. Each entry in the LVT has a mask bit that can be
used to inhibit interrupts from being delivered to the processor from selected local
interrupt sources like the APIC Timer, etc.

The IA32_APIC_BASE MSR is not supported on Intel® Quark SoC X1000 Core and so
the address of the LAPIC registers cannot be relocated. During Reset the APIC_ID is
hard coded to All 0's. The BE0# - BE3# are not sampled to get the APIC_ID during
Reset. The LAPIC supports the APIC timer, and internal APIC error detector. The LAPIC
handles interrupts through local vector table (LVT), the error status register (ESR), the
divide configuration register and the initial count and current count registers.

The LVT enables the software to program the registers to specify the manner in which
the local interrupts are delivered to the Intel® Quark SoC X1000 Core. The LVT error
register specifies the interrupt delivery when the APIC detects an internal error. The
LAPIC has an error status register (ESR) that it uses to record errors that it detects on
the vectors when handling interrupts. The IA-32 valid interrupt vectors are 256 vector
numbers, ranging from 0 through 255. The LAPIC supports 240 of these vectors (16 -
255) as valid vectors. When an interrupt vector in the range of 0 to 15 is sent or
received through the LAPIC, the LAPIC indicates an illegal vector in its Error Status
Register. The IA-32 reserves vectors 16 through 31 for predefined interrupts, and
exceptions. The LAPIC doesnot treat them as illegal vectors. An APIC error interrupt is
generated when the local APIC sets one of the error bits in the ESR. When an APIC
error is detected the LVT error register allows selection of interrupt vector to be
delivered to the CPU.

8.2.1 APIC Timer

The LAPIC contains a 32-bit programmable timer that is available to software to time
events or operations. This timer is set up by programming four registers: the divide
configuration registers, the initial count and current count register, and the LVT timer
register. The time base for the timer is derived from the processor's bus clock, divided
by the value specified in the divide configuration register. The timer can be configured
through the timer LVT entry for one-shot or periodic operation. In one-shot, the time is
started by programming its initial count register. The initial count is value is then copied

FEE0_03A0H through
FEE0_03D0H Reserved

FEE0_03E0H Divide Config. Register
(for Timer) Read/Write [31:0] = 32’b0

[3:0] = Divide Value; [2] hard
coded to 1’b0.
{[3],[1:0]}

000: Divide by 2
001: Divide by 4
010: Divide by 8
011:Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

FEE0_03F0H Reserved

Table 20. LAPIC Register Address Map and Fields (Sheet 5 of 5)

Address Register Name Software
Read/Write Reset Value Description
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
130 Order Number: 329678-001US

Local APIC—Intel® Quark Core
into the current count register (ccr) and count-down begins. After the timer reaches
zero, an timer interrupt is generated and the timer remains at its value until
reprogrammed.

In periodic timer, the current count register is automatically reloaded from the initial
count register when the count reaches 0 and a timer interrupt is generated and the
count-down is repeated. If during the count-down process the initial count register is
set, counting willrestart, usingthe new initial-count value. The LVT timer register
determines the vector number that is delivered to the processor with the timer
interrupt that is generated when the timer count reaches zero. The mask flag in the LVT
timer register can be used to mask the timer interrupt.

8.2.2 Interrupt Control Register (ICR), Logical Destination Register
(LDR), Destination Format Register (DFR)

The ICR is a 64-bit register in the LAPIC that allows the software running on the CPU to
specify and direct the processor to interrupt itself. The inter processor interrupts (IPI)
are not currently supported. When the Destination Short hand field of the ICR is
programmed to Self (2'b01) it allows the software to interrupt the CPU on which it is
executing and delivers the interrupt internally. The Logical Destination Register (LDR)
and Destination Format Register (DFR) are used in conjunction with the logical
destination mode and message destination address (MDA) field in the ICR to select the
destination CPU. The destination mode field in the ICR selects either physical (0) or
logical (1) destination mode. If the destination mode is set to physical then bits [59:56]
of ICR contain the APICID of the target processor. If the destination mode is set to
logical, the interpretation of the 8-bit destination field in the ICR depends on the
settings of the DFR and LDR registers. Upon receiving the IPI message that was sent
using logical destination mode, the LAPIC compares the MDA in the message with the
values in the LDR and DFR to determine if it should accept and handle the IPI.

8.2.3 Interrupt and Task Priority

The interrupts delivered to the processor through LAPIC has an implied priority based
on its vector number. The LAPIC uses this priority to determine when to service the
interrupt relative to the other activities of the processor. The interrupt priority (for
vectors 16 to 255) is determined using vector/16. The quotient is rounded to the
nearest integer with 1 being the lowest priority and 15 is the highest. Vectors 0 to31
are reserved. The priorities of user defined interrupts range from 2 to 15.

