
Column 148: It’s In the Cards Page 1 of 15

Column #148, March 2008 by Jon Williams:

It’s In the Cards

It’s seems like at least once a year – and usually around this time of year – I remind myself (and you) that it’s okay
to experiment, in fact; experimenting for the sake of experimenting is absolutely worth doing and we should all make
time in our schedules for experimenting that doesn’t require or expect any specific results. Why? Well, we all get
caught up in our dramas and the things that need to happen right this second, and oftentimes we spend more energy
than required because we’re not ready. This is where experimenting for the sake of experimenting comes in. My
friend, Cliff, is a teacher and as an avid sports enthusiast he frequently uses sports analogies with his students
(including me). One of his favorite reminders, one that I think is wholly appropriate here, is that Michael Jordan
never practiced the [specific] game (which is not possible as the one cannot know what the opponent will bring to
it), he practiced his skills so that he was ready for the game – and whatever an opponent showed up with.

We should do that, too, and we practice “for the game” by experimenting. I thought about this when I was recently
asked if it was possible to interface a mag-stripe card reader to the SX using SX/B. “Sure, no problem!” was my
enthusiastic response. “Okay, how?” The deafening silence was interrupted with my sheepish answer, “You
know… I don’t know – yet – but I will find out!”

If you’ve read more than a few of my columns you know that I frequently refer to myself as a very lucky guy. I’m
healthy, happy, live in a great country, get to write for this very cool magazine, and I live in Los Angeles – one of
the greatest cities in the world. I’m not knocking any other city, I’m just saying that Los Angeles works for me. I’m
near the beach, the mountains, the desert, Hollywood boulevard is just minutes away and when I’m doing a project
or just want to experiment… a quick drive down the Hollywood freeway to Van Nuys gets me to All Electronics
(www.allelectronics.com). Yes, electronics heaven, and it’s open seven days a week! For those of you not in Los
Angeles, don’t worry, you can of course order from All via the Internet.

While on an LED shopping spree I went looking for a mag-stripe reader because All Electronics (like Tanners and
BG Micro in Texas) carries a lot of “recycled” parts. Guess what? I found a card reader and it cost me all of three
bucks. So now it’s time to play. I don’t need the card reader for any projects – for now – but I might later and if
that comes up, or I get another request for code, I’ll be ready, and there’s a good chance I’ll have learned something
useful along the way.

Experimental Connections
The great thing about experimenting is that we don’t have to worry about PCB layout and soldering unless we come
up with something really cool and want to make it permanent. That said, we do have to connect things, so a little
prep work is in order.

Column 148: It’s In the Cards Page 2 of 15

Way back in the beginnings of this column (#8), Scott Edwards taught us to build cables using female crimp pin
connectors and 22-guage standard wire. Parallax hosts online reprints of the column so if you don’t have that on
your shelf you can find it here:

http://www.parallax.com/Portals/0/Downloads/docs/cols/nv/vol1/col/nv8.pdf

Building your own cables with these connectors is a worthwhile skill, especially for prototyping and experimenting.
The only thing that I’ll add to Scott’s excellent instruction is that for absolutely bullet-proof connections you should
use just a touch of solder on the joint. Those crimp pins were designed for machines that can exert far more pressure
than we can with a hand tool, so soldering keeps the connector form breaking if the wire is tugged.

Now… you have to be very careful when doing this, as too much solder can cause the socket (on female connectors)
to become clogged and not fit on to a pin header. The easiest way to prevent clogging is to solder these connectors
the same way we would solder SMD components on a PCB: put a drop of liquid flux on the crimped joint, put a tiny
bit of solder on the tip of your iron, and then touch the iron to the crimped connection. The flux will clean
everything and the solder will wick into the connection an make it permanent. The reason for the liquid flux on the
joint is that applying the solder to the iron will boil off any flux in the solder. Clean the connector with a bit of 99%
alcohol or flux remover and then protect it with heat shrink tubing or box connector designed for the crimp sockets.

Read the Card
Figure 148.1 shows the setup on my desk for experimenting with the card reader. The reader has a 7-pin connector
with male post headers, so I made jumper wires with a female connector on one end and a male pin on the other; the
female end goes to the reader, the male end gets plugged into the SX-Tech board – a nice, low-cost setup for
experimenting with the SX28.

Figure 148.1: Card Reader Experiment Setup

For output I’m using a 4x20 serial LCD. Since there are no male post headers on the SX-Tech board I modified the
LCD cable to give it male pins on one end; this lets me plug it into power and any I/O point on the SX that I desire.

Column 148: It’s In the Cards Page 3 of 15

Figure 148.2: LCD/Servo Cable Modification

Figure 148.2 shows how I modified the standard LCD/Servo cable from Parallax to work with a solderless
breadboard. Okay, we’re ready to code.

Figure 148.3 shows the connections between the reader and the SX. What you’re probably wondering is where the
pull-ups are – as they are clearly not visible in Figure 1. For the experiment I’m using the SX’s internal (weak) pull-
ups. I think this is okay to do because I’m using such short connections. If we decide to install a card reader into a
project where the connections are more that a foot long or so, we should use external pull-ups.

Figure 148.3: Card Reader/SX Microcontroller Connections

Column 148: It’s In the Cards Page 4 of 15

The SX/B compiler makes enabling the pull-ups on any give pin very simple – all we have to do is add the word
PULLUP to the end of a PIN declaration

CrdData PIN RB.0 INPUT PULLUP
CrdClock PIN RB.1 INPUT PULLUP
CrdMotion PIN RB.2 INPUT PULLUP
CrdDetect PIN RB.3 INPUT PULLUP
CrdEndStop PIN RB.4 INPUT PULLUP

With the connections out of the way we can look at the signals from the reader (all are active-low):

/RDT This is the data line; will be read when a clock pulse is detected
/RCL Clock line (this comes from the reader)
/CLD Card is in motion; goes high if card stops
/CLD1 Card has been inserted
/CLD2 Card has hit the end stop

With this particular reader the user is responsible inserting the card to the stop point; the data read takes place on the
insertion (not on the retraction as I originally assumed). Because there is a physical stop for card we are limited in
how much information can be pulled from track 2, but it is enough to read the full account number cards like Visa,
MasterCard, etc. Track 2 contains 40 5-bit (four bits plus parity) characters, but as we’re limited by the mechanical
stop we’ll keep the code simple by using a 16-byte array to capture the card number – this works fine for standard
credit cards.
If we break down the process for reading card with this device it ought to go something like this:

1. Prompt the user
2. Wait for card insertion
3. Look for the start sentinel character
4. Read card characters from track until end stop

a. monitor for slide error
5. Convert data to ASCII and display

Steps 1 and 2 are pretty easy; using a serial LCD is like using a general-purpose terminal – all we have to do is put
the serial connection into an idle state and give the LCD a bit of time to handle internal initialization. Once that’s
done we can clear the LCD and then display an appropriate prompt; you know, something really snappy like, “Insert
Card.”

Start:
 TX = Idle
 DELAY_MS 100

Lcd_Setup:
 TX_BYTE LcdBLoff
 TX_BYTE LcdOn1

Main:
 CLR_LCD
 TX_STR "Insert Card"
 DO UNTIL CrdDetect = HasCard
 LOOP

Once a card has been detected (/CLD1 goes low) we can get to the meat of the matter – reading the card number.
The interesting thing about this experiment is that the reader is a synchronous serial device (i.e., it has clock and data
lines), but it provides the clock instead of accepting a clock – so this precludes the use of SHIFTIN. Yes, we’re
going to have to manually code the serial input from the reader but as you’ll see, it’s not difficult (and this code may
be useful later).

If you connect a logic analyzer to the clock and data lines you’ll see several clock pulses before any data bits show
up. This is for good reason: it allows the external device to get in sync with the clock pulses and search for what is

Column 148: It’s In the Cards Page 5 of 15

called the start sentinel. This is a special character that precedes the card number. Let’s have a look at the code that
finds the start sentinel.

Find_Start_Sentinel:
 flags = %00000000
 char = 0
 DO
 DO WHILE CrdClock = 1
 LOOP
 char = char >> 1
 char.4 = ~CrdData
 DO WHILE CrdClock = 0
 LOOP
 LOOP UNTIL char = %01011

After clearing the error flags and buffer for the output the program enters a loop that waits for the leading edge of a
clock pulse. Since the data bits are provided LSB first we prep the buffer value by shifting it to the right.
Remember that a shift will cause the end bit to get a zero, so we don’t have to worry about stray bits polluting the
output value. Then we sample the data line, moving the inverted value to bit 4 of the buffer byte. After the clock
pulse clears we can check the value of char for %01011 which is the start sentinel that indicates we have alignment
with the card data.