The task priority allows the software to set a priority threshold for interrupting the
processor. The processor will service only those interrupts that have a priority higher
than that specified in the task priority register (TPR). If software sets the task priority
in the TPR to 0, the processor will handle all the interrupts, it is set to 15, all interrupts
are inhibited from being handled, (except NMI, SMI, and ExtINT which are currently not
supported). This mechanism allows the operating system to temporarily block specific
interrupts (low priority interrupts) from disturbing high-priority work that the processor
is currently working. The TPR value that the software can write is between 0 to 15.

The processor priority is set by the processor (value 0 to 15) and is written into the
processor priority register (PPR). The processor priority represents the current priority
at which the processor is executing. It is used to determine whether a pending
interrupt can be sent to the processor. The Processor priority is set to either to the
highest priority interrupt in the ISR or to the current task priority, whichever is higher.

8.2.4 Fixed Interrupts

The LAPIC queues the fixed interrupts that it accepts either in the interrupt request
register (IRR) or in-service register (ISR). These are 256-bit registers and each bit
represents an interrupt vector number. Vector 0 - 15 are reserved.
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 131

Intel® Quark Core—Local APIC
The IRR contains the active interrupt request that has been accepted but not yet
dispatched to the processor for servicing. When the LAPIC accepts an interrupt, it sets
the bit in the IRR that corresponds to the vector of the accepted interrupt. When the
CPU is ready to handle the next interrupt, the LAPIC clears the highest priority IRR bit
that is set and sets the corresponding ISR bit. The Vector for the highest priority bit is
set in the ISR is then dispatched to the processor core for servicing.

When the CPU is servicing the highest priority interrupt, the LAPIC can send additional
fixed interrupts by setting bits in the IRR. When the interrupt service routine issues a
write to the EOI register the LAPIC clears the highest priority ISR bit that is set.

If more than one interrupt is generated with the same vector number, the LAPIC can
set the bit for the vector both in the IRR and the ISR. The IRR and ISR registers can
queue no more than two interrupts per priority level, and will reject other interrupts
that are received within the same priority level.

If the LAPIC receives an interrupt with a priority higher than that of the interrupt
currently in serviced, and interrupts are enabled in the processor core, the LAPIC
dispatches the higher priority interrupt to the processor immediately without waiting
for a write to the EOI register. The currently executing interrupt handler is then
interrupted so the higher priority interrupt can be handled. When the handling of the
higher priority interrupt has been completed, the servicing of the interrupted interrupt
is resumed.

The trigger mode register (TMR) indicates the trigger mode of the interrupt. When the
interrupt is accepted into the IRR, the corresponding TMR bit is cleared for edge-
triggered interrupts and set for level-triggered interrupts. If a TMR bit is set when an
EOI cycle for its corresponding interrupt vector is generated, and EOI message is sent
to all I/O APIC's.

8.2.5 End of Interrupt (EOI)

For all interrupts (except those delivered with the NMI, SMI, ExtINT which are currently
not supported) the interrupt handler must include a write to the end-of-interrupt (EOI)
register. This write must occur at the end of the handler routine, sometimes before the
IRET instruction. This action indicates that the servicing of the current interrupt is
complete and LAPIC can issue next interrupt from the ISR.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
132 Order Number: 329678-001US

Clocking Considerations and System Debugging—Intel® Quark Core
9.0 Clocking Considerations and System Debugging

9.1 Clocking Considerations
The Intel® Quark Core is based on a legacy dual phase latch based design, in which
each cycle was divided into two phases. A non-overlapping clocking scheme was
needed in the dual phase design in order to meet min delay requirements. This scheme
was good for unevenly partitioned logic. To ease synthesis, the Intel® Quark Core SIP
design has been converted to a flop based design.

9.1.1 Intel® Quark Core Clocking Architectures

The Intel® Quark Core design supports three different clocking architectures:
• Two Phase
• Single Phase
• 1-clock

The next sections provide a summary of each of these clocking implementations

Note: With the performance, area and power benefits inherent with the 1-clock design, Intel®
Quark SoC X1000 customers are urged to use the 1-clock configuration.

9.1.1.1 Two Phase Flop Design

Figure 78 depicts the two phase latch to two phase flop design transformation. In this
transformation, the 5 cycle CPU pipeline is maintained as 5 cycles of the xclk input.

The two phase design would have timing paths from the rising edge of xclk to the rising
edge of xclknn essentially creating phase paths.