So now you can see why the clock pulses show up first; it allows a routine line this to lock onto the data stream for
synchronization. Since the bits in char are shifted right every time through the loop, this is code acting like a sliding
window on the data bits from the card. Once we detect the sentinel value we can read the card number which, like
the sentinel, is made up of 5-bit values.

Read_Card_Number:
 FOR idx = 0 TO 15
 char = 0
 FOR bCount = 1 TO 5
 DO WHILE CrdClock = 1
 IF CrdMotion = IsStopped THEN
 slideErr = 1
 GOTO Process_Errors
 ENDIF
 LOOP
 char = char >> 1
 char.4 = ~CrdData
 DO WHILE CrdClock = 0
 LOOP
 NEXT
 buf(idx) = char
 NEXT

As you can see, the loop that reads the card data looks a lot like the code we used to find the sentinel; the difference,
of course, is that we expect that we can read 16 packets of five bits each. When we have a character it is moved to
an array called buf().

Note that in between clock pulses we do a quick check of the /CLD line which is low so long as the card is in
motion. The reason for this check is to detect a partial insertion followed by a partial retraction; the card would have
to stop to be retracted, and as such would throw off the synchronization of the data read. If a stop is detected we
flag the error and abort the read loop.

Once we have the data captured we can verify it with a parity check. Since track 2 holds numbers and a few
separator characters, four bits is all that are needed for the data, the fifth bit is used for [odd] parity.

Check_Parity:
 FOR idx = 0 TO 15
 char = buf(idx)
 bCount = 0
 FOR pCheck = 1 TO 4
 bCount = bCount + char.0

Column 148: It’s In the Cards Page 6 of 15

 char = char >> 1
 NEXT
 IF bCount.0 = char.0 THEN
 parityErr = 1
 ENDIF
 NEXT

The parity check loop pulls each byte from the buffer, counts the number of 1’s in the lower four bits and compares
the result to bit 5 – if there are an odd number of 1’s in the data, bit 5 should be a 0; an even number of 1’s in the
data means we should find a 1 in bit 5. If a parity error is detected we’ll set a flag and abort the loop.

Unless you hesitate when sliding the card, or have a defective card, you probably won’t see the error processing
code, but it’s important to include it for robust applications:

Process_Errors:
 IF slideErr = 1 THEN
 CLR_LCD
 TX_STR "Slide Error"
 GOTO Remove_Card
 ENDIF
 IF parityErr = 1 THEN
 CLR_LCD
 TX_STR "Read Error"
 GOTO Remove_Card
 ENDIF

Nothing mysterious here; we simply prompt the user and have them try again.

Okay, now that we have the data and are sure it’s good we can convert it to ASCII values to be displayed. This is
really easy: we simply strip the parity bit and then add “0” (48 decimal) to convert to the appropriate ASCII codes.

Convert_To_Ascii:
 FOR idx = 0 TO 15
 char = buf(idx) & $0F
 buf(idx) = char + "0"
 NEXT

The final step is to display the card number – but let’s make this a little interesting and show what kind of card was
used. I found information on card type codes here:

http://money.howstuffworks.com/credit-card1.htm

To be candid, it’s not perfect because my ATM card shows up as MasterCard, and my Borders book store card reads
as a Discover card. The card number is still read correctly, it’s just that the algorithm used to identify the card type
is somewhat simplistic.

Get_Card_Type:
 CLR_LCD
 char = buf(0)
 IF char = "3" THEN
 char = buf(1)
 IF char = "7" THEN
 TX_STR "Amex"
 GOTO Display_Amex
 ELSEIF char = "8" THEN
 TX_STR "Diners"
 ELSE
 TX_STR "???"
 ENDIF
 ELSEIF char = "4" THEN
 TX_STR "Visa"
 ELSEIF char = "5" THEN
 TX_STR "M/C"
 ELSEIF char = "6" THEN
 TX_STR "Discover"

Column 148: It’s In the Cards Page 7 of 15

 ELSE
 TX_STR "???"
 ENDIF

The first character of the card defines its type, and in the case of a leading “3” the second character is checked for
“7” (American Express) or “8” (Diners Club). When an Amex type card is detected the card number is formatted
XXXX XXXXXX XXXXX, otherwise it will be formatted XXXX XXXX XXXX XXXX.

Display_Standard:
 TX_BYTE CR
 FOR idx = 0 TO 3
 TX_BYTE buf(idx)
 NEXT
 TX_BYTE " "
 FOR idx = 4 TO 7
 '{$IFDEF Secret_Display}
 TX_BYTE "*"
 '{$ELSE}
 TX_BYTE buf(idx)
 '{$ENDIF}
 NEXT
 TX_BYTE " "

 FOR idx = 8 TO 11
 '{$IFDEF Secret_Display}
 TX_BYTE "*"
 '{$ELSE}
 TX_BYTE buf(idx)
 '{$ENDIF}
 NEXT
 TX_BYTE " "
 FOR idx = 12 TO 15
 TX_BYTE buf(idx)
 NEXT
 TX_BYTE " "
 GOTO Check_Password

Display_Amex:
 TX_BYTE CR
 FOR idx = 0 TO 3
 TX_BYTE buf(idx)
 NEXT
 TX_BYTE " "
 FOR idx = 4 TO 9
 '{$IFDEF Secret_Display}
 TX_BYTE "*"
 '{$ELSE}
 TX_BYTE buf(idx)
 '{$ENDIF}
 NEXT
 TX_BYTE " "
 FOR idx = 10 TO 14
 TX_BYTE buf(idx)
 NEXT

These routines work fine with a 4x20 display; if you want to use a 16-column LCD then you’ll need to remove the
spaces between groups (in fact, a single loop can be used to display the card number). I have included a conditional
compilation section that allows the display to be modified so that the full card number is not displayed, somewhat
like what is printed on charge card receipts.

We’ve done it – we took a three-dollar recycled ISO2 card reader and put it to use; and learned a couple neat things
long the way. Before we wrap up, let’s create one more bit of code. Let’s say we want to compare the card number
read against a known value – perhaps allowing us to use our card as an electronic ID (like my bank does when I
want to do a transaction with a teller).

Column 148: It’s In the Cards Page 8 of 15

FUNC CHECK_CARD
 tmpW1 = __WPARAM12
 tmpB1 = __PARAM3
 tmpB2 = __PARAM4

 IF tmpB2 > 0 THEN
 goodCard = Yes
 ELSE
 goodCard = No
 ENDIF

 DO WHILE tmpB2 > 0
 READINC tmpW1, tmpB3
 tmpB4 = __RAM(tmpB1)
 IF tmpB4 <> tmpB3 THEN
 goodCard = No
 EXIT
 ENDIF
 INC tmpB1
 DEC tmpB2
 LOOP
 __PARAM1 = goodCard
 ENDFUNC

This function loops through the number of characters to check comparing a byte from the string with a byte from the
card buffer. Since the card value is stored in an array we’re using the __RAM() pointer to get to it – this will let us
modify the code later to compare two cards that might be stored in different arrays.

Note the end of the code:

 __PARAM1 = goodCard

We can do this because the SX/B compiler uses the __PARAMx variables to move things back and forth. We could
have done this:

 tmpB1 = goodCard
 RETURN tmpB1

If we look at the compiled code we’ll find that tmpB1 is moved to __PARAM1 – so we can just skip that and make
the code a little faster.

With this function we will pass a known good card number, either as an inline string or as a label that holds the card
number as a z-string; we also need to send the pointer to the buffer that holds the card data and the number of
charters we want to compare. We could, for example, use the function like this:

Check_Password:
 CHECK_CARD "0000000000000000", buf, 16
 TX_BYTE LcdLine4
 IF goodCard = Yes THEN
 TX_STR "JON WILLIAMS"
 ELSE
 TX_STR "UNKNOWN"
 ENDIF

Okay, that’s it – go have some fun. It doesn’t have to be with a card reader, it can be with anything. The point here
is to try something new, and along the way learn something new that we can apply later. You know why Michael
Jordan made so many clutch shots during his career? Because he practiced; he practiced a lot, and this made him
one of the best players in the history of the game.

So go do it: become one of the best “players” in your game. Until next time – Happy Stamping.