Figure 78. Two phase flop based Intel® Quark Core design

Data

xclk

CB

LOGIC LA1 LA2

xclknn = NOT (xclk)

FF1
CB

LOGIC
FF2

TWO PHASE LATCH BASED

DESIGN

TWO PHASE FLOP BASED

DESIGN

xclk xclknn = NOT (xclk)
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 133

Intel® Quark Core—Clocking Considerations and System Debugging
9.1.1.2 LMT Single Phase Flop Design

Figure 80 depicts the two phase latch to single phase flop design transformation. This
transformation increases the CPU pipeline depth to 10 xclk cycles. Therefore, to get the
same performance as a Dual Phase clock design, a Single Phase design will have to run
at 2X the frequency.

The single phase clock design has timing paths from the rising edge of xclk to the rising
edge of xclknn, but in this case xclk = xclknn as shown below. This results in full cycle
timing paths. The advantage of the single phase design is that it is less sensitive to
duty cycle of the input clocks and capable of reaching higher frequencies than the two
phase flop design.

Figure 79. Clock waveforms for a two phase clock design

Tp

xclk

xclknn

Tp/2

Timing path

Figure 80. Single phase flop based Intel® Quark Core design

Data

xclk

CB

LOGIC LA1 LA2

xclknn = NOT (xclk)

FF1
CB

LOGIC
FF2

TWO PHASE LATCH BASED

DESIGN

SINGLE PHASE FLOP BASED

DESIGN

xclk xclknn = xclk

Figure 81. Clock Waveforms for Single Phase flop based Intel® Quark Core design

Tp

xclk

xclknn

Timing path
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
134 Order Number: 329678-001US

Clocking Considerations and System Debugging—Intel® Quark Core
The down-side of the single phase flop design is power. Since the clock frequency needs
to double for constant performance, the clock related power is significantly greater for
the single phase design compared to the two phase flop design.

9.1.1.3 Intel® Quark Core 1-clock Flop Design

With the Intel® Quark Core 1.0 release, a new clocking option is available.
Conceptually, the 2 phase latch design is ported to an optimized 1-clock flop based
design. The 5 cycle CPU pipeline is maintained. Timing paths are all full cycle paths.

In the 1-clock design, pipe stages are optimized and redundant flops are removed.
Also, unlike the two phase and single phase designs, a only a single clock tree is
routed. Thus, the 1-clock design has the following advantages over the two-phase and
single-phase designs:

• Reduced flop count results in smaller area, lower active and leakage power.
• A single routed clock tree results in smaller area, lower active and leakage power

and improved timing due to closer point of divergence (POD) - i.e. less clock
uncertainty.

Note: With the performance, area and power benefits inherent with the 1-clock design, Intel®
Quark SoC X1000 customers are urged to use the 1-clock configuration.

9.1.2 SoC / Intel® Quark Core Clock Architecture

A typical SoC could have a SoC PLL which locks to a reference clock from a reference
source. This PLL is followed by a divider and generates the requisite clocks for the
Intel® Quark Core. Given below are block diagrams of the typical SOC/LMT clock
architectures for the three Intel® Quark Core clocking options.

Figure 82. Intel® Quark Core 1-Clock Flop Based Design

D ata

xclk

C B

LO GIC
LA1 LA2

xclknn = NOT (xclk)

FF1
C B

LO GIC
FFX

TW O PHASE LATCH BASED

DESIGN

1-Clock FLOP BASED

DESIGN

xclk xclk

Figure 83. Intel® Quark Core Clocking Architecture Block Diagram for two-phase clock

x clkRef clk

SOC PLL
MIA Divider

fvco_s oc

xclknn

POD

TWO-PHASE CLOCK

xclknn = not(xclk)

LMT
CPU
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 135

Intel® Quark Core—Clocking Considerations and System Debugging
Note in the two-phase clocking option, the SoC supplies Intel® Quark Core with two
input clocks - xclk, xclknn. These clocks are 180 degrees out of phase. Internally,
Intel® Quark Core implements two separate trees. For clock uncertainty, the point of
divergence (POD) is outside of Intel® Quark Core in the SoC, where the clocks
bifurcate. This implies that all the xclk<->xclknn paths will receive worst-case clock
uncertainty based in this POD.

In the single-phase clock design, the SoC still supplies the Intel® Quark Core with two
clocks - xclk and xclknn. However, these clocks are in-phase. The POD is still outside of
Intel® Quark Core in the soC. This implies that all the xclk<->xclknn paths will receive
worst-case clock uncertainty based in this POD.

With the 1-clock design, the SoC provides Intel® Quark Core with one clock - xclk. All
sequential elements within Intel® Quark Core use this single clock. The clock POD is
within the LMT design, which allows for lower clock uncertainty.

9.1.3 Intel® Quark Core Core/Bus/SoC Clock Ratio

The Intel® Quark Core is divides into two clock zones the core clock frequency and the
bus clock frequency, which gives the ability to throttle the core or bus.