Column 148: It’s In the Cards Page 9 of 15

Resources
http://money.howstuffworks.com/credit-card1.htm
http://www.cyberd.co.uk/support/technotes/isocards.htm

Parts List for Mag-Stripe Card Reader Experiment

Part Part Number or Description Source
Card Reader ZU-M2121S451 All Electronics MCR-12
Dev Board SX-Tech Tool Kit Parallax 45180
Power Supply 12v, 1A Parallax 750-00007
Resonator 20 MHz Parallax 250-02060
LCD 4x20 Serial Parallax 27927
Cable 3-pin f/f Parallax 805-00012
Crimp Pins female, 0.025 Mouser 538-16-02-0102
Crimp Pins male Mouser 538-16-02-0114
Wire #22, stranded (various)

Code Listing
' ===
'
' File...... Card_Reader.SXB
' Purpose...
' Author.... Jon Williams, EFX-TEK
' Copyright (c) 2007 EFX-TEK
' Some Rights Reserved
' -- see http://creativecommons.org/licenses/by/3.0/
' E-mail.... jwilliams@efx-tek.com
' Started...
' Updated...
'
' ===

' ---
' Program Description
' ---

' Reads first 16 characters after the start sentinel on track 2 of a
' mag stripe card -- ISO2 format (5-bit code [4 + parity])
'
' Helpful resources:
' -- http://money.howstuffworks.com/credit-card1.htm
' -- http://www.cyberd.co.uk/support/technotes/isocards.htm
'
' Code tested with #ZU-M2121S451 card reader from All Electronics
' -- www.allelectronics.com
' -- part #MCR-12

' ---
' Conditional Compilation Symbols
' ---

'{$DEFINE Secret_Display} ' hide some digits

' ---
' Device Settings
' ---

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX, BOR42
FREQ 20_000_000
ID "CardRead"

Column 148: It’s In the Cards Page 10 of 15

' ---
' I/O Pins
' ---

TX PIN RA.0 OUTPUT ' to serial LCD

CrdData PIN RB.0 INPUT PULLUP ' RDT\ (pin 2)
CrdClock PIN RB.1 INPUT PULLUP ' RCL\ (pin 3)
CrdMotion PIN RB.2 INPUT PULLUP ' CLD\ (pin 4)
CrdDetect PIN RB.3 INPUT PULLUP ' CLD1\ (pin 5)
CrdEndStop PIN RB.4 INPUT PULLUP ' CLD2\ (pin 6)

UnusedRA1 PIN RA.1 INPUT PULLUP
UnusedRA2 PIN RA.2 INPUT PULLUP
UnusedRA3 PIN RA.3 INPUT PULLUP
UnusedRB5 PIN RB.5 INPUT PULLUP
UnusedRB6 PIN RB.6 INPUT PULLUP
UnusedRB7 PIN RB.7 INPUT PULLUP
UnusedRCx PIN RC INPUT PULLUP

' ---
' Constants
' ---

Yes CON 1
No CON 0

NoCard CON 1
HasCard CON 0

IsStopped CON 1
IsMoving CON 0

LF CON 10 ' line feed
FF CON 12 ' form feed; use as CLS
CR CON 13 ' carriage return

Baud CON "T19200" ' or T2400, or T9600
Idle CON 1 ' for true mode

LcdBkSpc CON $08 ' move cursor left
LcdRt CON $09 ' move cursor right
LcdLF CON $0A ' move cursor down 1 line
LcdCls CON $0C ' clear LCD (need 5 ms delay)
LcdCR CON $0D ' move pos 0 of next line
LcdBLon CON $11 ' backlight on
LcdBLoff CON $12 ' backlight off
LcdOff CON $15 ' LCD off
LcdOn1 CON $16 ' LCD on; no crsr, no blink
LcdOn2 CON $17 ' LCD on; no crsr, blink on
LcdOn3 CON $18 ' LCD on; crsr on, no blink
LcdOn4 CON $19 ' LCD on; crsr on, blink on
LcdLine1 CON $80 ' move to line 1, column 0
LcdLine2 CON $94 ' move to line 2, column 0
LcdLine3 CON $A8 ' move to line 3, column 0
LcdLine4 CON $BC ' move to line 4, column 0

LcdCC0 CON $F8 ' define custom char 0
LcdCC1 CON $F9 ' define custom char 1
LcdCC2 CON $FA ' define custom char 2
LcdCC3 CON $FB ' define custom char 3
LcdCC4 CON $FC ' define custom char 4
LcdCC5 CON $FD ' define custom char 5
LcdCC6 CON $FE ' define custom char 6
LcdCC7 CON $FF ' define custom char 7