Figure 84. Intel® Quark Core Clocking Architecture Block Diagram for single-phase clock

xclkRef clk

SOC PLL
L MT D ivider

fvco_soc

xclkn n

PO D
SINGLE-PHASE CLOCK

LMT
CPU

Figure 85. Intel® Quark Core Clocking Architecture Block Diagram for 1-clock design

xclk
Ref clk

SOC PLL
MIA Divider

fvco_s oc

PO D

1-Clock LMT Design

LMT
CPU
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
136 Order Number: 329678-001US

Clocking Considerations and System Debugging—Intel® Quark Core
As shown in Table 22, currently only a 1:1 core to bus clock ratio is supported.
Additional ratios may be supported in future releases of Intel® Quark Core.

9.1.4 Clock Skew and Uncertainty

• Clock skew = Max Insertion Delay - Min Insertion Delay
— Systematic Variation a functions of distance and no of sinks
— Prime Time sets the skew to zero and calculates real skew value case by case

by traversing the clock tree.
• Clock uncertainty - Systematic or Random

— Systematic components add linearly together
— Random components root sum square
— Related to the POD (point of divergence) and depth of buffers or Insertion

delay.
• Cross clock vs. Same Clock Skew

— Since most of the paths in this design will go from xclk to xclknn, the cross
clock skew is going to be really important.

9.1.4.1 Clock Uncertainty Components and Numbers

Table 22 lists the uncertainty components and totals. These numbers are applicable to
both P1271 and P1269 and have been used for our analysis. Note these numbers are
meant as a guideline, the SoC groups depending on their clock tree implementation will
refine these numbers.

Figure 86. Intel® Quark Core Clock Zones

Table 21. Intel® Quark Core Supported Clock Ratios

Intel® Quark Core SoC

core bus fabric

Fcore Fbus FSoC

1 1 1

2 1 1

3 1 1

4 1 1
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 137

Intel® Quark Core—Clocking Considerations and System Debugging
9.2 Building and Debugging a Intel® Quark Core-Based
System
Although a Intel® Quark Core-based system designer should plan the entire system, it
is necessary to begin building different elements of the core and begin testing them
before building the final system. If a printed circuit board layout has to be done, the
whole system may be simulated before generating the net list for the layout vendor. It
is advisable to work with a preliminary layout to avoid the problems associated with
wire wrap boards that operate at high frequencies.

Figure 87 shows how the Intel® Quark Core is implemented in the Intel® Quark SoC
X1000.

Table 22. Intel® Quark Core Clock Uncertainty Numbers

Clock Uncertainty Components Two Phase
(ps)

Single
Phase (ps)

Single
Clock (ps)

Formulat ion Comments

SOC Clock Tree MAX Insertion Delay(ns) 200 0 0
Assumed Insertion Delay Since we are shorting for single
phase. The POD of the Single phase will be righ at the
boundary of the MIA CORE.

SOC Clock Tree Insertion Delay Supply Variance (ps) 12 0 0 6% Using the curve fit equation
SOC Clock Tree Insertion Delay Mismatch(ODV) (ps) 12 0 0 6%
SOC Clock Tree Insertion Delay Aging (ps) 7 0 0 3.5%

LMT Core Clock Tree Max Insertion Delay(ns) 400 400 500
For Single clock the POD would be closer to the
luanch/Capture Flops

LMT Clock Tree Insertion Delay Supply Variance (ps) 24 24 12 6%

LMT Clock Tree Insertion Delay Mismatch(ODV) (ps) 24 24 12 6%

The total ODV saturates at about 45ps, when the total
number of buffers in the insert ion delay chain increases
from 24. Additionally since the ODV for the global clock
tree would be common it should not be added into the
unc f or the same clock. On top of that the point of
divergence for the for two timed flops may not be root of
the local tree.

LMT Clock Tree Insertion Delay Aging (ps) 14 14 7 3.5%

Duty Cycle Variability 40 0 0 5% 2% duty cycle variation for 500MHz
SOC PLL Cycle- to-Cycle Jitter 60 60 60
Addit ional Slop 35.54 21.59 16.79
Total clock Uncertainity 177.68 107.94 83.97 Using RSS for adding the random components
Total clock Uncertainity w/GB 213.21 129.53 100.76
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
138 Order Number: 329678-001US

Clocking Considerations and System Debugging—Intel® Quark Core
The following steps are usually carried out in designing with the Intel® Quark Core.
1. Clock circuitry should consist of an oscillator and fast buffer. The CLK signal should

be clean, without any overshoot or undershoot.
2. The reset circuitry should be designed as shown in Chapter 4.0, “Bus Operation”.

This circuitry is used to generate the RESET # signal for the Intel® Quark Core. The
system should be checked during reset for all of the timings. The clock continues to
run during these tests.