' ---
' Variables

Column 148: It’s In the Cards Page 11 of 15

' ---

flags VAR Byte
 slideErr VAR flags.0
 parityErr VAR flags.1
 mechStopErr VAR flags.2
 goodCard VAR flags.7 ' for card comparison

idx VAR Byte ' loop index
char VAR Byte ' character from char
bCount VAR Byte ' counter for bits in byte
pCheck VAR Byte ' for parity checking

buf VAR Byte (16) ' buffer for card #

tmpB1 VAR Byte ' for subs/funcs
tmpB2 VAR Byte
tmpB3 VAR Byte
tmpB4 VAR Byte
tmpW1 VAR Word
tmpW2 VAR Word

' ===
 PROGRAM Start
' ===

' ---
' Subroutine / Function Declarations
' ---

DELAY_MS SUB 1, 2 ' wrapper for PAUSE

CLR_LCD SUB 0 ' clears LCD screen
TX_BYTE SUB 1 ' wrapper for SEROUT
TX_STR SUB 2 ' transmit a string

CHECK_CARD FUNC 1, 4 ' check card string

' ---
' Program Code
' ---

Start:
 TX = Idle
 DELAY_MS 100 ' let LCD self initialize

Lcd_Setup:
 TX_BYTE LcdBLoff ' backlight off
 TX_BYTE LcdOn1 ' no cursor or blink

Main:
 CLR_LCD
 TX_STR "Insert Card"
 DO UNTIL CrdDetect = HasCard ' wait for card insertion
 LOOP

Find_Start_Sentinel:
 flags = %00000000 ' assume no errors
 char = 0 ' clear character buffer
 DO
 DO WHILE CrdClock = 1 ' wait for 1 -> 0 transition
 LOOP
 char = char >> 1 ' prep for next bit
 char.4 = ~CrdData ' get bit, LSB first
 DO WHILE CrdClock = 0 ' wait for end of clock bit

Column 148: It’s In the Cards Page 12 of 15

 LOOP
 LOOP UNTIL char = %01011 ' hold for start sentinel

Read_Card_Number:
 FOR idx = 0 TO 15 ' read card # (with sep for Amex)
 char = 0
 FOR bCount = 1 TO 5 ' five bits per char (4 + parity)
 DO WHILE CrdClock = 1 ' wait for bit
 IF CrdMotion = IsStopped THEN
 slideErr = 1
 GOTO Process_Errors
 ENDIF
 LOOP
 char = char >> 1
 char.4 = ~CrdData
 DO WHILE CrdClock = 0
 IF CrdMotion = IsStopped THEN
 slideErr = 1 ' set flag on error
 GOTO Process_Errors
 ENDIF
 LOOP
 NEXT
 buf(idx) = char
 NEXT

Check_Parity:
 FOR idx = 0 TO 15 ' loop through buffer
 char = buf(idx) ' pull a character
 bCount = 0 ' clear counter (for 1's)
 FOR pCheck = 1 TO 4 ' count four bits
 bCount = bCount + char.0 ' update 1's count
 char = char >> 1 ' position next bit
 NEXT
 IF bCount.0 = char.0 THEN ' compare with parity bit
 parityErr = 1 ' set flag on error
 GOTO Process_Errors
 ENDIF
 NEXT

Process_Errors:
 IF slideErr = 1 THEN
 CLR_LCD
 TX_STR "Slide Error"
 GOTO Remove_Card
 ENDIF
 IF parityErr = 1 THEN
 CLR_LCD
 TX_STR "Read Error"
 GOTO Remove_Card
 ENDIF

Convert_To_Ascii:
 FOR idx = 0 TO 15 ' loop through buffer
 char = buf(idx) & $0F ' strip parity bit
 buf(idx) = char + "0" ' convert to ASCII
 NEXT

Get_Card_Type:
 CLR_LCD
 char = buf(0) ' get card type char
 IF char = "3" THEN ' Amex or Diners
 char = buf(1)
 IF char = "7" THEN ' get card sub-type
 TX_STR "Amex"
 GOTO Display_Amex
 ELSEIF char = "8" THEN

Column 148: It’s In the Cards Page 13 of 15

 TX_STR "Diners"
 ELSE
 TX_STR "???"
 ENDIF
 ELSEIF char = "4" THEN
 TX_STR "Visa"
 ELSEIF char = "5" THEN
 TX_STR "M/C"
 ELSEIF char = "6" THEN
 TX_STR "Discover"
 ELSE
 TX_STR "???"
 ENDIF