3. The INT and HOLD pins should be held low (deasserted). The READY# pin is held
high to add additional delays (wait states) to the first cycle. At this instance, the
Intel® Quark Core is reset, and the signals emitted from it are checked for the
validity of the state. The Intel® Quark Core starts executing instructions at location
FFFFFFF0H after reset. The address latch is connected and the address is verified.

4. The PAL implementing the address decoder should be connected to the Intel®
Quark Core.

Figure 87. Intel® Quark SoC X1000 Core used in Intel® Quark SoC X1000
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 139

Intel® Quark Core—Clocking Considerations and System Debugging
9.2.1 Debugging Features of the Intel® Quark Core

The Intel® Quark Core provides several features which simplify the debugging process
for the system hardware designer. The device offers the following on-chip debugging
aids:

• Breakpoint Instruction: describes code execution breakpoint opcode.
• Single-Step Trap: describes single-step capability provided by the TF bit in the flag

register.
• Debug Registers and Debug Control Register (DR7): describes code and data

breakpoint capability as provided by the debug registers (DR3–DR0, DR6 and
DR7).

• Debugging Overview: describes ITP and JTAG Debugging

9.2.2 Breakpoint Instruction

The Intel® Quark Core provides a breakpoint instruction that can be used by software
debuggers. This instruction is a single byte opcode and generates an exception 3 trap
when it is executed. In a typical environment a debugger program can place the
breakpoint instruction at various points in the program. The single-byte breakpoint
opcode is an alias for the two-byte general software interrupt instruction, INTn where
n=3. The only difference between INT 3 and INT n is that INT3 is never IOPL-sensitive
but INTn is IOPL-sensitive in Protected Mode and Virtual 8086 Mode.

9.2.3 Single-Step Trap

The Intel® Quark Core supports the legacy single-step feature. If the single stepflag bit
(bit 8, TF) is set to 1 in the EFLAG register, a single step exception occurs. This
exception is auto-vectored to exception 1 and occurs immediately after completion of
the next instruction. Typically a debugger sets the TF bit of the EFLAG register on the
debugger's stack followed by transfer of the control to the user program. The debugger
also loads the flag image (EFLAG) via the IRET instruction. The single-step trap occurs
after execution of one instruction of the user program.

Since the exception 1 occurs right after the execution of the instruction as a trap, the
CS:EIP pushed onto the debugger's stack points to the next unexecuted instruction of
the program which is being debugged, merely by ending with an IRET instruction.

After MOV to SS and POP to SS instructions, the Intel® Quark Core masks some
exceptions, including single-step trap exceptions.

9.2.4 Debug Registers

The Intel® Quark Core has an advanced debugging feature. It has six debug registers
that allow data access breakpoints as well code access breakpoints. Since the
breakpoints are indicated by on-chip registers, an instruction execution breakpoint can
be placed in ROM code or in code shared by several tasks. Neither of these is supported
by the INT3 breakpoint opcode.

The debug register provides the ability to specify four distinct breakpoint addresses,
control options, and read breakpoint status. When the CPU goes through reset, the
breakpoints are all in the disabled state. Hence the breakpoints cannot occur unless the
debug resisters are programmed.

It is possible to specify up to four breakpoint addresses by writing into debug registers.
The debug registers are shown in Figure 88. The addresses specified are 32-bit linear
addresses. The processor hardware continuously compares the linear breakpoint
addresses in DR3–DR0 with the linear addresses generated by executing software.
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
140 Order Number: 329678-001US

Clocking Considerations and System Debugging—Intel® Quark Core
When the paging is disabled then the linear address is equal to the physical address. If
the paging is enabled then the linear address is translated to a 32-bit address by the
on-chip paging unit. Whether paging is enabled or disabled, the breakpoint register
holds linear addresses.

Figure 88. Debug Registers

31 16 15 0

Breakpoint 0 Linear Address DR0

Breakpoint 1 Linear Address DR1

Breakpoint 2 Linear Address DR2

Breakpoint 3 Linear Address DR3

Intel Reserved. Do not define. DR4

Intel Reserved. Do not define. DR5

0 B
T

B
S

B
D 0 0 0 0 0 0 0 0 0 B

3
B
2

B
1

B
0 DR6

LEN
3

R
3

W
3

LEN
2

R
2

W
2

LEN
1

R
1

W
1

LEN
0

R
0

W
0 0 0 G

D 0 0 0 G
E

L
E

G
3

L
3

G
2

L
2

G
1

L
1

G
0

L
0 DR7

31 16 15 0

Note: 0 indicates Intel reserved: Do not define.

LENi
Encoding

Breakpoint
Field Width

Usage of Least Significant
Bits in Breakpoint Address

Register i, (i = 0–3)

00 1 Byte All 32 bits used to specify a
single-byte breakpoint field.

01 2 Byte

A31–A1 used to specify a
two-byte word-aligned
breakpoint field. A0 in
breakpoint address register is
not used.

10

Undefined–
Do not use

this
encoding.

11 4 Byte

A31–A2 used to specify a
four-byte dword-aligned
breakpoint field. A0 and A1 in
breakpoint address register
are not used.

DR2 = 00000005H; LEN2 = 00B

DR2 = 00000005H; LEN2 = 01B

DR2 = 00000005H; LEN2 = 11B

31 0

00000008H

BKPT FLD2 00000004H

00000000H

31 0

00000008H

00000004H

00000000H

31 0

00000008H

00000004H

00000000H

BKPT FLD2

BKPT FLD2
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 141

Intel® Quark Core—Clocking Considerations and System Debugging
9.2.5 Debug Control Register (DR7)

A debug control register, DR7 shown in Figure 88, allows several debug control
functions such as enabling the breakpoints and setting up several control options for
the breakpoints. There are several fields within the debug control register. These are
discussed below:

LENi (breakpoint length specification bits). A 2-bit LEN field exists for each of the
four breakpoints. It specifies the length of the associated breakpoint field. It is possible
to have three different choices: 1 byte, 2 bytes and 4 bytes. LENi field encoding is
shown in Table 23.

The LENi field controls the size of the breakpoint field i by controlling whether all the
low order linear address bits in the breakpoint address register are used to detect the
breakpoint event. Therefore, all breakpoint fields are aligned: 2-byte breakpoint fields
begin on word boundaries, and 4-byte breakpoint fields begin on dword boundaries.

A 2-bit RW field exists for each of the four breakpoints. The 2-bit field specifies the type
of usage which must occur in order to activate the associated breakpoint.

RW encoding 00 is used to setup an instruction execution breakpoint. RW encodings 01
or 11 are used to setup write only or read-only or read/write data breakpoints. The
data breakpoint can be setup by writing the linear address into DRi. For data
breakpoints, RWi can:

= 01 M write only
= 11 M read/write
LENi = 00, 01, 11.

An instruction execution breakpoint can be setup by writing the address of the
beginning of the instruction into DRi. RWi must equal 00 and LENi must equal 00 for
instruction execution breakpoints. If the instruction beginning at the breakpoint
address is about to be executed, the instruction execution breakpoint has occurred,
and the breakpoint is enabled, an exception 1 fault occurs before the instruction is
executed.

GD (Global Debug Register access detect). The debug registers can only be
accessed in real mode or at privilege level 0 in Protected Mode. The GD bit when set
provides extra protection against any debug register access even in Real Mode or at
privilege level 0 in Protected Mode. This additional protection feature is provided to
guarantee that a software debugger can have full control over the debug register
resources when required.

The Intel® Quark Core always does exact data breakpoint matching regardless of the
GE/LE bit settings. Any data breakpoint trap is reported after completion of the
instruction that caused the operand transfer. Reporting is provided by forcing the Intel®
Quark Core execution unit to wait for the completion of data operand transfers before
beginning execution of the next instruction.

Table 23. LENi Fields

RW Encoding Usage Causing Breakpoint

00 Instruction execution only

01 Data writes only

10 Undefined—Do not use this encoding

11 Data reads and writes only
Intel® Quark SoC X1000 Core
Hardware Reference Manual October 2013
142 Order Number: 329678-001US

Clocking Considerations and System Debugging—Intel® Quark Core
When the Intel® Quark Core switches to a new task, the LE bit is cleared. Thus, LE
enables fast switching from one task to another task. To avoid having exact data
breakpoint match enabled in the new task, the LE bit is cleared by the processor during
the task switch. Note that exact data breakpoint match must be re-enabled under
software control.

The GE bit supports exact data breakpoint match that is to remain enabled during all
tasks executing in the system. The Intel® Quark Core GE bit is unaffected during a task
switch.

Note: Instruction execution breakpoints are always reported.

G, L (breakpoint enable, global and local). Associated breakpoints are enabled
when either G or L are set. When this happens the Intel® Quark Core detects the ith
breakpoint condition, then the exception 1 handler is invoked.

Debug status register. A debug status register, DR6 allows the exception 1 handler
to easily determine why it was invoked. Exception 1 handler can be invoked as a result
of one of the several events as documented in the datasheet. This register contains
single-bit flags for each of the possible events invoking exception 1. Some of these
events are faults while others are traps.

9.2.6 Debugging Overview

Once the Intel® Quark Core-based system is designed and the printed circuit board is
fabricated and stuffed, the next step is to debug the hardware in increments.

The design of a microprocessor-based system can be subdivided into several phases.
The design starts with preparation of the system specification followed by conceptual
representation in the form of block diagram. The next phase is implementing the
design, which consists of the hardware design and the software design occurring in
parallel. Hardware debugging usually begins by testing the system with short test
programs. Initially the power and ground lines are tested for opens and shorts followed
by the testing of the reset function. After the hardware passes these programs, the
hardware/software integration phase begins. The test programs are then replaced by
the application software and complete system is debugged.