Display_Standard:
 TX_BYTE CR
 FOR idx = 0 TO 3
 TX_BYTE buf(idx)
 NEXT
 TX_BYTE " "
 FOR idx = 4 TO 7
 '{$IFDEF Secret_Display}
 TX_BYTE "*"
 '{$ELSE}
 TX_BYTE buf(idx)
 '{$ENDIF}
 NEXT
 TX_BYTE " "
 FOR idx = 8 TO 11
 '{$IFDEF Secret_Display}
 TX_BYTE "*"
 '{$ELSE}
 TX_BYTE buf(idx)
 '{$ENDIF}
 NEXT
 TX_BYTE " "
 FOR idx = 12 TO 15
 TX_BYTE buf(idx)
 NEXT
 TX_BYTE " "
 GOTO Check_Password

Display_Amex:
 TX_BYTE CR
 FOR idx = 0 TO 3
 TX_BYTE buf(idx)
 NEXT
 TX_BYTE " "
 FOR idx = 4 TO 9
 '{$IFDEF Secret_Display}
 TX_BYTE "*"
 '{$ELSE}
 TX_BYTE buf(idx)
 '{$ENDIF}
 NEXT
 TX_BYTE " "
 FOR idx = 10 TO 14
 TX_BYTE buf(idx)
 NEXT

Check_Password:
 CHECK_CARD Passcode1, buf, 16 ' check for me
 TX_BYTE LcdLine4
 IF goodCard = Yes THEN
 TX_STR "JON WILLIAMS"
 ELSE
 TX_STR "UNKNOWN"
 ENDIF

Column 148: It’s In the Cards Page 14 of 15

Remove_Card:
 DO WHILE CrdDetect = HasCard ' wait for card removal
 LOOP
 GOTO Main

' ---
' Subroutine / Function Code
' ---

' Use: DELAY_MS duration
' -- "duration" in milliseconds
' -- wrapper for PAUSE

SUB DELAY_MS
 IF __PARAMCNT = 1 THEN
 tmpW1 = __PARAM1
 ELSE
 tmpW1 = __WPARAM12
 ENDIF
 PAUSE tmpW1
 ENDSUB

' ---

' Use: CLR_LCD
' -- clears LCD with proper delay before next possible transmission

SUB CLR_LCD
 TX_BYTE LcdCls
 DELAY_MS 2
 ENDSUB

' ---

' Use: TX_BYTE byteVal
' -- transmit "byteVal" at "Baud" on pin "TX"

SUB TX_BYTE
 SEROUT TX, Baud, __PARAM1
 ENDSUB

' ---

' Use: TX_STR [string | label]
' -- "string" is an embedded string constant
' -- "label" is DATA statement label for stored z-String

SUB TX_STR
 tmpW1 = __WPARAM12 ' get address of string
 DO
 READINC tmpW1, tmpB1 ' read a character
 IF tmpB1 = 0 THEN EXIT ' if 0, string complete
 TX_BYTE tmpB1 ' send character
 LOOP
 ENDSUB

' ---

' Use: result = CHECK_CARD [String | Label], pntr, length
' -- compares card array to inline string or z-string at Label
' -- "pntr" is a RAM address of card data
' -- "length" is the number of characters to compare

FUNC CHECK_CARD
 tmpW1 = __WPARAM12 ' pointer to test string
 tmpB1 = __PARAM3 ' RAM pointer to card data
 tmpB2 = __PARAM4 ' length of comparison

Column 148: It’s In the Cards Page 15 of 15

 IF tmpB2 > 0 THEN
 goodCard = Yes ' assume good
 ELSE
 goodCard = No ' abort on zero length
 ENDIF

 DO WHILE tmpB2 > 0
 READINC tmpW1, tmpB3 ' get char from string
 tmpB4 = __RAM(tmpB1) ' get comparison character
 IF tmpB4 <> tmpB3 THEN ' if mismatch
 goodCard = No ' flag bad
 EXIT ' and abort
 ENDIF
 INC tmpB1
 DEC tmpB2
 LOOP
 __PARAM1 = goodCard ' 1 = good, 0 = bad
 ENDFUNC

' ---
' User Data
' ---

Passcode1:
 DATA "1111222233334444", 0 ' replace with valid card#