When there are both hardware and software problems, it can be difficult to isolate
each. Several types of testing systems are available to assist in this process. The most
common type is the in-circuit emulator, which plugs into the microprocessor socket and
allows the operation of the system to be controlled and monitored. In-circuit emulators
usually include memory that can be used in place of the prototype memory. Another
useful test tool is the logic analyzer, which captures the “trace” of the bus activity and
displays the sequence of bus cycles that were executed. Most in-circuit emulators also
provide this function, which is invaluable for both hardware and software debugging.
Test programs can be run from an ICE or a monitor.

The Intel® Quark Core contains a JTAG (Joint Test Action Group) test-logic unit, which
you can use to test the processor and its connections to the system. The JTAG
specifications with which this unit complies are documented in Standard 1149.1-1990,
IEEE Standard Test Access Port and Boundary Scan Architecture and its supplement,
Standard 11.49.1a-1993.

Refer to the “Debug Port and JTAG/TAP” chapter in the Intel® Quark SoC X1000 EDS
for more details.

§ §
Intel® Quark SoC X1000 Core
October 2013 Hardware Reference Manual
Order Number: 329678-001US 143

	Intel® Quark SoC X1000 Core
	Contents
	Figures
	Tables

	1.0 About this Manual
	1.1 Manual Contents
	1.2 Notational Conventions
	1.3 Special Terminology
	1.4 Related Documents

	2.0 Introduction
	2.1 Intel® Quark Core Features
	2.2 Intel® Quark Core Product
	2.2.1 Operating Modes and Compatibility
	2.2.2 Memory Management
	2.2.3 On-chip Cache
	2.2.4 Floating-Point Unit

	2.3 System Components
	2.4 System Architecture
	2.5 Systems Applications
	2.5.1 Embedded Personal Computers
	2.5.2 Embedded Controllers

	3.0 Internal Architecture
	3.1 Instruction Pipelining
	3.2 Bus Interface Unit
	3.2.1 Data Transfers
	3.2.2 Write Buffers
	3.2.3 Locked Cycles
	3.2.4 I/O Transfers

	3.3 Cache Unit
	3.3.1 Cache Structure
	3.3.2 Cache Updating
	3.3.3 Cache Replacement
	3.3.4 Cache Configuration

	3.4 Instruction Prefetch Unit
	3.5 Instruction Decode Unit
	3.6 Control Unit
	3.7 Integer (Datapath) Unit
	3.8 Floating-Point Unit
	3.8.1 Intel® Quark Core Floating-Point Unit

	3.9 Segmentation Unit
	3.10 Paging Unit

	4.0 Bus Operation
	4.1 Data Transfer Mechanism
	4.1.1 Memory and I/O Spaces
	4.1.1.1 Memory and I/O Space Organization

	4.1.2 Dynamic Data Bus Sizing
	4.1.3 Interfacing with 8-, 16-, and 32-Bit Memories
	4.1.4 Dynamic Bus Sizing During Cache Line Fills
	4.1.5 Operand Alignment

	4.2 Bus Arbitration Logic
	4.3 Bus Functional Description
	4.3.1 Non-Cacheable Non-Burst Single Cycle
	4.3.1.1 No Wait States
	4.3.1.2 Inserting Wait States

	4.3.2 Multiple and Burst Cycle Bus Transfers
	4.3.2.1 Burst Cycles
	4.3.2.2 Terminating Multiple and Burst Cycle Transfers
	4.3.2.3 Non-Cacheable, Non-Burst, Multiple Cycle Transfers
	4.3.2.4 Non-Cacheable Burst Cycles

	4.3.3 Cacheable Cycles
	4.3.3.1 Byte Enables during a Cache Line Fill
	4.3.3.2 Non-Burst Cacheable Cycles
	4.3.3.3 Burst Cacheable Cycles
	4.3.3.4 Effect of Changing KEN# during a Cache Line Fill

	4.3.4 Burst Mode Details
	4.3.4.1 Adding Wait States to Burst Cycles
	4.3.4.2 Burst and Cache Line Fill Order
	4.3.4.3 Interrupted Burst Cycles

	4.3.5 8- and 16-Bit Cycles
	4.3.6 Locked Cycles
	4.3.7 Pseudo-Locked Cycles
	4.3.7.1 Floating-Point Read and Write Cycles

	4.3.8 Invalidate Cycles
	4.3.8.1 Rate of Invalidate Cycles
	4.3.8.2 Running Invalidate Cycles Concurrently with Line Fills

	4.3.9 Bus Hold
	4.3.10 Interrupt Acknowledge
	4.3.11 Special Bus Cycles
	4.3.11.1 HALT Indication Cycle
	4.3.11.2 Shutdown Indication Cycle
	4.3.11.3 Stop Grant Indication Cycle

	4.3.12 Bus Cycle Restart
	4.3.13 Bus States
	4.3.14 Floating-Point Error Handling for Intel® Quark Core
	4.3.14.1 Floating-Point Exceptions

	4.3.15 Intel® Quark Core Floating-Point Error Handling in AT- Compatible Systems

	4.4 Enhanced Bus Mode Operation (Write-Back Mode)
	4.4.1 Summary of Bus Differences
	4.4.2 Burst Cycles
	4.4.2.1 Non-Cacheable Burst Operation
	4.4.2.2 Burst Cycle Signal Protocol

	4.4.3 Cache Consistency Cycles
	4.4.3.1 Snoop Collision with a Current Cache Line Operation
	4.4.3.2 Snoop under AHOLD
	4.4.3.3 Snoop During Replacement Write-Back
	4.4.3.4 Snoop under BOFF#
	4.4.3.5 Snoop under HOLD
	4.4.3.6 Snoop under HOLD during Replacement Write-Back

	4.4.4 Locked Cycles
	4.4.4.1 Snoop/Lock Collision

	4.4.5 Flush Operation
	4.4.6 Pseudo Locked Cycles
	4.4.6.1 Snoop under AHOLD during Pseudo-Locked Cycles
	4.4.6.2 Snoop under Hold during Pseudo-Locked Cycles
	4.4.6.3 Snoop under BOFF# Overlaying a Pseudo-Locked Cycle

	5.0 Memory Subsystem Design
	5.1 Introduction
	5.2 Processor and Cache Feature Overview
	5.2.1 The Burst Cycle
	5.2.2 The KEN# Input

	6.0 Cache Subsystem
	6.1 Introduction
	6.2 Cache Memory
	6.2.1 What is a Cache?

	6.3 Cache Trade-offs
	6.3.1 Intel® Quark Core Cache Organization
	6.3.2 Block/Line Size
	6.3.3 Replacement Policy

	6.4 Updating Main Memory
	6.4.1 Write-Through and Buffered Write-Through Systems
	6.4.2 Write-Back System
	6.4.3 Cache Consistency

	6.5 Non-Cacheable Memory Locations
	6.6 Cache and DMA Operations

	7.0 Peripheral Subsystem
	7.1 Peripheral/Processor Bus Interface
	7.1.1 Mapping Techniques
	7.1.2 Dynamic Data Bus Sizing
	7.1.3 Address Decoding for I/O Devices
	7.1.3.1 Address Bus Interface
	7.1.3.2 32-Bit I/O Interface

	7.2 Basic Peripheral Subsystem
	7.2.1 Bus Control and Ready Logic
	7.2.2 Bus Control Signal Description
	7.2.2.1 Intel® Quark Core Interface

	7.2.3 Wait State Generator Logic
	7.2.4 Address Decoder
	7.2.5 Recovery and Bus Contention
	7.2.6 Write Buffers and I/O Cycles
	7.2.6.1 Write Buffers and Recovery Time

	7.2.7 Non-Cacheability of Memory-Mapped I/O Devices
	7.2.8 Intel® Quark Core On-Chip Cache Consistency

	7.3 I/O Cycles
	7.3.1 Read Cycle Timing
	7.3.2 Write Cycle Timings

	8.0 Local APIC
	8.1 Local APIC Overview
	8.2 LAPIC Register Structure
	8.2.1 APIC Timer
	8.2.2 Interrupt Control Register (ICR), Logical Destination Register (LDR), Destination Format Register (DFR)
	8.2.3 Interrupt and Task Priority
	8.2.4 Fixed Interrupts
	8.2.5 End of Interrupt (EOI)

	9.0 Clocking Considerations and System Debugging
	9.1 Clocking Considerations
	9.1.1 Intel® Quark Core Clocking Architectures
	9.1.1.1 Two Phase Flop Design
	9.1.1.2 LMT Single Phase Flop Design
	9.1.1.3 Intel® Quark Core 1-clock Flop Design

	9.1.2 SoC / Intel® Quark Core Clock Architecture
	9.1.3 Intel® Quark Core Core/Bus/SoC Clock Ratio
	9.1.4 Clock Skew and Uncertainty
	9.1.4.1 Clock Uncertainty Components and Numbers

	9.2 Building and Debugging a Intel® Quark Core-Based System
	9.2.1 Debugging Features of the Intel® Quark Core
	9.2.2 Breakpoint Instruction
	9.2.3 Single-Step Trap
	9.2.4 Debug Registers
	9.2.5 Debug Control Register (DR7)
	9.2.6 Debugging Overview

